1
|
de Carvalho Silva AK, Lima FJL, Borges KRA, Wolff LAS, de Andrade MS, Alves RDNS, Cordeiro CB, da Silva MACN, Nascimento MDDSB, da Silva Espósito T, de Barros Bezerra GF. Utilization of Fusarium Solani lipase for enrichment of polyunsaturated Omega-3 fatty acids. Braz J Microbiol 2024; 55:2211-2226. [PMID: 38874742 PMCID: PMC11405586 DOI: 10.1007/s42770-024-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer numerous health benefits. Enriching these fatty acids in fish oil using cost-effective methods, like lipase application, has been studied extensively. This research aimed to investigate F. solani as a potential lipase producer and compare its efficacy in enhancing polyunsaturated omega-3 fatty acids with commercial lipases. Submerged fermentation with coconut oil yielded Lipase F2, showing remarkable activity (215.68 U/mL). Lipase F2 remained stable at pH 8.0 (activity: 93.84 U/mL) and active between 35 and 70 °C, with optimal stability at 35 °C. It exhibited resistance to various surfactants and ions, showing no cytotoxic activity in vitro, crucial for its application in the food and pharmaceutical industries. Lipase F2 efficiently enriched EPA and DHA in fish oil, reaching 22.1 mol% DHA and 23.8 mol% EPA. These results underscore the economic viability and efficacy of Lipase F2, a partially purified enzyme obtained using low-cost techniques, demonstrating remarkable stability and resistance to diverse conditions. Its performance was comparable to highly pure commercially available enzymes in omega-3 production. These findings highlight the potential of F. solani as a promising lipase source, offering opportunities for economically producing omega-3 and advancing biotechnological applications in the food and supplements industry.
Collapse
Affiliation(s)
- Allysson Kayron de Carvalho Silva
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil.
| | - Fernanda Jeniffer Lindoso Lima
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Katia Regina Assunção Borges
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Laís Araújo Souza Wolff
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcelo Souza de Andrade
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Rita de Nazaré Silva Alves
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Carolina Borges Cordeiro
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Maria do Desterro Soares Brandão Nascimento
- Doctoral Program in Biotechnology- Northeast Biotechnology Network (RENORBIO), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Talita da Silva Espósito
- Department of Oceanography and Limnology, Laboratory of Biotechnology of Aquatic Organisms (BIOAQUA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Geusa Felipa de Barros Bezerra
- Postgraduate Program in Adult Health (PPGSAD), Center for Basic and Applied Immunology (NIBA), Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
2
|
Engelmann JI, de Farias BS, Igansi AV, Silva PP, Cadaval TRS, Gelesky MA, Crexi VT, de Almeida Pinto LA. Chitosan-based nanocapsules by emulsification containing PUFA concentrates from tuna oil. FOOD SCI TECHNOL INT 2024; 30:317-328. [PMID: 36703262 DOI: 10.1177/10820132231153496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chitosan nanocapsules containing polyunsaturated fatty acid (PUFA) concentrates from tuna oil, with EPA + DHA contents around 57% (w/w), were developed by emulsification process, using different chitosan concentration (1.0%, 1.5%, 2.0%, w/v) and stirring speed (10,000, 15,000, 20,000 rpm). The effects of these parameters on particle size and zeta potential were evaluated. The physical and oxidative stabilities were used to measure the product quality during storage. Chitosan concentration, stirring speed and its interaction significantly affected (p < 0.05) the particle size. In addition, chitosan concentration significantly affected (p < 0.05) the zeta potential of nanocapsules emulsion. Based on the results of physical and oxidative stabilities, the nanocapsules were stable for 30 days under refrigeration temperature (7 °C), and with 1.5-2% chitosan resulted in improved protection against oil oxidation. The nanocapsules produced with 2% chitosan and 10,000 rpm showed the lowest variations of polydispersity index and nanocapsules size after 30 days of storage (221.8 ± 3.0 nm). These conditions can be considered the most suitable to produce nanocapsules of PUFA concentrates from tuna oil using chitosan as wall material. These nanocapsules showed physical characteristics and oxidative stability, which could enable their application in the food industry, representing an important source of EPA and DHA fatty acids.
Collapse
Affiliation(s)
- Jenifer Ines Engelmann
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Andrei Vallerão Igansi
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Patrick Peres Silva
- School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Valéria Terra Crexi
- Laboratory of Food Engineering, Federal University of Pampa - Bagé Campus, Bagé, RS, Brazil
| | | |
Collapse
|
3
|
Devi NR, Khandelwal S, Subramaniyan M, Pappu S. Extraction, characterization, and therapeutic potential of Omega-3 fatty acids from Belone belone skin. 3 Biotech 2024; 14:42. [PMID: 38261852 PMCID: PMC10796888 DOI: 10.1007/s13205-023-03885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
This study provides the fatty acid profile, presence of Omega 3 fatty acids (ω3FAs) and therapeutic potential of the skin of Garfish (Belone belone), a highly nutritious fish. The ω3FAs were obtained using the urea crystallization method and confirmed by UV VIS spectroscopy, HPLC, FT-IR, and NMR. Additionally, the therapeutic potential of the ω3FAs was assessed through antioxidant, antimicrobial, antibiofilm, and toxicity assays. The oil extracted from Garfish skin (GS) predominantly contains ω3FAs, palmitic acids, and oleic acids. The ω3FAs exhibit high anti-free radical activity and ferric reducing activity. It reduces nitric oxide production as well as lipid peroxidation under certain time. They also demonstrate effective antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae. The biofilm formation is efficiently reduced by ω3FAs and eradication effects on biofilm are higher at 4000 µg/mL of concentration. When tested against brine shrimp larvae, ω3FAs were found to be non-toxic. The study indicates that GS skin oil contains a significant amount of omega-3 fatty acids and has potential therapeutic benefits due to its antioxidant and antibacterial properties, without causing any toxic effects. Omega-3 fatty acids have the potential to enhance the treatment of infections caused by harmful bacteria and their biofilm formation. Further research is needed to understand how omega-3 fatty acids work to kill bacteria and how they affect bacterial gene expression.
Collapse
Affiliation(s)
- Naorem Rojita Devi
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Sital Khandelwal
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Muthumari Subramaniyan
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Srinivasan Pappu
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| |
Collapse
|
4
|
Chen W, Li T, Du S, Chen H, Wang Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front Bioeng Biotechnol 2023; 11:1146881. [PMID: 37064250 PMCID: PMC10102661 DOI: 10.3389/fbioe.2023.1146881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Algae play a crucial role in the earth’s primary productivity by producing not only oxygen but also a variety of high-value nutrients. One such nutrient is polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and can be consumed by animals through the food chain and eventually by humans. Omega-3 and omega-6 PUFAs are essential nutrients for human and animal health. However, compared with plants and aquatic sourced PUFA, the production of PUFA-rich oil from microalgae is still in the early stages of exploration. This study has collected recent reports on algae-based PUFA production and analyzed related research hotspots and directions, including algae cultivation, lipids extraction, lipids purification, and PUFA enrichment processes. The entire technological process for the extraction, purification and enrichment of PUFA oils from algae is systemically summarized in this review, providing important guidance and technical reference for scientific research and industrialization of algae-based PUFA production.
Collapse
Affiliation(s)
- Weixian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianpei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuwen Du
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
5
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:2400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| |
Collapse
|
6
|
Xie D, Chen Y, Yu J, Yang Z, Wang X, Wang X. Progress in enrichment of n-3 polyunsaturated fatty acid: a review. Crit Rev Food Sci Nutr 2022; 63:11310-11326. [PMID: 35699651 DOI: 10.1080/10408398.2022.2086852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
n-3 Polyunsaturated fatty acids (n-3 PUFA) has been widely used in foods, and pharmaceutical products due to its beneficial effects. The content of n-3 PUFA in natural oils is usually low, which decreases its added value. Thus, there is an increasing demand on the market for n-3 PUFA concentrates. This review firstly introduces the differences in bioavailability and oxidative stability between different types of PUFA concentrate (free fatty acid, ethyl ester and acylglycerol), and then provides a comprehensive discussion of different methods for enrichment of lipids with n-3 PUFA including physical-chemical methods and enzymatic methods. Lipases used for catalyzing esterification, transesterification and hydrolysis reactions play an important role in the production of highly enriched various types of n-3 PUFA concentrates. Lipase-catalyzed alcoholysis or hydrolysis reactions are the mostly employed method to prepare high-quality n-3 PUFA of structural acylglycerols. Although many important advantages offered by lipases in enrichment of n-3 PUFA, the high cost of enzyme limits its industrial-scale production. Further research should focus on looking for biological enzymes with extraordinary catalytic ability and clear selectivity. Other novel technologies such as protein engineering and immobilization may be needed to modify lipases to improve its selectivity, catalytic ability and reuse.
Collapse
Affiliation(s)
- Dan Xie
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, PR China
| | - Ye Chen
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Junwen Yu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, PR China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Zhuangzhuang Yang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
7
|
Valorization of Side Stream Products from Sea Cage Fattened Bluefin Tuna (Thunnus thynnus): Production and In Vitro Bioactivity Evaluation of Enriched ω-3 Polyunsaturated Fatty Acids. Mar Drugs 2022; 20:md20050309. [PMID: 35621959 PMCID: PMC9147267 DOI: 10.3390/md20050309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
The valorization of side streams from fishery and aquaculture value-chains is a valuable solution to address one of the challenges of the circular economy: turning wastes into profit. Side streams produced after filleting of sea cage fattened bluefin tuna (Thunnus thynnus) were analyzed for proximate composition and fatty acid profile to evaluate the possibility of producing tuna oil (TO) as a valuable source of ω-3 polyunsaturated fatty acids (PUFA) and testing its bioactivity in vitro. Ethyl esters of total fatty acids (TFA), obtained from TO, were pre-enriched by urea complexation (PUFA-Ue) and then enriched by short path distillation (SPD) up to almost 85% of the PUFA fraction (PUFA-SPe). The bioactivity of TFA, PUFA-SPe, and ethyl esters of depleted PUFA (PUFA-SPd) were tested in vitro, through analysis of lipid metabolism genes, in gilthead sea bream (Sparus aurata) fibroblast cell line (SAF-1) exposed to oils. TFA and PUFA-SPd upregulated transcription factors (pparβ and pparγ) and lipid metabolism-related genes (D6D, fas, fabp, fatp1, and cd36), indicating the promotion of adipogenesis. PUFA-SPe treated cells were similar to control. PUFA-SPe extracted from farmed bluefin tuna side streams could be utilized in fish feed formulations to prevent excessive fat deposition, contributing to improving both the sustainability of aquaculture and the quality of its products.
Collapse
|
8
|
Engelmann JI, Peres PP, Igansi AV, Monte ML, Pohndorf RS, Cadaval TRS, Crexi VT, Pinto LAA. Structured lipids of swine lard and oils from byproducts of skipjack tuna and of common carp. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jênifer I. Engelmann
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Patrick P. Peres
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Andrei V. Igansi
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Micheli L. Monte
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| | - Ricardo S. Pohndorf
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Tito R. S. Cadaval
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Valéria T. Crexi
- Laboratory of Food Engineering Federal University of Pampa– UNIPAMPA Bage Brazil
| | - Luiz A. A. Pinto
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande – FURG Rio Grande Brazil
| |
Collapse
|
9
|
Zeng Y, Liu P, Yang X, Li H, Li H, Guo Y, Meng X, Liu X. The dietary c9,t11-conjugated linoleic acid enriched from butter reduces breast cancer progression in vivo. J Food Biochem 2020; 44:e13163. [PMID: 32030801 DOI: 10.1111/jfbc.13163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
The c9,t11-conjugated linoleic acid (CLA), which is the minor polyunsaturated fatty acid (PUFA) naturally present in butter, has gained attention due to its important preventive effect against breast cancer in vitro. In this paper, the enrichment of c9,t11-CLA from butter was optimized and the preventive effect of dietary c9,t11-CLA against breast cancer in vivo was investigated. Results showed that the concentration of c9,t11-CLA increased more than 10 times via a one-step urea complexation. Furthermore, the dietary c9,t11-CLA showed obvious preventive effect against breast cancer in decreasing the tumor weight and volume, and reducing the tumor incidence up to 50%. In addition, the expression of progesterone receptor and Ki-67 decreased significantly with the treatment of c9,t11-CLA. In conclusion, the dietary c9,t11-CLA enriched from butter showed a preventive effect against breast cancer in vivo via the inhibition of the hormonal receptor and cell proliferation. PRACTICAL APPLICATIONS: This paper provided new insight into the preparation of specific c9,t11-CLA isomer. It can be enriched from butter in large-scale with low-cost by urea complexation. Meanwhile, the enriched dietary c9,t11-CLA can be further processed into cancer prevention functional foods.
Collapse
Affiliation(s)
- Yanhong Zeng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ping Liu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaohu Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Huimei Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yuyun Guo
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaohua Liu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Wang X, Xiaohan W, Chen Y, Jin W, Jin Q, Wang X. Enrichment of branched chain fatty acids from lanolin via urea complexation for infant formula use. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: A critical review. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101619] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Nobre LR, Monte ML, Silva PP, Engelmann JI, Pohndorf RS, Pinto LA. Analysis of the thermal and physicochemical properties of unsaturated fatty acid concentrates from cobia ( Rachycentron canadum) and Argentine croaker ( Umbrina canosai) waste. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.1046182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have been carried out to obtain unsaturated fatty acid (UFA) concentrates, due to their nutritional importance in food applications. The aim of this work was to obtain UFA concentrates from bleached cobia (Rachycentron canadum) and Argentine croaker (Umbine canosai) oil by complexation with urea, and to evaluate their physicochemical and thermal properties during processing. The fatty acids found in high amounts in the crude and bleached oils of cobia and Argentine crocker were palmitic, oleic and linoleic acids. Higher percentages of UFA were present in the oils extracted from the visceras, around 69 and 63% for cobia and Argentine croaker, respectively, and after complexation with urea, the percentages of UFA present in both concentrates were around 88%. Through the thermograms it was possible to observe that the UFA concentrates showed a 50% decrease in their maximum degradation temperature.
Collapse
|
13
|
Esquerdo VM, Monte ML, Pinto LADA. Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: Characterization and thermodynamic properties. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Magallanes LM, Tarditto LV, Grosso NR, Pramparo MC, Gayol MF. Highly concentrated omega-3 fatty acid ethyl esters by urea complexation and molecular distillation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:877-884. [PMID: 30009420 DOI: 10.1002/jsfa.9258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Raya liver deodorized oil contains high concentrations of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). The present study investigated the processes of urea complexation (UC) and molecular distillation (MD) to determine the most adequate operation conditions for each process, separately and together, aiming to obtain highly concentrated EPA, DPA and DHA ethyl esters with chemical indicator values permitted by the current legislation for edible oils. RESULTS In the second stage of MD, a concentration of 820.27 g kg-1 in the distillate and 951.06 g kg-1 of omega-3 fatty acid ethyl esters in the residue was obtained. The distillate showed values of free fatty acids, peroxide and p-anisidine lower than the maximum allowed for edible oils in accordance with the current legislation. CONCLUSION The use of UC and MD together has revealed a significant improvement in the total concentration of omega-3 fatty acid ethyl esters in the final product and good application prospects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leisa M Magallanes
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Lorena V Tarditto
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Nelson R Grosso
- Química Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Pramparo
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - María F Gayol
- Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
15
|
Separation and Enrichment of Omega 3, 6, and 9 Fatty Acids from the By-Products of Vietnamese Basa Fish Processing using Deep Eutectic Solvent. J CHEM-NY 2018. [DOI: 10.1155/2018/6276832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Omega 3, 6, and 9 fatty acids were separated and enriched successfully from the by-products of Vietnamese Basa fish processing by the deep eutectic solvent. The total amounts of omega fatty acids were about 57% in the raw material, and they were amounted to 91% after the first separation by DES. The optimal mass ratio is 20 g methyl ester with 200 g methanol and 15–20 g DES. Moreover, the ionic liquid-DES was successfully synthesized with the molar ratio of choline chloride/urea of 1 : 1 and 2 : 1. The characteristics of DES were determined and demonstrated by FTIR, TGA, DSC, 1H-NMR, and 13C-NMR analysis methods.
Collapse
|
16
|
Zheng Z, Dai Z, Cao Y. Isolation, Purification of DPAn-3 from the Seal Oil Ethyl Ester. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenxiao Zheng
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Zhiyuan Dai
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province; Hangzhou 310012 China
| | - Yalun Cao
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
| |
Collapse
|
17
|
Engelmann JI, Silva PP, Igansi AV, Pohndorf RS, Cadaval TRS, Crexi VT, Pinto LAA. Structured lipids by swine lard interesterification with oil and esters from common carp viscera. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. I. Engelmann
- School of Chemistry and Food; Federal University of Rio Grande; Rio Grande RS Brazil
| | - P. P. Silva
- School of Chemistry and Food; Federal University of Rio Grande; Rio Grande RS Brazil
| | - A. V. Igansi
- School of Chemistry and Food; Federal University of Rio Grande; Rio Grande RS Brazil
| | - R. S. Pohndorf
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; Pelotas RS Brazil
| | - T. R. S. Cadaval
- School of Chemistry and Food; Federal University of Rio Grande; Rio Grande RS Brazil
| | - V. T. Crexi
- Food Engineering; Federal University of Pampa; Bagé RS Brazil
| | - L. A. A. Pinto
- School of Chemistry and Food; Federal University of Rio Grande; Rio Grande RS Brazil
| |
Collapse
|
18
|
Zheng Z, Dai Z, Shen Q. Enrichment of polyunsaturated fatty acids from seal oil through urea adduction and the fatty acids change rules during the process. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenxiao Zheng
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou China
| | - Zhiyuan Dai
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province; Hangzhou China
| | - Qing Shen
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province; Hangzhou China
| |
Collapse
|
19
|
Zhang Z, Liu F, Ma X, Huang H, Wang Y. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:218-227. [PMID: 29232116 DOI: 10.1021/acs.jafc.7b04101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Fang Liu
- Guangdong Saskatchewan Oil Seed Joint Laboratory, Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Xiang Ma
- Research School of Chemistry, The Australian National University , Canberra 2601, Australia
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Yong Wang
- Guangdong Saskatchewan Oil Seed Joint Laboratory, Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Oils and Fats Biorefinery , Guangzhou 510632, China
| |
Collapse
|
20
|
Vázquez L, Ortego E, Corzo-Martínez M, Reglero G, Torres CF. Stearidonic Acid Concentration by Urea Complexation from Echium Oil. J Oleo Sci 2018; 67:1091-1099. [DOI: 10.5650/jos.ess18025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luis Vázquez
- Departament of Novel Food Production and Characterization. Research Institute of Food Science, CIAL (UAM-CSIC)
| | - Elena Ortego
- Departament of Novel Food Production and Characterization. Research Institute of Food Science, CIAL (UAM-CSIC)
| | - Marta Corzo-Martínez
- Departament of Novel Food Production and Characterization. Research Institute of Food Science, CIAL (UAM-CSIC)
| | - Guillermo Reglero
- Departament of Novel Food Production and Characterization. Research Institute of Food Science, CIAL (UAM-CSIC)
- IMDEA-Food Institute, CEI (UAM-CSIC)
| | - Carlos F. Torres
- Departament of Novel Food Production and Characterization. Research Institute of Food Science, CIAL (UAM-CSIC)
| |
Collapse
|
21
|
Chakraborty K, Joseph D, Joseph D. Concentration and stabilization of C20–22 n-3 polyunsaturated fatty acid esters from the oil of Sardinella longiceps. Food Chem 2016; 199:828-37. [DOI: 10.1016/j.foodchem.2015.12.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 11/20/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
22
|
Esquerdo V, Dotto G, Pinto L. Preparation of nanoemulsions containing unsaturated fatty acid concentrate–chitosan capsules. J Colloid Interface Sci 2015; 445:137-142. [DOI: 10.1016/j.jcis.2014.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/29/2022]
|
23
|
Lin W, Wu FW, Yue L, Du QG, Tian L, Wang ZX. Combination of Urea Complexation and Molecular Distillation to Purify DHA and EPA from Sardine Oil Ethyl Esters. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-013-2402-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Schröder M, Vetter W. Detection of 430 Fatty Acid Methyl Esters from a Transesterified Butter Sample. J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2218-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
(In)correct Use of Statistics. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|