1
|
Khan AM, Russo F, Macedonio F, Criscuoli A, Curcio E, Figoli A. The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. MEMBRANES 2025; 15:117. [PMID: 40277987 PMCID: PMC12029554 DOI: 10.3390/membranes15040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Most parts of the earth are covered with water, but only 0.3% of it is available to living beings. Industrial growth, fast urbanization, and poor water management have badly affected the water quality. In recent years, a transition has been seen from the traditional (physical, chemical) wastewater treatment methods towards a greener, sustainable, and scalable membrane technology. Even though membrane technology offers a green pathway to address the wastewater treatment issue on a larger scale, the fabrication of polymeric membranes from toxic solvents is an obstacle in making it a fully green method. The concept of green chemistry has encouraged scientists to engage in research for new biodegradable and non-protic solvents to replace with already existing toxic ones. This review outlines the use of non-toxic solvents for the preparation of PVDF membranes and their application in membrane distillation and membrane crystallization.
Collapse
Affiliation(s)
- Aqsa Mansoor Khan
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Francesca Russo
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Francesca Macedonio
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Alessandra Criscuoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| | - Efrem Curcio
- Department of Environmental Engineering, DIAM, University of Calabria, Via P.Bucci-Cube 44/A, 87036 Rende, CS, Italy;
| | - Alberto Figoli
- Institute for Membrane Technology, National Research Council Italy CNR-ITM, Via P.Bucci 17/C, 87036 Rende, CS, Italy; (A.M.K.); (F.R.); (A.F.)
| |
Collapse
|
2
|
Cheng C, Pei Y, Shan G, Liu Y. Meta-analysis and Mendelian randomization study on the association between exposure to chlorinated disinfection byproducts and preterm birth risk. J Perinatol 2025; 45:438-447. [PMID: 39789297 DOI: 10.1038/s41372-024-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE This study aims to investigate the correlation between exposure to disinfection byproducts of chlorination and preterm birth (PTB) through evidence-based medicine Meta-analysis and Mendelian randomization (MR) analysis. STUDY DESIGN Meta-analysis was conducted on 17 studies involving 1,251,426 neonates, revealing a higher risk of PTB with exposure to total trihalomethanes (TTHMs) and chloroform. Mendelian randomization (MR) analysis confirmed a causal relationship between chlorides and PTB. RESULTS TTHMs and chloroform were associated with increased PTB risk, while haloacetic acids showed no significant association. TTHMs were linked to small gestational age. Ethnicity and study design influenced heterogeneity. CONCLUSIONS Exposure to chlorination byproducts, particularly TTHMs and chloroform, poses a significant risk for PTB. MR analysis supports a causal relationship between chlorides and PTB, highlighting the importance of water disinfection byproduct control in preventing PTB.
Collapse
Affiliation(s)
- Changxia Cheng
- China-Japan Union Hospital of Jilin University Operating Room, Changchun, China
| | - Yanling Pei
- China-Japan Union Hospital of Jilin University Nursing Department, Changchun, China
| | - Guangyu Shan
- Department of Beihu Campus, China-Japan Union Hospital of Jilin University Emergency, Changchun, China
| | - Yutao Liu
- China-Japan Union Hospital of Jilin University Central Sterile Supply Department, Changchun, China.
| |
Collapse
|
3
|
Pervov AG, Spitsov D, Kulagina A, Aung HZ. The Use of Low-Rejection Nanofiltration Membranes as a Tool to Simplify Pretreatment, Escape Scaling and Radically Increase Recoveries. MEMBRANES 2025; 15:96. [PMID: 40277966 PMCID: PMC12029103 DOI: 10.3390/membranes15040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
This article describes the results of research to develop a new technology to treat storm and drainage water generated on a territory of industrial enterprises and reuse it as a feed water for boiler feed and steam generation. To develop such a system, it is necessary to resolve issues related to pretreatment, scaling, and fouling, as well as to provide a minimal discharge in the company's sanitation network. Principles of the new approach to reach high calcium removal are based on the use of two or three stages of low-pressure nanofiltration membranes instead of the conventional facilities that contain one stage of reverse osmosis membranes. High permeability, low pressure, high recovery, and reduced reagent consumption provide an economic effect. The technology uses low-rejection membranes "nano NF" developed and produced by "Membranium Co." (Vladimir, Russia). In the article, the results of investigations on the evaluation of scaling rates in membrane modules and rates of homogeneous crystallization in concentrate flow are presented. Processing these results enables us to detect recovery values when scaling begins on the membrane surface as well as to determine the maximum recovery value for the beginning of homogenous nucleation in the concentrate flow.
Collapse
Affiliation(s)
- Alexei G. Pervov
- Department of Water Supply, Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia; (D.S.); (A.K.); (H.Z.A.)
| | | | | | | |
Collapse
|
4
|
Shalaby TI, Gaafar MR, Mady RF, Mogahed NMFH, Issa YA, Korayem SM, Hezema NN. Anti-protozoal potential of electrospun polymeric nanofiber composite membranes for treatment of contaminated drinking water. Pathog Glob Health 2025; 119:29-47. [PMID: 39911055 PMCID: PMC11905315 DOI: 10.1080/20477724.2025.2460006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The effectiveness of conventional techniques for removal of water contaminants remains doubtful on micropollutants, including waterborne protozoa. To the best of knowledge, this study is the first highlighting the use of electrospun polymeric nanofiber composite membranes coated with metal nanoparticles against Cyclospora cayetanensis and Giardia lamblia in vitro. Plain and hybrid nanofiber membranes loaded with zinc oxide, copper oxide and silver nanoparticles were prepared, characterized, and used for filtration of contaminated drinking water. Comparison between membranes was achieved through water examination microscopically and molecularly, counting and viability assessment of trapped protozoa on the membranes after filtration. Moreover, the membranes were examined by scanning electron microscopy (SEM) for detection of the trapped Cyclospora oocysts and Giardia cysts ultrastructural changes. Results showed that following water filtration, no protozoa were detected microscopically and melting curves were not plotted. A statistically significant reduction in the number of viable Cyclospora oocysts and Giardia cysts incubated for 4 days was reported. By SEM, dramatic distortions were observed in the trapped protozoa on hybrid membranes with superiority of silver nanoparticles. We concluded that the electrospun polymeric nanofibers composite membranes can be considered a promising alternative to standard water filtration methods.
Collapse
Affiliation(s)
- Thanaa Ibrahim Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maha Reda Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Fadly Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Yasmin Amr Issa
- Medical Biochemistry, College of Medicine, Arab Academy of Science, Technology and Maritime Transport, New Alamein Campus, Alamein City, Egypt
| | - Sherifa Mohamed Korayem
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Liu J, Lin C, Chen L, Fu W, Yang H, Li T, Chu H, Wang Z, Tang CY. A Novel Shear-Detachment Approach for Modeling Dynamics of Membrane Cleaning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23222-23230. [PMID: 39680065 DOI: 10.1021/acs.est.4c05791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We report a novel shear-detachment (SD) approach to simulate the dynamics of flux recovery in the membrane cleaning process. In this model, the rate of foulant detachment away from the membrane is governed by both the shear intensity and the probability of successful foulant detachment, with the latter modeled by Boltzmann distribution. Our SD predictions exhibit good agreement with experimental results, accurately capturing the dynamics of flux recovery. Modeling outcomes reveal that the time required for fully restoring water flux is largely independent of the initial cake mass but significantly dependent on crossflow-flushing velocity and adhesive energy of foulant to membrane. Higher flushing velocity and/or lower adhesive energy can create a shear-limited condition where almost all shear events bring about successful foulant detachment, facilitating rapid flux recovery. Conversely, a smaller flushing velocity or greater adhesive energy can result in increasingly detachment-limited situations, where the cleaning efficiency is primarily dictated by the probability of foulant detachment. Our study offers profound insights into the importance of shear rate and detachment probability in governing foulant detachment kinetics and self-cleaning behavior, which carry significant implications for membrane preparation and process operation.
Collapse
Affiliation(s)
- Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chenxi Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Linchun Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Fu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Yang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huaqiang Chu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518005, China
| |
Collapse
|
7
|
Yang X, Ju X, Wang H, Mi X, Shi B. Controlling iron release and pathogenic bacterial growth in distribution pipes through nanofiltration followed by different disinfection methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136341. [PMID: 39492144 DOI: 10.1016/j.jhazmat.2024.136341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
There is increasing concern about discoloration problems and microbial risks in drinking water. Until recently, how to control iron release and pathogenic bacterial growth in distribution pipes has been a knowledge gap. In our study, nanofiltration removed 13.3 % of lignins, 33.1 % of tannins and 17.7 % of proteins from dissolved organic matter (DOM). These DOM components were closely related to enzymes involved in the tricarboxylic acid (TCA) cycle. Therefore, nanofiltration followed by chlorine or chloramine disinfection inhibited the TCA cycle and induced lower adenosine triphosphate (ATP) and extracellular polymeric substance (EPS) production, resulting in reduced pathogenic bacterial growth. The number of Pseudomonas aeruginosa decreased to 7.43 × 105 and 2.43 × 105 gene copies/mL, respectively. Moreover, lower DOM concentrations increased the abundance of iron-reducing bacteria (IRBs) in the biofilm. IRBs can convert Fe(III) into Fe(II) through cellular c-type cytochromes, including CymA, MtrA, Cytc3, MacA, PpcA, and OcmB. The higher abundance of IRB and their cytochromes led to more Fe3O4 formation on the surface of the distribution pipes, resulting in lower iron release. The total iron concentration was 16.9 μg/L in the effluent of pipes treated with nanofiltration and chloramine disinfection. Therefore, nanofiltration followed by different disinfection methods, especially chloramine disinfection, effectively controlled iron release and pathogenic bacterial growth in distribution pipes. This study strongly contributes to maintaining the drinking water quality in distribution pipes.
Collapse
Affiliation(s)
- Xinyuan Yang
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiurong Ju
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiao Mi
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu H, Wang Z, Wang H, Liu Z, Yang J, Zhang H, Liang H, Bai L. Innovative temperature-responsive membrane with an elastic interface for biofouling mitigation in industrial circulating cooling water treatment. WATER RESEARCH 2024; 267:122528. [PMID: 39366326 DOI: 10.1016/j.watres.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
To address the issues of scaling caused by heat and water evaporation in regard to circulating cooling water (CCW), TFC membrane filtration systems have been increasingly considered for terminal treatment processes because of their excellent separation performance. However, membrane biofouling phenomenon significantly hinders the widespread utilization of TFC membranes. In this study, to harness the thermal phenomenon of CCW and establish a stable and durable multifunctional antibiofouling layer, temperature-responsive Pnipam and the spectral antibacterial agent Ag were organically incorporated into commercially available TFC membranes. Biological experimental findings demonstrated that above the lower critical solution temperature (LCST), the contraction of Pnipam molecular chains facilitated the inactivation of bacteria by the antibacterial agent, resulting in an impressive sterilization efficiency of up to 99 %. XDLVO analysis revealed that below the LCST, the establishment of a hydration layer on the functional interface resulted in the creation of elevated energy barriers, effectively impeding bacterial adhesion to the membrane surface. Consequently, a high bacterial release rate of 98.4 % was achieved on the low-temperature surface. The alterations in the functional membrane surface conformation induced by temperature variations further amplified the separation between the pollutants and the membrane, creating an enhanced "elastic interface." This efficient and straightforward cleaning procedure mitigated the formation of irreversible fouling without compromising the integrity of the membrane surface. This study presents a deliberately engineered thermoresponsive antibiofouling membrane interface to address the issue of membrane fouling in membrane-based CCW treatment systems while shedding new light on the mechanisms of "inactivation" and "defense."
Collapse
Affiliation(s)
- Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Gan B, Peng LE, Liu W, Zhang L, Wang LA, Long L, Guo H, Song X, Yang Z, Tang CY. Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration. Nat Commun 2024; 15:8656. [PMID: 39368977 PMCID: PMC11455960 DOI: 10.1038/s41467-024-53042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Nanofiltration (NF) membranes are commonly supplied in spiral-wound modules, resulting in numerous drawbacks for practical applications (e.g., high operating pressure/pressure drop/costs). Vacuum-driven NF could be a promising and low-cost alternative by utilizing simple components and operating under an ultra-low vacuum pressure (<1 bar). Nevertheless, existing commercial membranes are incapable of achieving practically relevant water flux in such a system. Herein, we fabricated a silk-based membrane with a crumpled and defect-free rejection layer, showing water permeance of 96.2 ± 10 L m-2 h-1 bar-1 and a Na2SO4 rejection of 96.0 ± 0.6% under cross-flow filtration mode. In a vacuum-driven system, the membrane demonstrates a water flux of 56.8 ± 7.1 L m-2 h-1 at a suction pressure of 0.9 bar and high removal rate against various contaminants. Through analysis, silk-based ultra-permeable membranes may offer close to 80% reduction in specific energy consumption and greenhouse gas emissions compared to a commercial benchmark, holding great promise for advancing a more energy-efficient and greener water treatment process and paving the avenue for practical application in real industrial settings.
Collapse
Affiliation(s)
- Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lingyue Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Ares Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
10
|
Zheng F, Zhang H, Boo C, Wang M, Tan J, Ye S, Lin S, Wang Y. High-Performance Nanofiltration Membrane with Dual Resistance to Gypsum Scaling and Biofouling for Enhanced Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16656-16668. [PMID: 39223699 DOI: 10.1021/acs.est.4c07334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nanofiltration (NF) technology is pivotal for ensuring a sustainable and reliable supply of clean water. To address the critical need for advanced thin-film composite (TFC) polyamide (PA) membranes with exceptional permselectivity and fouling resistance for emerging contaminant purification, we introduce a novel high-performance NF membrane. This membrane features a selective polypiperazine (PIP) layer functionalized with amino-containing quaternary ammonium compounds (QACs) through an in situ interfacial polycondensation reaction. Our investigation demonstrated that precise QAC functionalization enabled the construction of the selective PA layer with increased surface area, enhanced microporosity, stronger electronegativity, and reduced thickness compared to the control PIP membrane. As a result, the QAC NF membrane exhibited an approximately 51% increase in water permeance compared to the control PIP membrane, while achieving superior retention capabilities for divalent salts (>99%) and emerging organic contaminants (>90%). Furthermore, the incorporation of QACs into the PIP selective layer was proved to be effective in mitigating mineral scaling by allowing selective passage of scale-forming cations, while simultaneously exhibiting strong antimicrobial properties to combat biofouling. The in situ QAC incorporation strategy presented in this study provides valuable guidelines for the fit-for-purpose design of the selective PA layer, which is crucial for the development of high-performance NF membranes for efficient water purification.
Collapse
Affiliation(s)
- Fuxin Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hao Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chanhee Boo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Zheng P, Jiang L, Zhang Q, Liu Q, Zhu A. Fabrication of polyamide nanofiltration membrane with tannic acid/poly(sodium 4-styrenesulfonate) network-like interlayer for enhanced desalination performance. J Colloid Interface Sci 2024; 662:707-718. [PMID: 38368828 DOI: 10.1016/j.jcis.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
The traditional polyamide composite nanofiltration membranes have high selectivity and low water permeance, so it is necessary to find strategies to raise the permeance. Herein, a novel polyamide nanofiltration membranes with high permeance were fabricated by coating a loose hydrophilic network-like interlayer, where tannic acid (TA) with pentapophenol arm structure binds to poly(4-styrenesulfonate) (PSS) polymer through hydrogen and ionic interactions. The effects of the network-like TA/PSS interlayer on surface morphology, surface hydrophobicity, and the interfacial polymerization mechanism were investigated. The outcomes demonstrated that the TA/PSS interlayer can offer a favorable environment for interfacial polymerization, enhance the hydrophilicity of the substrate membrane, and delay the release of piperazine (PIP). The optimized TFC-2 presents pure water flux of 22.7 ± 2.8 L m-2 h-1 bar-1, Na2SO4 rejection of 97.1 ± 0.5 %, and PA layer thickness of about 38.9 ± 2.5 nm. This provides new strategies for seeking to prepare simple interlayers to obtain high-performance nanofiltration membranes.
Collapse
Affiliation(s)
- Pingyun Zheng
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lina Jiang
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
12
|
Joshi NC, Negi PB, Gururani P. A review on metal/metal oxide nanoparticles in food processing and packaging. Food Sci Biotechnol 2024; 33:1307-1322. [PMID: 38585561 PMCID: PMC10991644 DOI: 10.1007/s10068-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
Consuming hygienic and secure food has become challenging for everyone. The preservation of excess food without negatively affecting its nutritional values, shelf life, freshness, or effectiveness would undoubtedly strengthen the food industry. Nanotechnology is a new and intriguing technology that is currently being implemented in the food industry. Metal-based nanomaterials have considerable potential for use in packaging and food processing. These materials have many advanced physical and chemical characteristics. Since these materials are increasingly being used in food applications, there are certain negative health consequences related to their toxicity when swallowed through food. In this article, we have addressed the introduction and applications of metal/metal oxide nanoparticles (MNPs), food processing and food packaging, applications of MNPs-based materials in food processing and food packaging, health hazards, and future perspectives.
Collapse
Affiliation(s)
| | - Pushpa Bhakuni Negi
- Department of Chemistry, Graphic Era Hill University, Bhimtal Campus, Nainital, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| |
Collapse
|
13
|
Xu Z, Li Q, Sun X, Xing J, Hong X, Liu F. The Preparation and Performance Study of Polyamide Film Based on PDA@MWCNTs/PVDF Porous Support Layer. Molecules 2024; 29:1460. [PMID: 38611740 PMCID: PMC11013461 DOI: 10.3390/molecules29071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
It is urgent to develop a polyamide (PA) thin-film composite (TFC) membrane with a new method in this study by designing and constructing a new nanomaterial support layer instead of the conventional support layer. Polydopamine-wrapped single-walled carbon nanotubes (PDA@MWCNTs) as the place of the polymerization reaction can optimize the PA film structure and performance. The resulting composite membrane presents a higher water flux of 15.8 L·m-2·h-1·bar-1 and a rejection rate of 97% to Na2SO4, simultaneously maintaining this high separation performance in 300 min. It is a new ideal to construct novel support layer by using inorganic nanoparticles and organic polymer nanofiber membranes.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Quanjun Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Xuzhi Sun
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Jian Xing
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
| | - Xinghua Hong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou 310018, China
| | - Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; (Z.X.); (Q.L.); (X.S.); (J.X.)
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou 310018, China
- Advanced Fiber Materials Engineering Research Center of Anhui Province, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
14
|
Sun W, Zhou H, Yu X, Zhao D, Liu J, Chen L, Wang Z, Liu G, Qiu Y, Hong Y. Collision-attachment simulation of membrane fouling by oppositely and similarly charged colloids. WATER RESEARCH 2024; 252:121194. [PMID: 38295456 DOI: 10.1016/j.watres.2024.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The fouling propensity of oppositely charged colloids (OCC) and similarly charged colloids (SCC) on reverse osmosis (RO) and nanofiltration (NF) membranes are systematically investigated using a developed collision-attachment approach. The probability of successful colloidal attachment (i.e., attachment efficiency) is modelled by Boltzmann energy distribution, which captures the critical roles of colloid-colloid/membrane interaction and permeate drag. Our simulations highlight the important effects of ionic strength Is, colloidal size dp and initial flux J0 on combined fouling. In a moderate condition (e.g., Is =10 mM, dp=50 nm and J0= 100 L/m2h), OCC mixtures shows more severe fouling compared to the respective single foulant owing to electrostatic neutralization. In contrast, the flux loss of SCC species falls between those of the two single foulants but more closely resembles that of the single low-charged colloids due to its weak electrostatic repulsion. Increased ionic strength Is leads to less severe fouling for OCC but more severe fouling for SCC, as a result of the suppressed electrostatic attraction/repulsion. At a high Is (e.g., 3-5 M), all the single and mixed systems show the identical pseudo-stable flux Js. Small colloidal size leads to the drag-controlled condition, where severe fouling occurs for both single and mixed foulants. On the contrary, better flux stability appears at greater dp for both individual and mixed species, thanks to the increasingly dominated role of energy barrier and thus lowered attachment efficiency. Furthermore, higher J0 above limiting flux exerts greater permeate drag, leading to elevated attachment efficiency, and thus more flux losses for both OCC and SCC. Our modelling gains deep insights into the role of energy barrier, permeate drag, and attachment efficiency in governing combined fouling, which provides crucial guidelines for fouling reduction in practical engineering.
Collapse
Affiliation(s)
- Wen Sun
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hangfan Zhou
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuri Yu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongsheng Zhao
- College of Civil Engineering and Architecture, Nanyang Normal University, Nanyang 473061, China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Linchun Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Yongting Qiu
- China Water Resources Pearl River Planning, Surveying and Designing Co. Ltd., Guangzhou 510610, China
| | - Yaoliang Hong
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
15
|
Song J, Xu D, Han Y, Zhu X, Liu Z, Li G, Liang H. Surface modification of Fe Ⅲ-juglone coating on nanofiltration membranes for efficient biofouling mitigation. WATER RESEARCH 2023; 247:120795. [PMID: 37931358 DOI: 10.1016/j.watres.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Nanofiltration membranes have increasingly played a vital role in the purification of surface water and the recycling of wastewater. However, the problem of membrane biofouling, which leads to shortened service life and increased energy consumption, has hindered the widespread application of nanofiltration membranes. In this study, we developed functionalized nanofiltration membranes with anti-adhesive and anti-biofouling properties by coordinating FeIII and juglone onto commercial nanofiltration membranes in a facile and viable manner. Due to the hydrophilic nature of the FeⅢ-juglone coating as well as its ultra-thin thickness and minimal impact on the membrane pores, the permeance of the optimally modified membrane even increased slightly (14 %). The outstanding anti-adhesive property of the FeⅢ-juglone coating was demonstrated by a significant reduction in the adsorption of proteins and bacteria. Furthermore, the modified membranes exhibited lower flux decline amplitude and reduced biofilm deposition during dynamic fouling experiment, further supporting the outstanding anti-biofouling performance of the nanofiltration membrane after the modification with FeⅢ-juglone coating. This study presents a novel and feasible approach for simultaneously improving the water permeance, anti-adhesive property and anti-biofouling property of commercial nanofiltration membranes.
Collapse
Affiliation(s)
- Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
16
|
Long L, Peng LE, Zhou S, Gan Q, Li X, Jiang J, Han J, Zhang X, Guo H, Tang CY. NaHCO 3 addition enhances water permeance and Ca/haloacetic acids selectivity of nanofiltration membranes for drinking water treatment. WATER RESEARCH 2023; 242:120255. [PMID: 37356158 DOI: 10.1016/j.watres.2023.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The existence of disinfection by-products such as haloacetic acids (HAAs) in drinking water severely threatens water safety and public health. Nanofiltration (NF) is a promising strategy to remove HAAs for clean water production. However, NF often possesses overhigh rejection of essential minerals such as calcium. Herein, we developed highly selective NF membranes with tailored surface charge and pore size for efficient rejection of HAAs and high passage of minerals. The NF membranes were fabricated through interfacial polymerization (IP) with NaHCO3 as an additive. The NaHCO3-tailored NF membranes exhibited high water permeance up to ∼24.0 L m - 2 h - 1 bar-1 (more than doubled compared with the control membrane) thanks to the formation of stripe-like features and enlarged pore size. Meanwhile, the tailored membranes showed enhanced negative charge, which benefitted their rejection of HAAs and passage of Ca and Mg. The higher rejection of HAAs (e.g., > 90%) with the lower rejection of minerals (e.g., < 30% for Ca) allowed the NF membranes to achieve higher minerals/HAAs selectivity, which was significantly higher than those of commercially available NF membranes. The simultaneously enhanced membrane performance and higher minerals/HAAs selectivity would greatly boost water production efficiency and water quality. Our findings provide a novel insight to tailor the minerals/micropollutants selectivity of NF membranes for highly selective separation in membrane-based water treatment.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
17
|
Zhou Z, Yan Y, Li X, Zeng F, Shao S. Effect of urea-based chemical cleaning on TrOCs rejection by nanofiltration membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Yang Z, Wu C, Tang CY. Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment? WATER RESEARCH X 2023; 19:100172. [PMID: 36860551 PMCID: PMC9969056 DOI: 10.1016/j.wroa.2023.100172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the last few decades, developing ultra-permeable nanofiltration (UPNF) membranes has been a focus research area to support NF-based water treatment. Nevertheless, there have been ongoing debates and doubts on the need for UPNF membranes. In this work, we share our perspectives on why UPNF membranes are desired for water treatment. We analyze the specific energy consumption (SEC) of NF processes under various application scenarios, which reveals the potential of UPNF membranes for reducing SEC by 1/3 to 2/3 depending on the prevailing transmembrane osmotic pressure difference. Furthermore, UPNF membranes could potentially enable new process opportunities. Vacuum-driven submerged NF-modules could be retrofitted to existing water/wastewater treatment plants, offering lower SEC and lower cost compared to conventional NF systems. Their use in submerged membrane bioreactors (NF-MBR) can recycle wastewater into high-quality permeate water, which enables energy-efficient water reuse in a single treatment step. The ability for retaining soluble organics may further extend the application of NF-MBR for anaerobic treatment of dilute municipal wastewater. Critical analysis of membrane development reveals huge rooms for UPNF membranes to attain improved selectivity and antifouling performance. Our perspective paper offers important insights for the future development of NF-based water treatment technology, which could potentially lead to a paradigm shift in this burgeoning field.
Collapse
|
19
|
Koyama H, Mori T, Nagai K, Shimamoto S. Exploration of advanced cellulosic material for membrane filtration with outstanding antifouling property. RSC Adv 2023; 13:7490-7502. [PMID: 36908546 PMCID: PMC9993463 DOI: 10.1039/d2ra08165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Membranes, at times, have issues due to membrane fouling. The membrane fouling leads to performance deterioration and poses a potential to clog the membrane. Here we present experimental works carried out with emphasis on the antifouling properties, chlorine resistance, and mechanical properties of cellulose triacetate (CTA) and cellulose esters. We present that antifouling performance of cellulose esters evaluated by means of the VCG theory decreases with increasing carbon number in the substituent because of the high electron-donating nature of short aliphatic ester groups. When a long aliphatic ester group is required in terms of other properties such as resistance to chlorine, introducing it together with another substituent with an electron-donating nature such as an ethylene glycol moiety may strike a balance between antifouling and other performances.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Business Development Center, Innovation and Business Development Headquarters, Daicel Corporation Japan
- Graduate School of Natural Science and Technology, Kanazawa University Japan
| | - Taro Mori
- Graduate School of Natural Science and Technology, Kanazawa University Japan
- Biomass Innovation Center, Daicel Corporation Japan
| | - Kanji Nagai
- Graduate School of Natural Science and Technology, Kanazawa University Japan
- Life Sciences R&D Center, CPI Company, Daicel Corporation Japan
| | - Shu Shimamoto
- Business Development Center, Innovation and Business Development Headquarters, Daicel Corporation Japan
- Graduate School of Natural Science and Technology, Kanazawa University Japan
| |
Collapse
|
20
|
Hu Y, Wang F, Yang Z, Tang CY. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
21
|
Gan Q, Wu C, Long L, Peng LE, Yang Z, Guo H, Tang CY. Does Surface Roughness Necessarily Increase the Fouling Propensity of Polyamide Reverse Osmosis Membranes by Humic Acid? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2548-2556. [PMID: 36719958 DOI: 10.1021/acs.est.2c07872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface roughness has crucial influence on the fouling propensity of thin film composite (TFC) polyamide reverse osmosis (RO) membranes. A common wisdom is that rougher membranes tend to experience more severe fouling. In this study, we compared the fouling behaviors of a smooth polyamide membrane (RO-s) and a nanovoid-containing rough polyamide membrane (RO-r). Contrary to the traditional belief, we observed more severe fouling for RO-s, which can be ascribed to its uneven flux distribution caused by the "funnel effect". Additional tracer filtration tests using gold nanoparticles revealed a more patchlike particle deposition pattern, confirming the adverse impact of "funnel effect" on membrane water transport. In contrast, the experimentally observed lower fouling propensity of the nanovoid-containing rough membrane can be explained by: (1) the weakened "funnel effect" thanks to the presence of nanovoids, which can regulate the water transport pathway through the membrane and (2) the decreased average localized flux over the membrane surface due to the increased effective filtration area for the nanovoid-induced roughness features. The current study provides fundamental insights into the critical role of surface roughness in membrane fouling, which may have important implications for the future development of high-performance antifouling membranes.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R. China
| |
Collapse
|
22
|
Effect of Coexisting Ions on the Removal of Zn2+ from Aqueous Solution Using FePO4. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
23
|
Gan Q, Peng LE, Yang Z, Sun PF, Wang L, Guo H, Tang CY. Demystifying the Role of Surfactant in Tailoring Polyamide Morphology for Enhanced Reverse Osmosis Performance: Mechanistic Insights and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1819-1827. [PMID: 36652351 DOI: 10.1021/acs.est.2c08076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surfactant-assisted interfacial polymerization (IP) has shown strong potential to improve the separation performance of thin film composite polyamide membranes. A common belief is that the enhanced performance is attributed to accelerated amine diffusion induced by the surfactant, which can promote the IP reaction. However, we show enhanced membrane performance for Tween 80 (a common surfactant), even though it decreased the amine diffusion. Indeed, the membrane performance is closely related to its polyamide roughness features with numerous nanovoids. Inspired by the nanofoaming theory that relates the roughness features to nanobubbles degassed during the IP reaction, we hypothesize that the surfactant can stabilize the generated nanobubbles to tailor the formation of nanovoids. Accordingly, we obtained enlarged nanovoids when the surfactant was added below its critical micelle concentration (CMC). In addition, both the membrane permeance and selectivity were enhanced, thanks to the enlarged nanovoids and reduced defects in the polyamide layer. Increasing the concentration above CMC resulted in shrunken nanovoids and deteriorated performance, which can be ascribed to the decreased stabilization effect caused by micelle formation. Interestingly, better antifouling performance was also observed for the surfactant-assisted membranes. Our current study provides mechanistic insights into the critical role of surfactant during the IP reaction, which may have important implications for more efficient membrane-based desalination and water reuse.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Peng-Fei Sun
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR999077, P. R., China
| |
Collapse
|
24
|
Pervov A, Spitsov D. Production of Drinking Water with Membranes with Simultaneous Utilization of Concentrate and Reject Effluent after Sludge Dewatering. MEMBRANES 2023; 13:133. [PMID: 36837636 PMCID: PMC9961422 DOI: 10.3390/membranes13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A new technology is described that enables us to completely exclude liquid discharges during production of drinking water from surface sources. The proposed described technological scheme separates the natural water into a stream of purified drinking water and dewatered sludge. The sludge moisture has a value of 80 percent. The experimental program is described to treat the natural water with nanofiltration membranes and to produce a drinking-quality water with recovery value of 0.99 and higher. Concentrate of membrane plant is mixed with the wet sludge and the reject effluent after sludge dewatering is again treated by reverse osmosis membranes and returned back to the sludge thickening tank. Results of experiments to treat reject water after sludge dewatering are presented. The use of nanofiltration membranes provides reduction in the Total Dissolved Solids content (TDS), aluminum, color and oxidation to meet drinking water standards. Experimental plots are presented that can be used to select membrane characteristics and to predict product water chemical composition at each stage of the membrane treatment scheme. Concentrate of membrane treatment plant is mixed with the wet sludge in the thickening tank. The sludge, after the thickening tank, is dewatered using either filter-press or centrifugal equipment. The reject (or fugate), after sludge dewatering, is treated by membrane facility to separate it into deionized water stream and concentrate stream. The deionized water can be mixed with the feed water or drinking water and the concentrate stream is returned back to the thickening tank. Thus, the salt balance is maintained in the thickening tank, whereby all dissolved salts and impurities that are rejected by membranes are collected in the thickening tank, and then are withdrawn together with the dewatered sludge. Based on the results of experimental data processing, balance diagrams of the sludge dehydration process with waste water purification at the membrane plant and with the addition of the membrane plant concentrate to the sludge thickener are presented, according to which all contaminants removed by the membranes are removed together with the sludge.
Collapse
|
25
|
Spitsov D, Aung HZ, Pervov A. The Selection of Efficient Antiscalant for RO Facility, Control of Its Quality and Evaluation of the Economical Efficiency of Its Application. MEMBRANES 2023; 13:85. [PMID: 36676892 PMCID: PMC9867422 DOI: 10.3390/membranes13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Adsorption of polymeric inhibitor molecules to calcium carbonate crystal surface was investigated. Inhibiting efficiencies of phosphonic acid-based antiscalants are dependent on the amount of adsorbed material on the growing crystal surface. A strong antiscalant even at a small dose provides the necessary rate of adsorption. Comparison of two phosphonic-based antiscalants was made both in laboratory and industrial conditions. A distinguishing feature of the strong antiscalant is the presence of aminotris (metylene-diphosphonic acid) ATMP. Experimental dependencies of antiscalant adsorption rates on the antiscalant dosage values were determined. Emphasis is given to the use of nanofiltration membranes that possess lower scaling propensities. Modernization is presented to reduce operational costs due to antiscalant and nanofiltration membranes. The main conclusion is that control of scaling should be implemented together with the use of nanofiltration membranes.
Collapse
|
26
|
Liu J, Tang Z, Yang H, Li X, Yu X, Wang Z, Huang T, Tang CY. Dissecting the role of membrane defects with low-energy barrier on fouling development through A collision Attachment-Monte Carlo approach. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Polyaniline-based acid resistant membranes for controllable ion rejection performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Liu Y, Wang K, Zhou Z, Wei X, Xia S, Wang XM, Xie YF, Huang X. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15220-15237. [PMID: 36330774 DOI: 10.1021/acs.est.2c06579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the high risks brought about by organic micropollutants (OMPs), nanofiltration (NF) processes have been playing a vital role in advanced water and wastewater treatment, owing to the high membrane performance in rejection of OMPs, permeation of water, and passage of mineral salts. Though numerous studies have been devoted to evaluating and technically enhancing membrane performance in removing various OMPs, the trade-off effect between water permeance and water/OMP selectivity for state-of-the-art membranes remains far from being understood. Knowledge of this effect is significant for comparing and guiding membrane development works toward cost-efficient OMP removal. In this work, we comprehensively assessed the performance of 88 NF membranes, commercialized or newly developed, based on their water permeance and OMP rejection data published in the literature. The effectiveness and underlying mechanisms of various modification methods in tailoring properties and in turn performance of the mainstream polyamide (PA) thin-film composite (TFC) membranes were quantitatively analyzed. The trade-off effect was demonstrated by the abundant data from both experimental measurements and machine learning-based prediction. On this basis, the advancement of novel membranes was benchmarked by the performance upper-bound revealed by commercial membranes and lab-made PA membranes. We also assessed the potentials of current NF membranes in selectively separating OMPs from inorganic salts and identified the future research perspectives to achieve further enhancement in OMP removal and salt/OMP selectivity of NF membranes.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Zixuan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- Environmental Engineering Programs, The Pennsylvania State University, Middletown, Pennsylvania17057, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
29
|
Highly hydrophobic oil—water separation membrane: reutilization of waste reverse osmosis membrane. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
31
|
He Z, Wang K, Liu Y, Zhang T, Wang X. Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment. MEMBRANES 2022; 12:887. [PMID: 36135906 PMCID: PMC9501612 DOI: 10.3390/membranes12090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS-IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.
Collapse
Affiliation(s)
- Zhihai He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Borpatra Gohain M, Karki S, Yadav D, Yadav A, Thakare NR, Hazarika S, Lee HK, Ingole PG. Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye. MEMBRANES 2022; 12:membranes12080768. [PMID: 36005683 PMCID: PMC9414074 DOI: 10.3390/membranes12080768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Nowadays polymer-based thin film nanocomposite (TFN) membrane technologies are showing key interest to improve the separation properties. TFN membranes are well known in diverse fields but developing highly improved TFN membranes for the removal of low concentration solutions is the main challenge for the researchers. Application of functional nanomaterials, incorporated in TFN membranes provides better performance as permeance and selectivity. The polymer membrane-based separation process plays an important role in the chemical industry for the isolation of products and recovery of different important types of reactants. Due to the reduction in investment, less operating costs and safety issues membrane methods are mainly used for the separation process. Membranes do good separation of dyes and ions, yet their separation efficiency is challenged when the impurity is in low concentration. Herewith, we have developed, UiO-66-NH2 incorporated TFN membranes through interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) for separating malachite green dye and phosphate from water in their low concentration. A comparative study between thin-film composite (TFC) and TFN has been carried out to comprehend the benefit of loading nanoparticles. To provide mechanical strength to the polyamide layer ultra-porous polysulfone support was made through phase inversion. As a result, outstanding separation values of malachite green (MG) 91.90 ± 3% rejection with 13.32 ± 0.6 Lm-2h-1 flux and phosphate 78.36 ± 3% rejection with 22.22 ± 1.1 Lm-2h-1 flux by TFN membrane were obtained. The antifouling tendency of the membranes was examined by using bovine serum albumin (BSA)-mixed feed and deionized water, the study showed a good ~84% antifouling tendency of TFN membrane with a small ~14% irreversible fouling. Membrane's antibacterial test against E. coli. and S. aureus. also revealed that the TFN membrane possesses antibacterial activity as well. We believe that the present work is an approach to obtaining good results from the membranes under tricky conditions.
Collapse
Affiliation(s)
- Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Archana Yadav
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Neha R. Thakare
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Swapnali Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hyung Keun Lee
- Technology Research Institute, QuantumCat Co., Ltd., Daejeon 34028, Korea
| | - Pravin G. Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
33
|
Wünsch R, Hettich T, Prahtel M, Thomann M, Wintgens T, von Gunten U. Tradeoff between micropollutant abatement and bromate formation during ozonation of concentrates from nanofiltration and reverse osmosis processes. WATER RESEARCH 2022; 221:118785. [PMID: 35949072 DOI: 10.1016/j.watres.2022.118785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Water treatment with nanofiltration (NF) or reverse osmosis (RO) membranes results in a purified permeate and a retentate, where solutes are concentrated and have to be properly managed and discharged. To date, little is known on how the selection of a semi-permeable dense membrane impacts the dissolved organic matter in the concentrate and what the consequences are for micropollutant (MP) abatement and bromate formation during concentrate treatment with ozone. Laboratory ozonation experiments were performed with standardized concentrates produced by three membranes (two NFs and one low-pressure reverse osmosis (LPRO) membrane) from three water sources (two river waters and one lake water). The concentrates were standardized by adjustment of pH and concentrations of dissolved organic carbon, total inorganic carbon, selected micropollutants (MP) with a low to high ozone reactivity and bromide to exclude factors which are known to impact ozonation. NF membranes had a lower retention of bromide and MPs than the LPRO membrane, and if the permeate quality of the NF membrane meets the requirements, the selection of this membrane type is beneficial due to the lower bromate formation risks upon concentrate ozonation. The bromate formation was typically higher in standardized concentrates of LPRO than of NF membranes, but the tradeoff between MP abatement and bromate formation upon ozonation of the standardized concentrates was not affected by the membrane type. Furthermore, there was no difference for the different source waters. Overall, ozonation of concentrates is only feasible for abatement of MPs with a high to moderate ozone reactivity with limited bromate formation. Differences in the DOM composition between NF and LPRO membrane concentrates are less relevant than retention of MPs and bromide by the membrane and the required ozone dose to meet a treatment target.
Collapse
Affiliation(s)
- R Wünsch
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - T Hettich
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - M Prahtel
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M Thomann
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - T Wintgens
- RWTH Aachen University, Institute of Environmental Engineering, 52074 Aachen, Germany
| | - U von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
34
|
Mahdhi N, Alsaiari NS, Amari A, Chakhoum MA. Effect of TiO 2 Nanoparticles on Capillary-Driven Flow in Water Nanofilters Based on Chitosan Cellulose and Polyvinylidene Fluoride Nanocomposites: A Theoretical Study. Polymers (Basel) 2022; 14:polym14142908. [PMID: 35890682 PMCID: PMC9320925 DOI: 10.3390/polym14142908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel concept of nanofiltration process of drinking water based on capillary-driven nanofiltration is demonstrated using a bio-based nanocomposites’ nanofilter as free power: a green and sustainable solution. Based on Lifshitz and Young–Laplace theories, we show that the chitosan (CS), cellulose acetate (CLA), and Polyvinylidene fluoride (PVDF) polymer matrixes demonstrate hydrophobic behavior, which leads to the draining of water from nanopores when negative capillary pressure is applied and consequently prevents the capillary-driven nanofiltration process. By incorporating 10%, 20%, and 30% volume fraction of titanium dioxide (TiO2) nanoparticles (NPs) to the polymers’ matrixes, we demonstrate a wetting conversion from hydrophobic to hydrophilic behavior of these polymer nanocomposites. Subsequently, the threshold volume fraction of the TiO2 NPs for the conversion from draining (hydrophobic) to filling (hydrophilic) by capillary pressure were found to be equal to 5.1%, 10.9%, and 13.9%, respectively, for CS/TiO2, CLA/TiO2, and PVDF/TiO2 nanocomposites. Then, we demonstrated the negligible effect of the gravity force on capillary rise as well as the capillary-driven flow for nanoscale pore size. For nanofilters with the same effective nanopore radius, porosity, pore shape factor, and tortuosity, results from the modified Lucas–Washburn model show that the capillary rise as well as the capillary-driven water volume increase with increased volume fraction of the TiO2 NPs for all nanocomposite nanofilter. Interestingly, the capillary-driven water volume was in range (5.26–6.39) L/h·m2 with 30% volume fraction of TiO2 NPs, which support our idea for capillary-driven nanofiltration as zero energy consumption nano-filtration process. Correspondingly, the biodegradable CS/TiO2 and CLA/TiO2 nanocomposites nanofilter demonstrate capillary-driven water volume higher, ~1.5 and ~1.2 times, respectively, more than the synthetic PVDF/TiO2 nanocomposite.
Collapse
Affiliation(s)
- Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, Tunis 2092, Tunisia
- Correspondence: (N.M.); (A.A.)
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers, Gabes University, Gabes 6072, Tunisia
- Correspondence: (N.M.); (A.A.)
| | - Mohamed Ali Chakhoum
- Laboratoire des Sciences de la Matière Condensée (LSMC), Université Oran 1 Ahmed Ben Bella, Oran 31100, Algeria;
| |
Collapse
|
35
|
Special issue on “Membranes and Water Treatment”. Front Chem Sci Eng 2022; 16:561-563. [PMID: 35280075 PMCID: PMC8900957 DOI: 10.1007/s11705-021-2136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/25/2022]
|