1
|
Shahparvari MR, Nasrollahzadeh J. Effect of chia seeds or concentrated fish oil on cardiometabolic risk markers in subjects with hypertriglyceridaemia: a parallel clinical trial. J Hum Nutr Diet 2024; 37:1558-1570. [PMID: 39360590 DOI: 10.1111/jhn.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The beneficial effects of n-3 polyunsaturated fatty acids (PUFA) in reducing high blood triglyceride (TG) levels have been well demonstrated. This study aimed to investigate the effect of chia seeds on blood TG and its associated cardiometabolic factors in hypertriglyceridaemic individuals. METHODS This three-group randomised controlled trial compared the effects of a low-calorie diet (n = 22), a low-calorie diet with chia seeds (30 g/day, n = 22) or a low-calorie diet with concentrated fish oil (1.8 g/day of n-3 long-chain PUFAs, n = 22) in patients with hypertriglyceridaemia. Anthropometrics, fasting blood lipids, proprotein convertase subtilisin/kexin type 9, insulin, adiponectin, leptin and interleukin-6 levels were measured. RESULTS After 8 weeks, the mean reduction in weight exhibited by the three groups was not statistically different (2.0, 2.7 and 2.8 kg, respectively, for the control, fish oil and chia seed groups). The plasma TG decreased in both the chia seed and fish oil groups in comparison to the control group (p = 0.001). However, no significant difference was observed between the chia seed and fish oil groups (change from baseline mean: 145.2 and 136.7 mg/dL for the chia seed and fish oil groups, respectively). The consumption of chia seeds was associated with a reduction in diastolic blood pressure (change from baseline mean: 8.4 mmHg) compared to the other two groups. No significant alterations were observed in the other blood biochemical factors between the three groups. CONCLUSIONS In people with moderate hypertriglyceridaemia, a low-calorie diet with 30 g of chia seeds compared to fish oil supplements containing 1.8 g of long-chain PUFAs has a similar effect on reducing plasma TG levels, whereas it has a higher blood pressure-lowering effect.
Collapse
Affiliation(s)
- Mohammad Reza Shahparvari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kheirkhah A, Schachtl-Riess JF, Lamina C, Di Maio S, Koller A, Schönherr S, Coassin S, Forer L, Sekula P, Gieger C, Peters A, Köttgen A, Eckardt KU, Kronenberg F. Meta-GWAS on PCSK9 concentrations reveals associations of novel loci outside the PCSK9 locus in White populations. Atherosclerosis 2023; 386:117384. [PMID: 37989062 DOI: 10.1016/j.atherosclerosis.2023.117384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND AND AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of lipid homeostasis. A few earlier genome-wide association studies (GWAS) investigated genetic variants associated with circulating PCSK9 concentrations. However, uncertainty remains about some of the genetic loci discovered beyond the PCSK9 locus. By conducting the largest PCSK9 meta-analysis of GWAS (meta-GWAS) so far, we aimed to identify novel loci and validate the previously reported loci that regulate PCSK9 concentrations. METHODS We performed GWAS for PCSK9 concentrations in two large cohorts (GCKD (n = 4,963) and KORA F3 (n = 2,895)). These were meta-analyzed with previously published data encompassing together 20,579 individuals. We further conducted a second meta-analysis in statin-naïve individuals (n = 15,390). A genetic risk score (GRS) was constructed on PCSK9-increasing SNPs and assessed its impact on the risk for coronary artery disease (CAD) in 394,943 statin-naïve participants (17,077 with events) of the UK Biobank by performing CAD-free survival analysis. RESULTS Nine loci were genome-wide significantly associated with PCSK9 concentrations. These included the previously described PCSK9, APOB, KCNA1/KCNA5, and TM6SF2/SUGP1 loci. All imputed SNPs in the PCSK9 locus account for ∼15% of variance of PCSK9 concentrations. We further identified FADS2 as a novel locus that was also found in statin-naïve participants. All imputed SNPs within the FADS2 locus explain ∼1.2% of variance of PCSK9 concentrations. Additionally, four further loci (a region on chromosome 5, SDK1, SPATA16 and HPR) were genome-wide significant in either the main model or the statin-naïve subset. The linear increase in a PCSK9 genetic risk score was associated with 1.41-fold (95%CI 1.16-1.72, p < 0.001) higher risk for incident CAD. CONCLUSIONS We identified five novel loci (FADS2, SPATA16, SDK1, HPR and a region on chromosome 5) for PCSK9 concentrations that would require further research. Additionally, we confirm the genome-wide significant loci that were previously detected.
Collapse
Affiliation(s)
- Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Chronic Kidney Disease Study, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
4
|
Sobati S, Shakouri A, Edalati M, Mohammadnejad D, Parvan R, Masoumi J, Abdolalizadeh J. PCSK9: A Key Target for the Treatment of Cardiovascular Disease (CVD). Adv Pharm Bull 2020; 10:502-511. [PMID: 33062601 PMCID: PMC7539318 DOI: 10.34172/apb.2020.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), as a vital modulator of low-density lipoprotein cholesterol (LDL-C) , is raised in hepatocytes and released into plasma where it binds to LDL receptors (LDLR), leading to their cleavage. PCSK9 adheres to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR which is confirmed by crystallography. LDLR expression is adjusted at the transcriptional level through sterol regulatory element binding protein 2 (SREBP-2) and at the post translational stages, specifically through PCSK9, and the inducible degrader of the LDLR PCSK9 inhibition is an appealing new method for reducing the concentration of LDL-C. In this review the role of PCSK9 in lipid homeostasis was elucidated, the effect of PCSK9 on atherosclerosis was highlighted, and contemporary therapeutic techniques that focused on PCSK9 were summarized. Several restoration methods to inhibit PCSK9 have been proposed which concentrate on both extracellular and intracellular PCSK9, and they include blockage of PCSK9 production by using gene silencing agents and blockage of it's binding to LDLR through antibodies and inhibition of PCSK9 autocatalytic processes by tiny molecule inhibitors.
Collapse
Affiliation(s)
- Saeideh Sobati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Amir Shakouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Parvan
- Department of Biosciences, University of Milan, Via celoria 26, 20133, Milan, Italy
| | - Javad Masoumi
- Immunology Department, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Jeenduang N. Circulating PCSK9 concentrations are increased in postmenopausal women with the metabolic syndrome. Clin Chim Acta 2019; 494:151-156. [DOI: 10.1016/j.cca.2019.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
6
|
Daray FM, Mann JJ, Sublette ME. How lipids may affect risk for suicidal behavior. J Psychiatr Res 2018; 104:16-23. [PMID: 29920417 PMCID: PMC6102068 DOI: 10.1016/j.jpsychires.2018.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
Suicide and nonfatal suicidal behaviors are major causes of mortality and morbidity worldwide. Variability in rates of suicide and suicidal behaviors within and between countries has been attributed to population and individual risk factors, including economic status and cultural differences, both of which can have suicide risk effects mediated through a variety of factors, of which perhaps the least understood is the role of diet. We therefore review the scientific literature concerning two major dietary lipid classes, cholesterol and polyunsaturated fatty acids (PUFAs), that have been associated with higher risk of suicide attempts and suicide. We consider potential mechanistic intermediates including serotonin transporters and receptors, toll-like receptors (TLRs), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and peroxisome proliferator activated receptors (PPARs). Based on this review, we describe a theoretical model linking cholesterol and PUFA status to suicide risk, taking into account the effects of cholesterol-lowering interventions on PUFA balance, membrane lipid microdomains (rafts) as a nexus of interaction between cholesterol and omega-3 PUFAs, and downstream effects on serotonergic neurotransmission and specific inflammatory pathways.
Collapse
Affiliation(s)
- Federico M. Daray
- Institute of Pharmacology. School of Medicine. University of Buenos Aires, Paraguay 2155, piso 9, Ciudad Autónoma de Buenos Aires, Argentina, C1121ABG
| | - J. John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032,Department of Radiology, Columbia University, 622 West 168th St, New York, NY 10032
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032,To whom correspondence should be addressed: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, Tel: 646 774-7514, Fax: 646 774-7589,
| |
Collapse
|
7
|
Allaire J, Vors C, Tremblay AJ, Marin J, Charest A, Tchernof A, Couture P, Lamarche B. High-Dose DHA Has More Profound Effects on LDL-Related Features Than High-Dose EPA: The ComparED Study. J Clin Endocrinol Metab 2018; 103:2909-2917. [PMID: 29846653 DOI: 10.1210/jc.2017-02745] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Supplementation with high-dose docosahexaenoic acid (DHA) increases serum low-density lipoprotein (LDL) cholesterol (LDL-C) concentrations more than high-dose eicosapentaenoic acid (EPA). The mechanisms underlying this difference are unknown. OBJECTIVE To examine the phenotypic change in LDL and mechanisms responsible for the differential LDL-C response to EPA and DHA supplementation in men and women at risk of cardiovascular disease. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION In a double-blind, controlled, crossover study, 48 men and 106 women with abdominal obesity and subclinical inflammation were randomized to a sequence of three treatment phases: phase 1, 2.7 g/d of EPA; phase 2, 2.7 g/d of DHA; and phase 3, 3 g/d of corn oil. All supplements were provided as three 1-g capsules for a total of 3 g/d. The 10-week treatment phases were separated by a 9-week washout period. MAIN OUTCOME MEASURE In vivo kinetics of apolipoprotein (apo)B100-containing lipoproteins were assessed using primed-constant infusion of deuterated leucine at the end of each treatment in a subset of participants (n = 19). RESULTS Compared with EPA, DHA increased LDL-C concentrations (+3.3%; P = 0.038) and mean LDL particle size (+0.7 Å; P < 0.001) and reduced the proportion of small LDL (-3.2%; P < 0.01). Both EPA and DHA decreased proprotein convertase subtilisin/kexin type 9 concentrations similarly (-18.2% vs -25.0%; P < 0.0001 vs control). Compared with EPA, DHA supplementation increased both the LDL apoB100 fractional catabolic rate (+11.4%; P = 0.008) and the production rate (+9.4%; P = 0.03). CONCLUSIONS The results of the present study have shown that supplementation with high-dose DHA increases LDL turnover and contributes to larger LDL particles compared with EPA.
Collapse
Affiliation(s)
- Janie Allaire
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Cécile Vors
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | - André J Tremblay
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Johanne Marin
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | - Amélie Charest
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | - André Tchernof
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
- Institut Universitaire de Cardiologie et de Pneumologie du Québec, Québec City, Québec, Canada
| | - Patrick Couture
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Benoît Lamarche
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
8
|
Jiao Y, Hannafon BN, Zhang RR, Fung KM, Ding WQ. Docosahexaenoic acid and disulfiram act in concert to kill cancer cells: a mutual enhancement of their anticancer actions. Oncotarget 2017; 8:17908-17920. [PMID: 28107189 PMCID: PMC5392296 DOI: 10.18632/oncotarget.14702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
We previously reported a synergistic anticancer action of clioquinol and docosahexaenoic acid (DHA) in human cancer cells. However, clioquinol has been banned from the clinic due to its neurotoxicity. This study identified disulfiram (DSF) as a substitute compound to clioquinol, acting in concert with DHA to more effectively kill cancer cells and suppress tumor growth. Treatment with DSF and DHA induced greater apoptotic cell death and suppression of tumor growth in vitro and in vivo, as compared to DSF and DHA used alone. Mechanistic studies demonstrated that DSF enhances DHA-induced cellular oxidative stress as evidenced by up-regulation of Nrf2-mediated heme oxygenase 1 (HO-1) gene transcription. On the other hand, DHA was found to enhance DSF-induced suppression of mammosphere formation and stem cell frequency in a selected cancer model system, indicating that alterations to cancer cell stemness are involved in the combinatory anticancer action of DSF and DHA. Thus, DHA and DSF, both clinically approved drugs, act in concert to more effectively kill cancer cells. This combinatory action involves an enhancement of cellular oxidative stress and suppression of cancer cell stemness.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Roy R Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis 2017; 16:149. [PMID: 28797250 PMCID: PMC5553798 DOI: 10.1186/s12944-017-0541-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
Background Epidemiological and genetic studies suggest that elevated triglyceride (TG)-rich lipoprotein levels in the circulation increase the risk of cardiovascular disease. Prescription formulations of omega-3 fatty acids (OM3FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma TG levels and are approved for the treatment of patients with severe hypertriglyceridemia. Many preclinical studies have investigated the TG-lowering mechanisms of action of OM3FAs, but less is known from clinical studies. Methods We conducted a review, using systematic methodology, of studies in humans assessing the mechanisms of action of EPA and DHA on apolipoprotein B-containing lipoproteins, including TG-rich lipoproteins and low-density lipoproteins (LDLs). A systematic search of PubMed retrieved 55 articles, of which 30 were used in the review; 35 additional arrticles were also included. Results In humans, dietary DHA is retroconverted to EPA, while production of DHA from EPA is not observed. Dietary DHA is preferentially esterified into TGs, while EPA is more evenly esterified into TGs, cholesterol esters and phospholipids. The preferential esterification of DHA into TGs likely explains the higher turnover of DHA than EPA in plasma. The main effects of both EPA and DHA are decreased fasting and postprandial serum TG levels, through reduction of hepatic very-low-density lipoprotein (VLDL)-TG production. The exact mechanism for reduced VLDL production is not clear but does not include retention of lipids in the liver; rather, increased hepatic fatty acid oxidation is likely. The postprandial reduction in TG levels is caused by increased lipoprotein lipase activity and reduced serum VLDL-TG concentrations, resulting in enhanced chylomicron clearance. Overall, no clear differences between the effects of EPA and DHA on TG levels, or on turnover of TG-rich lipoproteins, have been observed. Effects on LDL are complex and may be influenced by genetics, such as APOE genotype. Conclusions EPA and DHA diminish fasting circulating TG levels via reduced production of VLDL. The mechanism of reduced VLDL production does not involve hepatic retention of lipids. Lowered postprandial TG levels are also explained by increased chylomicron clearance. Little is known about the specific cellular and biochemical mechanisms underlying the TG-lowering effects of EPA and DHA in humans.
Collapse
Affiliation(s)
- Jan Oscarsson
- AstraZeneca Gothenburg, Pepparedsleden 1, SE-431 83, Mölndal, Sweden.
| | - Eva Hurt-Camejo
- AstraZeneca Gothenburg, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| |
Collapse
|
10
|
Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A. Regulation of PCSK9 by nutraceuticals. Pharmacol Res 2017; 120:157-169. [PMID: 28363723 DOI: 10.1016/j.phrs.2017.03.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Abstract
PCSK9 (proprotein convertase subtilisin kexin type 9) is a liver secretory enzyme that regulates plasma low-density lipoprotein (LDL) cholesterol (LDL-C) levels through modulation of LDL receptor (LDLR) density on the surface of hepatocytes. Inhibition of PCSK9 using monoclonal antibodies can efficiently lower plasma LDL-C, non-high-density lipoprotein cholesterol and lipoprotein (a). PCSK9 inhibition is also an effective adjunct to statin therapy; however, the cost-effectiveness of currently available PCSK9 inhibitors is under question. Nutraceuticals offer a safe and cost-effective option for PCSK9 inhibition. Several nutraceuticals have been reported to modulate PCSK9 levels and exert LDL-lowering activity. Mechanistically, those nutraceuticals that inhibit PCSK9 through a SREBP (sterol-responsive element binding protein)-independent pathway can be more effective in lowering plasma LDL-C levels compared with those inhibiting PCSK9 through the SREBP pathway. The present review aims to collect available data on the nutraceuticals with PCSK9-inhibitory effect and the underlying mechanisms.
Collapse
Affiliation(s)
- Amir Abbas Momtazi
- Nanotechnology Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| |
Collapse
|
11
|
Yu Z, Huang T, Zheng Y, Wang T, Heianza Y, Sun D, Campos H, Qi L. PCSK9 variant, long-chain n-3 PUFAs, and risk of nonfatal myocardial infarction in Costa Rican Hispanics. Am J Clin Nutr 2017; 105:1198-1203. [PMID: 28330911 PMCID: PMC5402034 DOI: 10.3945/ajcn.116.148106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/22/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Previous studies have indicated that the cardioprotective effects of long-chain (LC) n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may vary across various ethnic populations. Emerging evidence has suggested that the gene-environment interaction may partly explain such variations. Proprotein convertase subtilisin/kexin type 9 (PCSK9) was shown to have a mutually regulating relation with LC n-3 PUFAs and also to reduce the risk of cardiovascular diseases (CVDs). Therefore, we hypothesized that certain PCSK9 genetic variants may modify the association between LC n-3 PUFA intake and CVD risk.Objective: We determined whether a PCSK9 variant (rs11206510), which has been identified for early onset myocardial infarction (MI), modified the association of LC n-3 PUFAs with nonfatal MI risk in Costa Rican Hispanics.Design: We analyzed cross-sectional data from 1932 case subjects with a first nonfatal MI and 2055 population-based control subjects who were living in Costa Rica to examine potential gene-environment interactions. Two-sided P values <0.05 were considered significant.Results: We observed a significant interaction between the PCSK9 rs11206510 genotype and LC n-3 PUFA intake on nonfatal MI risk (P-interaction = 0.012). The OR of nonfatal MI was 0.84 (95% CI: 0.72, 0.98) per 0.1% increase in total energy intake from LC n-3 PUFAs in protective-allele (C-allele) carriers, whereas the corresponding OR (95% CI) in non-C-allele carriers was 1.02 (95% CI: 0.95, 1.10). Similar results were observed when we examined the association between docosahexaenoic acid, which is one type of LC n-3 PUFA, and nonfatal MI risk (P-interaction = 0.003).Conclusion: LC n-3 PUFA intake is associated with a lower risk of nonfatal MI in C-allele carriers of PCSK9 rs11206510 (n = 799) but not in non-C-allele carriers (n = 3188).
Collapse
Affiliation(s)
- Zhi Yu
- Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital, Boston, MA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health, and,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yan Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; and
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Hannia Campos
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; and
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; and .,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| |
Collapse
|
12
|
Krysa JA, Ooi TC, Proctor SD, Vine DF. Nutritional and Lipid Modulation of PCSK9: Effects on Cardiometabolic Risk Factors. J Nutr 2017; 147:473-481. [PMID: 28179493 DOI: 10.3945/jn.116.235069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/13/2016] [Accepted: 01/10/2017] [Indexed: 11/14/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease involved in the regulation of LDL receptor (LDLR) expression and apolipoprotein B lipoprotein cholesterol metabolism. Hepatic PCSK9 protein expression, activity, and secretion have been shown to affect cholesterol homeostasis. An upregulation of hepatic PSCK9 protein leads to increased LDLR degradation, resulting in decreased uptake of apoB lipoproteins and a consequent increase in the plasma concentration of these lipoproteins, including LDL and chylomicron remnants. Hence, PCSK9 has become a novel target for lipid-lowering therapies. The aim of this review is to outline current findings on the metabolic and dietary regulation of PCSK9 and effects on cholesterol, apoB lipoprotein metabolism, and cardiovascular disease (CVD) risk. PCSK9 gene and protein expression have been shown to be regulated by metabolic status and the diurnal pattern. In the fasting state, plasma PCSK9 is reduced via modulation of the nuclear transcriptional factors, including sterol regulatory element-binding protein (SREBP) 1c, SREBP2, and hepatocyte nuclear factor 1α. Plasma PCSK9 concentrations are also known to be positively associated with plasma insulin and homeostasis model assessment of insulin resistance, and appear to be regulated by SREBP1c independently of glucose status. Plasma PCSK9 concentrations are stable in response to high-fat or high-protein diets in healthy individuals; however, this response may differ in altered metabolic conditions. Dietary n-3 polyunsaturated fatty acids have been shown to reduce plasma PCSK9 concentration and hepatic PCSK9 mRNA expression, consistent with their lipid-lowering effects, whereas dietary fructose appears to upregulate PCSK9 mRNA expression and plasma PCSK9 concentrations. Further studies are needed to elucidate the mechanisms of how dietary components regulate PCSK9 and effects on cholesterol and apoB lipoprotein metabolism, as well as to delineate the clinical impact of diet on PCSK9 in terms of CVD risk.
Collapse
Affiliation(s)
- Jacqueline A Krysa
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Canada
| | - Teik Chye Ooi
- Department of Medicine, University of Ottawa, Ottawa, Canada; and.,Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Canada
| | - Donna F Vine
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Canada;
| |
Collapse
|
13
|
Ferri N, Ruscica M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 2016; 54:588-601. [PMID: 27038318 DOI: 10.1007/s12020-016-0939-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Low-density lipoprotein (LDL) cholesterol plays a pivotal role in the pathogenesis of atherosclerotic cardiovascular disease (CVD). The discovery that proprotein convertase subtilisin/kexin type 9 (PCSK9) represents a key regulator pathway for hepatic LDL receptor (LDLR) degradation sheds light on new uncovered issues regarding LDL-C homeostasis. Indeed, as confirmed by phase II and III clinical trials with monoclonal antibodies, targeting PCSK9 represents the newest and most promising pharmacological tool for the treatment of hypercholesterolemia and related CVD. However, clinical, genetic, and experimental evidence indicates that PCSK9 may be either a cause or an effect in the context of metabolic syndrome (MetS), a condition comprising a cluster of risk factors including insulin resistance, obesity, hypertension, and atherogenic dyslipidemia. The latter is characterized by a triad of hypertriglyceridemia, low plasma concentrations of high-density lipoproteins, and qualitative changes in LDLs. PCSK9 levels seem to correlate with many of these lipid parameters as well as with the insulin sensitivity indices, although the molecular mechanisms behind this association are still unknown or not completely elucidated. Nevertheless, this area of research represents an important starting point for a better understanding of the physiological role of PCSK9, also considering the recent approval of new therapies involving anti-PCSK9. Thus, in the present review, we will discuss the current knowledge on the role of PCSK9 in the context of MetS, alteration of lipids, glucose homeostasis, and inflammation.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo Meneghetti 2, 35131, Padua, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
14
|
Effects of MAT9001 containing eicosapentaenoic acid and docosapentaenoic acid, compared to eicosapentaenoic acid ethyl esters, on triglycerides, lipoprotein cholesterol, and related variables. J Clin Lipidol 2016; 11:102-109. [PMID: 28391875 DOI: 10.1016/j.jacl.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long-chain omega-3 fatty acid concentrate pharmaceuticals are used in the United States for treatment of severe hypertriglyceridemia (≥500 mg/dL) and are under investigation as adjuncts to statins for lowering cardiovascular risk in patients with high triglycerides (TGs; 200-499 mg/dL). OBJECTIVE To evaluate MAT9001, an investigational prescription-only omega-3 fatty acid agent containing predominantly eicosapentaenoic acid (EPA) and docosapentaenoic acid, in 42 men and women with fasting TG 200 to 400 mg/dL. METHODS In this open-label, crossover trial, subjects received MAT9001 and EPA ethyl esters (EPA-EE) in random order. They were housed in a clinical research unit for 2 14-day treatment periods, separated by a ≥35-day washout. Lipoprotein lipids, apolipoproteins (Apos) and proprotein convertase subtilisin kexin type 9 levels were measured before and at the end of each treatment period. RESULTS MAT9001, compared with EPA-EE, resulted in significantly (P < .05) larger reductions from pretreatment levels for TG (-33.2% vs -10.5%), total cholesterol (-9.0% vs -6.2%), non-high-density lipoprotein cholesterol (-8.8% vs -4.6%), very low-density lipoprotein cholesterol (-32.5% vs -8.1%), Apo C3 (-25.5% vs -5.0%), and proprotein convertase subtilisin kexin type 9 (-12.3% vs +8.8%). MAT9001 also produced a significantly (P = .003) larger reduction in Apo A1 (-15.3% vs -10.2%), but responses for high-density lipoprotein cholesterol (-11.3% vs -11.1%), low-density lipoprotein cholesterol (-2.4% vs -4.3%), and Apo B (-3.8% vs -0.7%), respectively, were not significantly different relative to EPA-EE. CONCLUSIONS MAT9001 produced significantly larger reductions than EPA-EE in several lipoprotein-related variables that would be expected to favorably alter cardiovascular disease risk in men and women with hypertriglyceridemia.
Collapse
|