1
|
Rana R, Kuche K, Jain S, Chourasia MK. Addressing overlooked design considerations for nanoemulsions. Nanomedicine (Lond) 2024; 19:2727-2745. [PMID: 39555803 DOI: 10.1080/17435889.2024.2429947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Despite progress in genetic and molecular research, which has opened up a myriad of targeted therapeutic possibilities, the compromised solubility and absorption profile of therapeutic entities restrict their passage across lipid barriers compromising efficacy. Consequently, nanoemulsions accrued significance as futuristic, safe, and effective lipid-based drug delivery systems due to their inherent array of physicochemical properties and provide exquisite bioavailability, reduced toxicity, and improved solubility of hydrophobic entities based on size and surface area. However, a pronounced gap exists in understanding and addressing challenges that arise during design and development of nanoemulsions. In this context, we have attempted to reconsider overlooked aspects of nanoemulsion design, offering insight into its commercial viability.
Collapse
Affiliation(s)
- Rafquat Rana
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Prado JCS, de Aguiar FLL, Prado GM, Nascimento JFD, de Sousa NV, Barbosa FCB, Lima DM, Rodrigues THS, Bessa NUDC, Abreu FOMDS, Fontenelle RODS. Development and characterization of nanoemulsions containing Lippia origanoides Kunth essential oil and their antifungal potential against Candida albicans. J Appl Microbiol 2024; 135:lxae271. [PMID: 39439208 DOI: 10.1093/jambio/lxae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/15/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Nanoemulsions based on plant essential oils have shown promise as alternatives against fungal pathogens by increasing the solubility and bioavailability of the active compounds of essential oils, which can improve their efficacy and safety. In the present study, we aimed to prepare and characterize nanoemulsions of Lippia origanoides essential oil, and analyze their antifungal activity against C. albicans in planktonic and biofilm form. Additionally, we sought to verify their cytotoxicity. METHODS AND RESULTS Alginate nanoemulsions were prepared with different concentrations of essential oil, sunflower oil, and surfactant to investigate ideal formulations regarding stability and antifungal efficiency. The results showed the nanoemulsions remained stable for longer than 60 days, with acidic pH, particle sizes ranging from 180.17 ± 6.86 nm to 497.85 ± 253.50 nm, zeta potential from -60.47 ± 2.25 to -43.63 ± 12, and polydispersity index from 0.004 to 0.622. The photomicrographs revealed that the addition of sunflower oil influenced the formation of the particles, forming nanoemulsions. The antifungal results of the essential oil and nanoemulsions showed that the MIC ranged from 0.078 to 0.312 mg ml-1. The nanoemulsions were more effective than the free essential oil in eradicating the biofilm, eliminating up to 89.7% of its mass. With regard to cytotoxicity, differences were found between the tests with VERO cells and red blood cells, and the nanoemulsions were less toxic to red blood cells than the free essential oil. CONCLUSIONS These results show that nanoemulsions have antifungal potential against strains of C. albicans in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Júlio César Sousa Prado
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
| | | | - Guilherme Mendes Prado
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
| | - Joice Farias do Nascimento
- Natural Polymers Laboratory, Center for Science and Technology, State University of Ceará, Fortaleza, CE 60741000, Brazil
| | | | | | - Danielle Malta Lima
- Postgraduate Program in Medical Sciences, University of Fortaleza, Fortaleza, CE 60811905, Brazil
| | | | - Nathália Uchôa de Castro Bessa
- Laboratório de Embalagens-Embrapa, Post-graduated Program in Biotecnology, Federal University of Ceará, Fortaleza, CE 60511110, Brazil
| | | | - Raquel Oliveira Dos Santos Fontenelle
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
- Center for Agricultural and Biological Sciences, Acaraú Valley State University, Sobral, CE 62040370, Brazil
| |
Collapse
|
3
|
Lima MA, Carusi J, Rocha LDO, Tonon RV, Cunha RL, Rosenthal A. Physicochemical Characterization, Rheological Properties, and Antimicrobial Activity of Sodium Alginate-Pink Pepper Essential Oil (PPEO) Nanoemulsions. Foods 2024; 13:3090. [PMID: 39410124 PMCID: PMC11476015 DOI: 10.3390/foods13193090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Essential oils (EOs) have antimicrobial properties, but their low solubility in water and strong flavor pose challenges for direct incorporation into food, as they can negatively impact organoleptic properties. To overcome these issues, strategies such as oil-in-water (O/W) nanoemulsions have been developed to improve EO dispersion and protection while enhancing antimicrobial efficacy. The objective of this study was to create sodium alginate-pink pepper essential oil (PPEO) nanoemulsions using microfluidization. Various formulations were assessed for physicochemical, physical, and antimicrobial properties to evaluate their potential in food applications. The microfluidized emulsions and nanoemulsions had droplet sizes ranging from 160 to 443 nm, polydispersity index (PdI) ranging from 0.273 to 0.638, and zeta potential (ζ) ranging from -45.2 to 66.3 mV. The nanoemulsions exhibited Newtonian behavior and remarkable stability after 20 days of storage. Antimicrobial testing revealed effectiveness against Staphylococcus aureus and Listeria monocytogenes, with minimum inhibitory concentrations (MIC) of 200 µg/mL for both microorganisms and minimum bactericidal concentrations (MBC) of 800 µg/mL and 400 µg/mL, respectively, proving that encapsulation of PPEO in nanoemulsions significantly increased its antibacterial activity. These results present the possibility of using PPEO nanoemulsions as a more effective natural alternative to synthetic preservatives in food systems.
Collapse
Affiliation(s)
- Mariah Almeida Lima
- Food Technology Department, Institute of Technology, University Federal Rural of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.C.); (L.d.O.R.)
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.C.); (L.d.O.R.)
| | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Amauri Rosenthal
- Embrapa Food Technology, Rio de Janeiro 23020-470, RJ, Brazil; (R.V.T.); (A.R.)
| |
Collapse
|
4
|
Akhter A, Shirazi JH, Shoaib khan HM, Hussain MD, Kazi M. Development and evaluation of nanoemulsion gel loaded with bioactive extract of Cucumis melo var. agrestis: A novel approach for enhanced skin permeability and antifungal activity. Heliyon 2024; 10:e35069. [PMID: 39170221 PMCID: PMC11336325 DOI: 10.1016/j.heliyon.2024.e35069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The utilization of phytoconstituents in skin care products has emerged as a notable trend due to their recognized safety and therapeutic efficacy. However, the challenge lies in improving the effective delivery of phytoconstituents to specific tissues, primarily attributed to their poor solubility and low permeability. This study endeavors to address this challenge by developing, optimizing and characterizing Cucumis melo var. agrestis (CME) extract loaded nanoemulsion gel (CME-NEG), aiming to enhance the skin permeability and antifungal activity. Herein, nanoemulsions encapsulating the plant extract were prepared using ultrasonication technique and were characterized for droplet size, zeta potential, polydispersity index (PDI) and entrapment efficiency. Further, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were conducted to characterize the optimized CME extract loaded nanoemulsion (CME-NE 3) formulation. The optimized formulation was blended with Carbopol 940 gel to develop CME-NEG, which was evaluated for release kinetics, in vitro permeation and in vitro antifungal activity. High performance liquid chromatography (HPLC) analysis confirmed the presence of gallic acid, chlorogenic acid, 4-Hydroxy benzoic acid (HB acid), kaempferol, caffeic acid and quercetin. Findings of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that the ethanolic extract had highest antioxidant activity (88.88 %). The optimized formulation displayed smooth spherical nanodroplets with size of 175.5 ± 1.56 nm, zeta potential of -21.5 ± 0.12 mV, PDI of 0.192 ± 0.06, and highest entrapment efficiency (EE) of 91.35 ± 1.65 %. The release profile of CME-NE exhibited a controlled release characteristic and the release kinetic mechanism was best described by the Korsmeyer-Peppas (Kp) model. In a 24 h permeation study, it was observed that the in vitro permeation of CME-NEG was 58.63 %, significantly higher than that of CME extract loaded plain gel (CME-PG) with an enhancement ratio of 2.12. The prepared CME-NEG formulation also presented enhanced antifungal activity as compared to pure CME extract. In conclusion, the designed CME-NEG offers a promising topical drug delivery system with enhanced skin permeability and antifungal activity.
Collapse
Affiliation(s)
- Ambreen Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Haji Muhammad Shoaib khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Baghdadi RA, Abdalla AN, Abourehab MA, Tulbah AS. Evaluation of the effects of a dasatinib-containing, self-emulsifying, drug delivery system on HT29 and SW420 human colorectal carcinoma cells, and MCF7 human breast adenocarcinoma cells. J Taibah Univ Med Sci 2024; 19:806-815. [PMID: 39170071 PMCID: PMC11338096 DOI: 10.1016/j.jtumed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024] Open
Abstract
Background/Aim Dasatinib (DS), a second-generation tyrosine kinase inhibitor, functions as a multi-target small-molecule drug via targeting various tyrosine kinases involved in neoplastic cell growth. DS inhibits cancer cell replication and migration, and induces tumor cell apoptosis in a variety of solid tumors. However, it is poorly soluble in water under some pH values. Therefore, the development of a DS-containing, self-emulsifying, drug delivery system (SeDDs) could help overcome these problems in treating cancer cells. Methods Various SeDD formulations loaded with DS were developed with isopropyl myristate (oil phase), Labrafil (surfactant), and polyethylene glycol (co-surfactant). The physicochemical properties of the formulations were assessed according to droplet size, encapsulation efficiency, and in vitro drug release. The cytotoxicity of the formulations on the cancer cell lines HT29 and SW420 (human colorectal carcinoma), and MCF7 (human breast adenocarcinoma), in addition to MRC5 normal human fetal lung fibroblasts, was evaluated to assess selectivity. Results The DS-SeDD formulation showed favorable particle size, encapsulation efficiency, and in vitro drug release. The anti-cancer potency of DS-SeDDs had greater cytotoxicity effects than pure DA on the three cancer cell lines, MCF7, HT29, and SW420l. Conclusion The developed DS-SeDD formulations may potentially be an effective sustained drug delivery method for cancer therapy.
Collapse
Affiliation(s)
- Rehab A. Baghdadi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, KSA
| | - Ashraf N. Abdalla
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, KSA
| | - Mohammed A.S. Abourehab
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, KSA
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Alaa S. Tulbah
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, KSA
| |
Collapse
|
6
|
Khan BA, Ahmad N, Alqahtani A, Baloch R, Rehman AU, Khan MK. Formulation development of pharmaceutical nanoemulgel for transdermal delivery of feboxostat: Physical characterization and in vivo evaluation. Eur J Pharm Sci 2024; 195:106665. [PMID: 38056779 DOI: 10.1016/j.ejps.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
This study aimed to fabricate and characterize feboxostat (FXT) loaded nanoemulgel (NEG) for transdermal delivery. NEG was prepared by high sheared homogenization technique and characterized for thermodynamic stability, pH analysis, drug content, zeta analysis, viscosity, spreadability, FTIR, in-vitro drug release and ex-vivo permeation. In vivo anti-inflammatory activity was evaluated in albino rats by inducing edema in hind paws using carrageenan. The formulations showed optimum thermodynamic stability, having no phase separation and color change. The pH was in the range of human skin range i.e. 5.5-6.5. The drug content of F3 and F4 formulations were 97.56 ± 3.45 % and 83.88 ± 3.12 % respectively which were in official limit of USP i.e. 90 ± 10 %. No interaction was found between the FXT and various components after FTIR analysis. The viscosity of NEG was 4587 cp at 6 rpm and 2681 cp at 12 rpm. The droplet sizes of F1 (Blank NE), F2 (Blank NEG), F3 (Drug loaded NE) and F4 (Drug loaded NEG) were 148.6 nm, 153.4 nm, 402.1 nm and 498.3 nm respectively. The percent drug release of F3 was 82 ± 0.97 %, while F4 released 78 ± 0.91 % after 24 h. The drug permeation was 77 ± 1.28 % and 74 ± 1.10 % for F3 and F4 respectively. The optimized formulation significantly (p < 0.05; ANOVA) inhibited the paw edema in albino rats as compared to the control and standard group. It has been concluded that FXT loaded NEG can be a safe and effective alternative to the oral therapy of FXT.
Collapse
Affiliation(s)
- Barkat Ali Khan
- Drug Delivery and Cosmetics Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noman Ahmad
- Drug Delivery and Cosmetics Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Rabia Baloch
- Hospital Pharmacist, Teaching Hospital, Dera Ghazi Khan, Punjab 32200, Pakistan
| | - Atta Ur Rehman
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Khalid Khan
- Drug Delivery and Cosmetics Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan.
| |
Collapse
|
7
|
Chaiyana W, Inthorn J, Somwongin S, Anantaworasakul P, Sopharadee S, Yanpanya P, Konaka M, Wongwilai W, Dhumtanom P, Juntrapirom S, Kanjanakawinkul W. The Fatty Acid Compositions, Irritation Properties, and Potential Applications of Teleogryllus mitratus Oil in Nanoemulsion Development. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:184. [PMID: 38251148 PMCID: PMC10818487 DOI: 10.3390/nano14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
This study aimed to characterize and investigate the potential of the oils from Gryllus bimaculatus, Teleogryllus mitratus, and Acheta domesticus to be used in nanoemulsions. The oils were extracted by a cold press method and characterized for their fatty acid profiles. Their irritation effects on the chorioallantoic membrane (CAM) were evaluated, along with investigations of solubility and the required hydrophilic-lipophilic balance (RHLB). Various parameters impacting nanoemulsion generation using high-pressure homogenization were investigated. The findings revealed that G. bimaculatus yielded the highest oil content (24.58% w/w), followed by T. mitratus (20.96% w/w) and A. domesticus (15.46% w/w). Their major fatty acids were palmitic, oleic, and linoleic acids. All oils showed no irritation, suggesting safety for topical use. The RHLB values of each oil were around six-seven. However, they could be successfully developed into nanoemulsions using various surfactants. All cricket oils could be used for the nanoemulsion preparation, but T. mitratus yielded the smallest internal droplet size with acceptable PDI and zeta potential. Nanoemulsion was found to significantly enhance the antioxidant and anti-skin wrinkle of the T. mitratus oil. These findings pointed to the possible use of cricket oils in nanoemulsions, which could be used in various applications, including topical and cosmetic formulations.
Collapse
Affiliation(s)
- Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (J.I.); (S.S.); (P.A.); (S.S.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirasit Inthorn
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (J.I.); (S.S.); (P.A.); (S.S.)
| | - Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (J.I.); (S.S.); (P.A.); (S.S.)
| | - Pimporn Anantaworasakul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (J.I.); (S.S.); (P.A.); (S.S.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sawat Sopharadee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (J.I.); (S.S.); (P.A.); (S.S.)
| | - Pornnapat Yanpanya
- Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri 20131, Thailand; (P.Y.); (M.K.)
| | - Marina Konaka
- Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri 20131, Thailand; (P.Y.); (M.K.)
| | - Wasin Wongwilai
- Renewable Energy and Energy Efficiency Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pongsathorn Dhumtanom
- Herbs and Functional Products Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| |
Collapse
|
8
|
Medeleanu ML, Fărcaș AC, Coman C, Leopold L, Diaconeasa Z, Socaci SA. Citrus essential oils - Based nano-emulsions: Functional properties and potential applications. Food Chem X 2023; 20:100960. [PMID: 38144864 PMCID: PMC10740136 DOI: 10.1016/j.fochx.2023.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Citrus essential oils are natural products with various bioactive properties (e.g., antimicrobial, antioxidant, and antimutagenic activities), that are generally recognized as safe (GRAS) by Food and Drug Administration (FDA) to be used as flavorings and food additives. Nonetheless, due to their high volatility, low solubility in water, low thermal stability, susceptibility to oxidation, and strong flavor, their applications in the food industry are limited. Nanotechnology allows the incorporation of citrus essential oils into nano-emulsion systems, thus protecting them from the deterioration caused by external factors and maintaining or even improving their functional properties. This study aims to summarize the antioxidant, antimicrobial, and antimutagenic effects of the nano-emulsions based on essential oils from citrus peels with emphasis on their mechanisms of action and potential applications in, e.g., foods, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Mădălina Lorena Medeleanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Elgendy HA, Makky AMA, Elakkad YE, Ismail RM, Younes NF. Syringeable atorvastatin loaded eugenol enriched PEGylated cubosomes in-situ gel for the intra-pocket treatment of periodontitis: statistical optimization and clinical assessment. Drug Deliv 2023; 30:2162159. [PMID: 36604813 PMCID: PMC9833412 DOI: 10.1080/10717544.2022.2162159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atorvastatin calcium (ATV) is a well-known anti-hyperlipidemic drug currently being recognized for possessing an anti-inflammatory effect. Introducing it as a novel remedy for periodontitis treatment necessitates developing a syringeable modified delivery system capable of targeting inflammation within the periodontal pockets. Thus, a 33 Box-Behnken design was used to generate eugenol enriched PEGylated cubosomes. Based on the desirability function, the optimized formulation (OEEPC) was selected exhibiting a solubilization efficiency (SE%) of 97.71 ± 0.49%, particle size (PS) of 135.20 ± 1.11 nm, polydispersity index (PDI) of 0.09 ± 0.006, zeta potential (ZP) of -28.30 ± 1.84 mV and showing a sustained drug release over 12 h. It displayed a cubic structure under the transmission electron microscope, furthermore, it was stable upon storage for up to 30 days. Hence, it was loaded into an optimum syringeable in-situ gel (ISG) which displayed the desired periodontal gelation temperature (34 ± 0.70 °C) and an adequate gelation time (46 ± 2.82 sec), it also released approximately 75% of the drug within 72 h. Clinical evaluation of the ISG showed a promising percentage reduction of about 58.33% in probing depth, 90% in the bleeding index, 81.81% in the plaque index, and 70.21% in gingival levels of transforming growth factor-β1. This proved that the formulated syringeable intra-pocket delivery system of ATV is an efficient candidate for diminishing inflammation in periodontitis.
Collapse
Affiliation(s)
- Heba Amin Elgendy
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Amna M. A. Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yara E. Elakkad
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Radwa M. Ismail
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Misr University for Science and Technology, Giza, Egypt
| | - Nihal Farid Younes
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Alshaman R, Qushawy M, Mokhtar HI, Ameen AM, El-Sayed RM, Alamri ES, Elabbasy LM, Helaly AMN, Elkhatib WF, Alyahya EM, Zaitone SA. Marula oil nanoemulsion improves motor function in experimental parkinsonism via mitigation of inflammation and oxidative stress. Front Pharmacol 2023; 14:1293306. [PMID: 38116076 PMCID: PMC10729903 DOI: 10.3389/fphar.2023.1293306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Parkinson's disease (PD) is a neurologic condition exhibiting motor dysfunction that affects old people. Marula oil (M-Oil) has been used longley in cosmetics and curing skin disorders. M-Oil is particularly stable due to its high concentration of monounsaturated fatty acids and natural antioxidants. The current study formulated M-Oil in an o/w nanoemulsion (M-NE) preparations and tested its anti-inflammatory and antioxidant actions against experimental parkinsonism. Methods: Four experimental groups of male albino mice were used and assigned as vehicle, PD, PD + M-Oil and PD + M-NE. Locomotor function was evaluated using the open field test and the cylinder test. Striatal samples were used to measure inflammatory and oxidative stress markers. Results: The results indicated poor motor performance of the mice in PD control group then, improvements were recorded after treatment with crude M-Oil or M-NE. In addition, we found high expression and protein of inflammatory markers and malondialdehyde levels in PD group which were downregulated by using doses of crude M-Oil or M-NE. Hence, formulating M-Oil in form of M-NE enhanced its physical characters. Discussion: This finding was supported by enhanced biological activity of M-NE as anti-inflammatory and antioxidant agent that resulted in downregulation of the inflammatory burden and alleviation of locomotor dysfunction in experimental PD in mice.
Collapse
Affiliation(s)
- Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, El Arish, Egypt
| | - Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Angie M. Ameen
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M. El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, El Arish, Egypt
| | - Eman Saad Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Lamiaa M. Elabbasy
- Department of Medical Biochemistry and Molecular Biotechnology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M. N. Helaly
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walid F. Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Eidah M. Alyahya
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
12
|
Ahmady AR, Solouk A, Saber-Samandari S, Akbari S, Ghanbari H, Brycki BE. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J Colloid Interface Sci 2023; 638:616-628. [PMID: 36774875 DOI: 10.1016/j.jcis.2023.01.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Nanocarrier-based drug delivery systems have been designed into various structures that can effectively prevent cancer progression and improve the therapeutic cancer index. However, most of these delivery systems are designed to be simple nanostructures with several limitations, including low stability and burst drug release features. A nano-in-nano delivery technique is explored to address the aforementioned concerns. Accordingly, this study investigated the release behavior of a novel nanoparticles-in-nanofibers delivery system composed of capsaicin-loaded alginate nanoparticles embedded in polycaprolactone-chitosan nanofiber mats. First, alginate nanoparticles were prepared with different concentrations of cationic gemini surfactant and using nanoemulsion templates. The optimized formulation of alginate nanoparticles was utilized for loading capsaicin and exhibited a diameter of 19.42 ± 1.8 nm and encapsulation efficiency of 98.7 % ± 0.6 %. Likewise, blend polycaprolactone-chitosan nanofibers were prepared with different blend ratios of their solutions (i.e., 100:0, 80:20, 60:40) by electrospinning method. After the characterization of electrospun mats, the optimal nanofibers were employed for embedding capsaicin-loaded alginate nanoparticles. Our findings revealed that embedding capsaicin-loaded alginate nanoparticles in polycaprolactone-chitosan nanofibers, prolonged capsaicin release from 120 h to more than 500 h. Furthermore, the results of in vitro analysis demonstrated that the designed nanoplatform could effectively inhibit the proliferation of MCF-7 human breast cells while being nontoxic to human dermal fibroblasts (HDF). Collectively, the prepared nanocomposite drug delivery platform might be promising for the long-term and controlled release of capsaicin for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Azin Rashidy Ahmady
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Saeed Saber-Samandari
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran.
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hadi Ghanbari
- ENT and Head and Neck Research Center, Department of Otolaryngology, Head and Neck Surgery, The Five Senses Institute, Hazrat Rasoul Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bogumil E Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| |
Collapse
|
13
|
Nirmal NP, Chunhavacharatorn P, Chandra Khanashyam A, Li L, Al-Asmari F. Cinnamon bark oil in water nanoemulsion formulation, characterization, and antimicrobial activities. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
Fabrication of Monarda citriodora essential oil nanoemulsions: characterization and antifungal activity against Penicillium digitatum of kinnow. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
15
|
Development of Nanoemulsions for Topical Application of Mupirocin. Pharmaceutics 2023; 15:pharmaceutics15020378. [PMID: 36839700 PMCID: PMC9960479 DOI: 10.3390/pharmaceutics15020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Mupirocin (MUP) is a topical antibacterial agent used to treat superficial skin infections but has limited application due to in vivo inactivation and plasma protein binding. A nanoemulsion formulation has the potential to enhance the delivery of mupirocin into the skin. MUP-loaded nanoemulsions were prepared using eucalyptus oil (EO) or eucalyptol (EU), Tween® 80 (T80) and Span® 80 (S80) as oil phase (O), surfactant (S) and cosurfactant (CoS). The nanoemulsions were characterised and their potential to enhance delivery was assessed using an in vitro skin model. Optimised nanoemulsion formulations were prepared based on EO (MUP-NE EO) and EU (MUP-NE EU) separately. MUP-NE EO had a smaller size with mean droplet diameter of 35.89 ± 0.68 nm and narrower particle size index (PDI) 0.10 ± 0.02 nm compared to MUP-NE EU. Both nanoemulsion formulations were stable at 25 °C for three months with the ability to enhance the transdermal permeation of MUP as compared to the control, Bactroban® cream. Inclusion of EU led to a two-fold increase in permeation of MUP compared to the control, while EO increased the percentage by 48% compared to the control. Additionally, more MUP was detected in the skin after 8 h following MUP-NE EU application, although MUP deposition from MUP-NE EO was higher after 24 h. It may be possible, through choice of essential oil to design nanoformulations for both acute and prophylactic management of topical infections.
Collapse
|
16
|
Manaa AO, Baghdadi HH, El‐Nikhely NA, Heikal LA, El-Hosseiny LS. Oregano oil-nanoemulsions: Formulation and evaluation of antibacterial and anticancer potentials. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Oprea I, Fărcaș AC, Leopold LF, Diaconeasa Z, Coman C, Socaci SA. Nano-Encapsulation of Citrus Essential Oils: Methods and Applications of Interest for the Food Sector. Polymers (Basel) 2022; 14:4505. [PMID: 36365499 PMCID: PMC9658967 DOI: 10.3390/polym14214505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Citrus essential oils possess many health-promoting benefits and properties of high interest in the food and agri-food sector. However, their large-scale application is limited by their sensitivity to environmental factors. Nanostructures containing citrus essential oils have been developed to overcome the high volatility and instability of essential oils with respect to temperature, pH, UV light, etc. Nanostructures could provide protection for essential oils and enhancement of their bioavailability and biocompatibility, as well as their biological properties. Nano-encapsulation is a promising method. The present review is mainly focused on methods developed so far for the nano-encapsulation of citrus essential oils, with emphasis on lipid-based (including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and micro-emulsions) and polymer-based nanostructures. The physico-chemical characteristics of the obtained structures, as well as promising properties reported, with relevance for the food sector are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Novel Curcumin-Encapsulated α-Tocopherol Nanoemulsion System and Its Potential Application for Wound Healing in Diabetic Animals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7669255. [PMID: 36158895 PMCID: PMC9499807 DOI: 10.1155/2022/7669255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Objective This project was aimed at formulating a novel nanoemulsion system and evaluating it for open incision wound healing in diabetic animals. Methods The nanoemulsions were characterized for droplet size and surface charge, drug content, antioxidant and antimicrobial profiling, and wound healing potential in diabetic animals. The skin samples excised were also analyzed for histology, mechanical strength, and vibrational and thermal analysis. Results The optimized nanoemulsion (CR-NE-II) exhibited droplet size of26.76 ± 0.9 nm with negative surface charge (−10.86 ± 1.06 mV), was homogenously dispersed with drug content of68.05 ± 1.2%, released almost82.95 ± 2.2%of the drug within first 2 h of experiment with synergistic antioxidant (95 ± 2.1%) and synergistic antimicrobial activity against selected bacterial strains in comparison to blank nanoemulsion, and promoted significantly fast percent reepithelization (96.47%). The histological, vibrational, thermal, and strength analysis of selected skin samples depicted a uniform and even distribution of collagen fibers which translated into significant increase in strength of skin samples in comparison to the control group. Conclusions The optimized nanoemulsion system significantly downregulated the oxidative stress, enhanced collagen deposition, and precluded bacterial contamination of wound, thus accelerating the skin tissue regeneration process.
Collapse
|
19
|
Algahtani MS, Ahmad MZ, Ahmad J. Investigation of Factors Influencing Formation of Nanoemulsion by Spontaneous Emulsification: Impact on Droplet Size, Polydispersity Index, and Stability. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080384. [PMID: 36004909 PMCID: PMC9404776 DOI: 10.3390/bioengineering9080384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Interest in nanoemulsion technology has increased steadily in recent years for its widespread applications in the delivery of pharmaceuticals, nutraceuticals, and cosmeceuticals. Rational selection of the composition and the preparation method is crucial for developing a stable nanoemulsion system with desired physicochemical characteristics. In the present study, we investigate the influence of intricate factors including composition and preparation conditions that affect characteristic parameters and the stability of the nanoemulsion formation prepared by the spontaneous emulsification method. Octanoic acid, capryol 90, and ethyl oleate were selected to represent oil phases of different carbon–chain lengths. We explored the impact of the addition mode of the oil–Smix phase and aqueous phase, vortexing time, Km (surfactant/cosurfactant) ratio, and the replacement of water by buffers of different pH as an aqueous system. The phase behavior study showed that the Smix phase had a significant impact on the nanoemulsifying ability of the nanoemulsions composed of oil phases of varying carbon-chain lengths. The mode of mixing of the oil–Smix phase to the aqueous phase markedly influenced the mean droplet size and size distribution of the nanoemulsions composed of oil phases as capryol 90. Vortexing time also impacted the mean droplet size and the stability of the generated nanoemulsion system depending on the varying carbon-chain length of the oil phase. The replacement of the water phase by aqueous buffers of pH 1.2, 5.5, 6.8, and 7.4 has altered the mean droplet size and size distribution of the nanoemulsion system. Further, the Km ratio also had a significant influence on the formation of the nanoemulsion system. The findings of this investigation are useful in understanding how the formulation composition and process parameters of the spontaneous emulsification technique are responsible for affecting the physicochemical characteristics and stability of the nanoemulsion system composed of oil of varying carbon-chain (C8-C18) length.
Collapse
|
20
|
Isoliquiritigenin Nanoemulsion Preparation by Combined Sonication and Phase-Inversion Composition Method: In Vitro Anticancer Activities. Bioengineering (Basel) 2022; 9:bioengineering9080382. [PMID: 36004907 PMCID: PMC9404772 DOI: 10.3390/bioengineering9080382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Isoliquiritigenin (ILQ) has a number of biological activities such as antitumor and anti-inflammatory effects. However, biomedical applications of ILQ are impeded by its poor aqueous solubility. Therefore, in this research, we prepared a novel ILQ-loaded nanoemulsion, i.e., ILQ-NE, which consisted of Labrafil® M 1944 CS (oil), Cremophor® EL (surfactant), ILQ, and phosphate-buffered saline, by employing a combined sonication (high-energy) and phase-inversion composition (low-energy) method (denoted as the SPIC method). The ILQ-NE increased the ILQ solubility ~1000 times more than its intrinsic solubility. It contained spherical droplets with a mean diameter of 44.10 ± 0.28 nm and a narrow size distribution. The ILQ loading capacity was 4%. The droplet size of ILQ-NE remained unchanged during storage at 4 °C for 56 days. Nanoemulsion encapsulation effectively prevented ILQ from degradation under ultraviolet light irradiation, and enhanced the ILQ in vitro release rate. In addition, ILQ-NE showed higher cellular uptake and superior cytotoxicity to 4T1 cancer cells compared with free ILQ formulations. In conclusion, ILQ-NE may facilitate the biomedical application of ILQ, and the SPIC method presents an attractive avenue for bridging the merits and eliminating the shortcomings of traditional high-energy methods and low-energy methods.
Collapse
|
21
|
Haider F, Khan BA, Khan MK. Formulation and Evaluation of Topical Linezolid Nanoemulsion for Open Incision Wound in Diabetic Animal Model. AAPS PharmSciTech 2022; 23:129. [PMID: 35484340 DOI: 10.1208/s12249-022-02288-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to investigate the role of topical nanoemulsion of linezolid in attenuating diabetic wound by delivering the drug to the target tissue. The nanoemulsions (NEs) were prepared by high-pressure homogenization and subjected to thermodynamic stability, pH, droplet size, viscosity, surface charge, polydispersity index (PDI), entrapment efficiency, drug content, and in vitro drug release. All formulations were thermodynamically stable. The pH was in the range of 5 to 6. The viscosities of LZD-0, LZD-1, LZD-2, and LZD-3 were recorded as 68.75 ± 2.23 mPas, 69.56 ± 2.11 mPas, 96.45 ± 3.39 mPas, and 45.5 ± 1.12 mPas respectively. LZD-1 exhibited droplet size of 376.5 nm ± 0.98, surface charge - 22.5mV, and PDI 0.387. Drug content and entrapment efficiency of LZD-1 were found to be 93 ± 3.31 % and 72 ± 1.67 %, respectively. LZD-1 released 80 ± 2.87% of drug. Due to significant (P < 0.05) in vitro results, LZD-1 formulation was selected for in vivo evaluation. Diabetes was induced in Sprague-Dawley rats using intraperitoneal streptozotocin injection at dose of 50 mg/kg. Open-incision wounds were inflicted among all diabetic rats at dorsal shaved area. Randomly, all rats were divided into positive control (blank formulation), negative control (no formulation), and test group (LZD-1). Wound healing occurred in order of test group > positive control > negative control. Skin histology and tensile strength also revealed significant results. The study concluded that topical nanoemulsion of linezolid may open new horizon in treating diabetic wounds.
Collapse
|
22
|
Saeed K, Pasha I, Jahangir Chughtai MF, Ali Z, Bukhari H, Zuhair M. Application of essential oils in food industry: challenges and innovation. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2029776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kanza Saeed
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Imran Pasha
- University of Agriculture Faisalabad, Faisalabad Pakistan
| | | | | | - Hina Bukhari
- University of Agriculture Faisalabad, Faisalabad Pakistan
| | | |
Collapse
|
23
|
Khan MK, Khan BA, Uzair B, Iram Niaz S, Khan H, Hosny KM, Menaa F. Development of Chitosan-Based Nanoemulsion Gel Containing Microbial Secondary Metabolite with Effective Antifungal Activity: In vitro and in vivo Characterizations. Int J Nanomedicine 2021; 16:8203-8219. [PMID: 34949923 PMCID: PMC8689013 DOI: 10.2147/ijn.s338064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Microbial resistance to antibiotics is one of the most important public health concerns of the 21st century. We isolated, purified, and structurally elucidated antifungal secondary metabolites from red soil microbes and encapsulated them into chitosan (CS)-based nanoemulsion (NE) gel (NEG). Methods Three compounds were isolated and purified of which only one compound (Pure 2) showed potent antifungal activity (MFC: 8–132 µg/mL), which was also significantly (P<0.05) more efficient than fluconazole (MFC: 32–132 µg/mL). Pure 2 was structurally elucidated using 1D- and 2D-NMR before its incorporation into NEG. The formulations were prepared by high-speed homogenization technique. Physicochemical and pharmacological characterizations of formulations (ie, droplet size, PDI, zeta potential, drug content, viscosity, SEM, FTIR, spreadability, in vitro drug release, ex vivo permeation, in vitro antifungal and in vivo antifungal activities) were assessed. Results NMR analyses identified the compound as a derivative of phthalic acid ester (PAE). The optimized formulations displayed a droplet size <100 nm, -ve zeta potential, and PDI <0.45. The drug content was within the official limit of pharmacopeia (ie, 100±10%). Insignificant changes (P>0.05) in the viscosity of the formulations stored were observed. The morphology of the formulations indicated mesh-like structure. The FTIR study indicated that there were no interactions between the drug and other ingredients of the formulations. Optimum spreadability was observed in all formulations. NEG released 75.3±1.12% of Pure 2 after 12 hrs while NE released 85.33±1.88% of the compound. The skin permeation of F2 (71.15±1.28%) was significantly different (P<0.05) from F3 (81.80±1.91%) in rabbits. Complete and apparently safe recovery from the fungal infection was achieved in rabbits treated topically with Pure 2-loaded NEGs. Conclusion Hence, the NEG-loaded PAE isolated from Pseudomonas fluorescens represents a possible alternative for the treatment of fungal infections as compared to available therapies.
Collapse
Affiliation(s)
- Muhammad Khalid Khan
- Drug Delivery and Cosmetics Laboratory (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Barkat Ali Khan
- Drug Delivery and Cosmetics Laboratory (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Bushra Uzair
- Department of Biotechnology and Bioinformatics, International Islamic University, Islamabad, 40000, Pakistan
| | - Shah Iram Niaz
- Department of Chemistry, Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Haroon Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Khaled Mohamed Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Farid Menaa
- Department of Nanomedicine, California Innovations Corporation, San Diego, CA, 92037, USA
| |
Collapse
|
24
|
Koroleva MY, Yurtov EV. Ostwald ripening in macro- and nanoemulsions. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Bashir M, Ahmad J, Asif M, Khan SUD, Irfan M, Y Ibrahim A, Asghar S, Khan IU, Iqbal MS, Haseeb A, Khalid SH, As Abourehab M. Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:1457-1472. [PMID: 33654396 PMCID: PMC7910103 DOI: 10.2147/ijn.s294653] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Rheumatoid arthritis is an autoimmune disorder that directly affects joints. However, other body organs including heart, eyes, skin, blood vessels and lungs may also be affected. The purpose of this study was to design and evaluate a nanoemulgel formulation of diflunisal (DIF) and solubility enhanced diflunisal (DIF-IC) for enhanced topical anti-inflammatory activity. Methodology Nanoemulsion formulations of both DIF and DIF-IC were prepared and incorporated in three different gelling agents, namely carboxymethylcellulose sodium (CMC-Na), sodium alginate (Na-ALG) and xanthan gum (XG). All the formulations were evaluated in term of particle size, pH, conductivity, viscosity, zeta potential and in vitro drug release. The formulation 2 (NE2) of both DIF and DIF-IC which expressed optimum release and satisfactory physicochemical properties was incorporated with gelling agents to produce final nanoemulgel formulations. The optimized nanoemulgel formulation was subjected to three different in vivo anti-inflammatory models including carrageenan-induced paw edema model, histamine-induced paw edema model and formalin-induced paw edema model. Results DIF-IC-loaded nanoemulgel formulations yielded significantly enhanced in vitro skin permeation than DIF-loaded nanoemulgel. The nanoemulgel formulation of DIF-IC formulated with XG produced improved in vivo anti-inflammatory activity. Conclusion It was recommended that DIF-IC-based nanoemulgel formulation prepared with XG could be a better option for effective topical treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Mehreen Bashir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Ahmad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Y Ibrahim
- Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mohammed As Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
26
|
Albash R, Al-Mahallawi AM, Hassan M, Alaa-Eldin AA. Development and Optimization of Terpene-Enriched Vesicles (Terpesomes) for Effective Ocular Delivery of Fenticonazole Nitrate: In vitro Characterization and in vivo Assessment. Int J Nanomedicine 2021; 16:609-621. [PMID: 33531804 PMCID: PMC7847387 DOI: 10.2147/ijn.s274290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
Abstract
Objective The aim of the current study was to load fenticonazole nitrate, a slightly water-soluble antifungal agent, into terpene-enriched phospholipid vesicles (terpesomes) as a potential delivery system for the management of ocular fungal infection. Methods Thin film hydration method was used to prepare terpesomes according to a 32 full factorial design to inspect the effect of several variables on vesicles’ features. The investigated factors were terpenes type (X1) and terpenes amount (X2) while the dependent responses were encapsulation efficiency percent (Y1), particle size (Y2) and polydispersity index (Y3). Design Expert® program was used to chose the best achieved formula. The selected terpesomes were further optimized via incorporation of a positive charge inducer (stearylamine) to enhance adhesion to the negatively charged mucus covering the eye surface. The in vivo performance of the optimized fenticonazole nitrate-loaded terpesomes relative to drug suspension was evaluated by measuring the antifungal activity (against Candida albicans) retained in the tear's fluid at different time intervals after ocular application in albino rabbits. Results The optimized terpesomes showed spherical vesicles with entrapment efficiency of 79.02±2.35%, particle size of 287.25±9.55 nm, polydispersity index of 0.46±0.01 and zeta potential of 36.15±1.06 mV. The in vivo study demonstrated significantly higher ocular retention of the optimized fenticonazole nitrate-loaded terpesomes relative to the drug suspension. Moreover, the histopathological studies proved the safety and biocompatibility of the prepared terpesomes. Conclusion The obtained results verified the potential of the terpesomes for safe and effective ocular delivery of fenticonazole nitrate.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | | | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Adel Alaa-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Elfayoum, Egypt
| |
Collapse
|
27
|
Li Z, Xu D, Yuan Y, Wu H, Hou J, Kang W, Bai B. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Adv Colloid Interface Sci 2020; 277:102119. [PMID: 32045722 DOI: 10.1016/j.cis.2020.102119] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Emulsions, including oil-in-water (O/W) and water-in-oil (W/O) emulsions, can play important roles in both controlling reservoir conformance and displacing residual oil for enhanced oil recovery (EOR) projects. However, current methods, like high-shear mixing, high-pressure homogenizing, sonicators and others, often use lots of extra energy to prepare the emulsions with high costs but very low energy efficiency. In recent decades, spontaneous emulsification methods, which allow one to create micro- and nano-droplets with very low or even no mechanical energy input, have been launched as an overall less expensive and more efficient alternatives to current high extra energy methods. Herein, we primarily review the basic concepts on spontaneous emulsification, including mechanisms, methods and influenced parameters, which are relevant for fundamental applications for industrials. The spontaneity of the emulsification process is influenced by the following variables: surfactant structure, concentration and initial location, oil phase composition, addition of co-surfactant and non-aqueous solvent, as well as salinity and temperature. Then, we focus on the description of importance for emulsions in EOR processes from advances and categories to improving oil recovery mechanisms, including both sweep efficiency and displacement efficiency aspects. Finally, we systematically address the applications and outlooks based on the use of spontaneous emulsification in the practical oil reservoirs for EOR processes, in which conventional, heavy, high-temperature, high-salinity and low-permeability oil reservoirs, as well as wastewater treatments after EOR processes are involved.
Collapse
Affiliation(s)
- Zhe Li
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Derong Xu
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Yongjie Yuan
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Hairong Wu
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jirui Hou
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Wanli Kang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Baojun Bai
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China; Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, United States
| |
Collapse
|