1
|
Nouira F, Altayb H, Gharbi D, Bouazizi R, Frosi I, Chaieb K, Papetti A, Bouslama L. Virucidal potential of oleuropein identified in Castana sativa shell: insight from in vitro and in silico studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 40029051 DOI: 10.1080/09603123.2025.2472189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
In this report, Castanea sativa shell extracts have been investigated for their activity against Herpes Virus type 2 (HSV-2). Among four organic extracts only 75% ethanol extract demonstrated activity against HSV-2 with a 50% inhibitory concentration of 6.45 μg/mL. The study of the mechanism underlying the antiviral activity demonstrated this extract strongly inhibits HSV-2 by direct contact and moderately protects the cell from virus recognition and binding. The active compound has been identified as oleuropein by HPLC-DAD-ESI-MSn. This compound which is widely known in the Oleaceae family has been identified in the chestnut shells for the first time. The in vitro results of the mechanism underlying anti HSV-2 action were confirmed by an in silico study which revealed a strong binding free energy of -9.08 kcal/mol between oleuropein and the glycoprotein D of HSV-2. In summary, our findings suggest that C. sativa shells may constitute a promising natural source of anti-HSV-2 agents.
Collapse
Affiliation(s)
- Fatma Nouira
- Laboratory of Bioactive Substances - LR15CBBC03, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
| | - Hisham Altayb
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances - LR15CBBC03, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
| | - Radhia Bouazizi
- Laboratory of Olive Biotechnology - LR15CBBC05, Center of Biotechnology of Borj Cedria, Hammam-Lif, University of Tunis El Manar, Tunisia
| | - Ilaria Frosi
- Nutraceutical & Food Chemical - Toxicological Analysis Laboratory, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Kamel Chaieb
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adele Papetti
- Nutraceutical & Food Chemical - Toxicological Analysis Laboratory, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances - LR15CBBC03, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Luong QXT, Hoang PT, Ho PT, Ayun RQ, Lee TK, Lee S. Potential Broad-Spectrum Antiviral Agents: A Key Arsenal Against Newly Emerging and Reemerging Respiratory RNA Viruses. Int J Mol Sci 2025; 26:1481. [PMID: 40003946 PMCID: PMC11855616 DOI: 10.3390/ijms26041481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
Respiratory viral infections present significant global health challenges, causing substantial morbidity and mortality, particularly among highly susceptible components of the population. The emergence of pandemics and epidemics, such as those caused by influenza viruses and coronaviruses, emphasizes the urgent need for effective antiviral therapeutics. In this review, we explore the potential of broad-spectrum antiviral agents targeting respiratory RNA viruses, including influenza viruses, coronaviruses, respiratory syncytial virus, human metapneumovirus, human parainfluenza viruses, and rhinoviruses. Various broad-spectrum direct-acting and host-targeting antivirals are discussed, including monoclonal antibodies targeting conserved regions of viral surface proteins, molecules interfering with host cell receptors or viral replication machinery, viral protease inhibitors, siRNA therapies, ribonuclease, and 3D8 scFv. Advancements in host-targeting approaches to reduce resistance and RNA-based therapeutics offer significant potential for combating respiratory viral threats. Despite challenges, broad-spectrum antiviral agents represent a crucial strategy, particularly when specific viral pathogens are unidentified or rapid intervention is essential, such as during pandemics or outbreaks.
Collapse
Affiliation(s)
- Quynh Xuan Thi Luong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Ramadhani Qurrota Ayun
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| | - Taek Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (Q.X.T.L.); (P.T.H.); (P.T.H.); (R.Q.A.)
| |
Collapse
|
3
|
Batool S, Chokkakula S, Jeong JH, Baek YH, Song MS. SARS-CoV-2 drug resistance and therapeutic approaches. Heliyon 2025; 11:e41980. [PMID: 39897928 PMCID: PMC11786845 DOI: 10.1016/j.heliyon.2025.e41980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
In light of the transition of COVID-19 from a pandemic to an endemic phase, there is still a dire need to address challenges associated with drug resistance, particularly among immunocompromised and high-risk populations. This review explores the current state of research on SARS-CoV-2 drug resistance and underscores the ongoing need for effective therapeutic strategies. It critically evaluates existing knowledge on resistance mechanisms and therapeutic options, aiming to consolidate information and highlight areas for future research. By examining the complex interactions between the virus and its host, the review advocates for a multifaceted approach, including combination therapies, targeted drug development, and continuous surveillance of viral mutations. It also emphasizes the impact of evolving viral variants on antiviral efficacy and suggests adaptive treatment protocols. This review aims to enhance our understanding of SARS-CoV-2 drug resistance and contribute to more effective management of COVID-19 through a discussion of promising strategies such as drug repurposing and combination therapies.
Collapse
Affiliation(s)
- Sania Batool
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Santosh Chokkakula
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Chaopreecha J, Phueakphud N, Suksatu A, Krobthong S, Manopwisedjaroen S, Panyain N, Hongeng S, Thitithanyanont A, Wongtrakoongate P. Andrographolide attenuates SARS-CoV-2 infection via an up-regulation of glutamate-cysteine ligase catalytic subunit (GCLC). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156279. [PMID: 39631298 DOI: 10.1016/j.phymed.2024.156279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Andrographolide is a medicinal compound which possesses anti-SARS-CoV-2 activity. A number of cellular targets of andrographolide have been identified by target predictions and computational studies. PURPOSE However, a potential cellular target of andrographolide has never been explored in SARS-CoV-2 infected lung epithelial cells. We aimed to identify cellular pathways involved in andrographolide-mediated anti-SARS-CoV-2 activity. METHODS The viral infection was determined by immunofluorescence staining, enzyme-linked immunosorbent assay and focus-forming assay. Proteomic analysis was employed to identify cellular pathways and key proteins controlled by andrographolide in the human lung epithelial cells Calu-3 infected by SARS-CoV-2. Immunofluorescence staining was used to test protein expression and localization. Western blot and realtime PCR were utilized to elucidate gene expression. Cellular glutathione level was examined by a reduced/oxidized glutathione assay. An ectopic gene expression was delivered by plasmid transfection. RESULTS Gene ontology analysis indicates that proteins involved in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated pathways were differentially expressed by andrographolide. Notably, andrographolide increased expression and nuclear localization of the transcription factor NRF2. In addition, transcriptional expression of GCLC and glutamate-cysteine ligase modifier subunit (GCLM), which are NRF2 target genes, were induced by andrographolide. We further find that infection of SARS-CoV-2 resulted in a reduction of glutathione level in Calu-3; the effect that was rescued by andrographolide. Moreover, andrographolide also induced expression of the glutathione producing enzyme GCLC in SARS-CoV-2 infected lung epithelial cells. Importantly, an ectopic over-expression of GCLC or treatment of N-acetyl-L-cysteine in Calu-3 cells led to a decrease in SARS-CoV-2 infection. CONCLUSION Collectively, our findings suggest the interplay between GCLC-mediated glutathione biogenesis induced by andrographolide and the anti-SARS-CoV-2 activity. The glutathione biogenesis and recycling pathways should be further exploited as a targeted therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nattawadee Panyain
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Liu WD, Feng PH, Cheng CY, Chou CL, Lee CH, Lu MC, Liu PY, Lee MH, Liao CH, Chen MC, Chen CP, Hsu SF, Tzeng YT, Lin YC, Ou TY, Qin A, Tsai CY, Shih WJ, Lee KY, Sheng WH. A Phase 3, Randomized, Controlled Trial Evaluating the Efficacy and Safety of Ropeginterferon Alfa-2b in Patients with Moderate COVID-19. Infect Dis Ther 2024; 13:1575-1588. [PMID: 38771550 PMCID: PMC11219598 DOI: 10.1007/s40121-024-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Ropeginterferon alfa-2b is a novel mono-pegylated proline-interferon. This clinical study aimed to evaluate its antiviral efficacy of ropeginterferon alfa-2b against SARS-CoV-2 infection. METHODS This is a multicenter, randomized, open-label study. Adult patients with confirmed SARS-CoV-2 infection with initial cycle threshold (Ct) value < 30 and symptom onset within 4 days were enrolled. Eligible patients were randomized in a 2:1 ratio to receive a single 250-µg dose of ropeginterferon alfa-2b subcutaneously plus standard of care (SOC) or to receive SOC alone. The primary endpoint was the proportion of patients with a negative RT-PCR result for SARS-CoV-2 or discharged from the hospital before Day 8. Change in clinical status based on the World Health Organization (WHO) clinical progression scale and pulmonary infiltrations through chest radiograph were also evaluated. RESULTS A total of 132 patients were enrolled and treated with study medication. Higher percentages of patients who achieved Ct ≥ 30 or were discharged from the hospital were observed on Day 8 and every other time point of assessment, i.e., Days 5, 11, 15, and 22, in the ropeginterferon alfa-2b group compared to the SOC alone group. However, the difference was statistically significant on Day 11 but not on Day 8. The primary endpoint was not met. The ropeginterferon alfa-2b group showed a higher improvement rate in lung infiltration on Day 5 (27.6% vs. 0.0%, p = 0.0087) and a higher improvement rate in WHO clinical progression scores on Day 8 (69.4% vs. 35.3%, p = 0.03) than those in the SOC group. No ropeginterferon alfa-2b-related serious adverse event was observed. CONCLUSION Our data show that ropeginterferon alfa-2b with SOC shortened the duration of SARS-CoV-2 shedding compared with SOC alone. In addition, ropeginterferon alfa-2b as an additional therapy could be beneficial by improving lung infiltration.
Collapse
Affiliation(s)
- Wang-Da Liu
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan, ROC
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chien-Yu Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chun-Liang Chou
- Division of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei, 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Hui Lee
- Division of Infectious Diseases, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsing Liao
- Division of Infectious Diseases, Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Mei-Chuan Chen
- Division of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Pin Chen
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shang-Fu Hsu
- Division of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Tien Tzeng
- Division of Pulmonary Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chun Lin
- Division of Infectious Diseases, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Tsong-Yih Ou
- Division of Infectious Disease, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Albert Qin
- Department of Medical Research and Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | - Chan-Yen Tsai
- Department of Medical Research and Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | | | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei, 110, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan, ROC.
- School of Medicine, National Taiwan University College of Medicine, No. 1, Jen Ai Road, Section 1, Taipei, 10051, Taiwan.
| |
Collapse
|
7
|
Leite G, Mehravar S, Pimentel M, Mathur R, Melmed GY, Teagle V, Barlow GM, Rezaie A. Extracellular and intracellular antiviral effects of ultraviolet A against severe acute respiratory syndrome coronavirus-2 are variant-independent. Photodiagnosis Photodyn Ther 2024; 47:104097. [PMID: 38677499 DOI: 10.1016/j.pdpdt.2024.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Under controlled settings, narrow-band ultraviolet A (UVA) exposure exerts antiviral effects both in vivo and in vitro. The effect is thought to be mediated via direct effect on viral particles and indirectly, by modulation of metabolic pathways of host cells. We aimed to explore the extracellular and intracellular antiviral effects of UVA exposure against Alpha, Beta, and Delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Vero E6 kidney normal epithelial cells and human tracheal epithelial cells were infected with Alpha, Beta, and Delta variants in a BSL-3 laboratory. To assess extracellular effects, SARS-CoV-2 variants were directly exposed to a single dose of UVA prior to infection of the host cells (Vero E6 kidney normal epithelial cells and human tracheal epithelial cells) The intracellular effects of UVA were assessed by first infecting the cells with SARS-CoV-2 variants followed by UVA treatment of infected cell monolayers. Efficacy was quantified by both plaque reduction assay and quantitative real-time polymerase chain reaction. Additionally, transcriptomic analysis was performed on exposed Vero E6 cells to assess differentially expressed genes and canonical pathways as compared to controls. RESULTS SARS-CoV-2 Alpha, Beta and Delta variants are susceptible to UVA exposure prior to infection of Vero E6 cells. Importantly, the UVA-driven reduction in Delta variant load could be reproduced in human primary tracheal cells. Beta and Delta variants load also significantly decreased during Vero E6 cells intracellular experiments. UVA-driven reductions in viral loads ameliorate several host metabolic pathways, including canonical pathways related to viral infection and interferon signaling. CONCLUSION Narrow-band UVA exhibits both extracellular effects on SARS-CoV-2 viral particles and intracellular effects on infected cells with SARS-CoV-2. Efficacy appears to be variant independent.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Gil Y Melmed
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Volha Teagle
- Eurofins Biopharma Product Testing, Lancaster, PA, United States
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States.
| |
Collapse
|
8
|
Khalil AM, Nogales A, Martínez-Sobrido L, Mostafa A. Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1. Front Cell Infect Microbiol 2024; 14:1357866. [PMID: 38375361 PMCID: PMC10875036 DOI: 10.3389/fcimb.2024.1357866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Kelly B, Izenour K, Zohdy S. Parasite–Host Coevolution. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:141-161. [DOI: 10.1016/b978-0-443-28818-0.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Davarpanah MA, Adatorwovor R, Mansoori Y, Ramsheh FSR, Parsa A, Hajiani M, Faramarzi H, Kavuluru R, Asadipooya K. Combination of spironolactone and sitagliptin improves clinical outcomes of outpatients with COVID-19: a prospective cohort study. J Endocrinol Invest 2024; 47:235-243. [PMID: 37354247 DOI: 10.1007/s40618-023-02141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND There are evidences showing that sitagliptin and spironolactone can potentially improve the clinical outcomes of COVID-19 cases. In this observational study on acutely symptomatic outpatient COVID-19 cases, we investigated the effects of spironolactone and sitagliptin on the outcomes of the disease. METHODS This is a prospective, naturally randomized cohort study. We followed mild to moderate symptomatic COVID-19 patients, who were treated with either combination (spironolactone 100 mg daily and sitagliptin 100 mg daily) or standard (steroid, antiviral and/or supportive care) therapy up to 30 days. The primary outcome was hospitalization rate. The secondary outcomes included ER visit, duration of disease, and complications, such as hypoglycemia, low blood pressure or altered mental status. RESULTS Of the 206 patients referred to clinics randomly, 103 received standard therapy and 103 treated with combination therapy. There were no significant differences in baseline characteristics, except for slightly higher clinical score in control group (6.92 ± 4.01 control, 4.87 ± 2.92 combination; P < 0.0001). Treatment with combination therapy was associated with lower admission rate (5.8% combination, 22.3% control; P = 0.0011), ER visits (7.8% combination, 23.3% control; P = 0.0021) and average duration of symptoms (6.67 ± 2.30 days combination, 18.71 ± 6.49 days control; P ≤ 0.0001). CONCLUSIONS The combination of sitagliptin and spironolactone reduced duration of COVID infection and hospital visits better than standard therapeutic approaches in outpatients with COVID-19. The effects of combination of sitagliptin and spironolactone in COVID-19 patients should be further verified in a double-blind, randomized, placebo-controlled trial.
Collapse
Affiliation(s)
- M A Davarpanah
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Adatorwovor
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Y Mansoori
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F S R Ramsheh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Parsa
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hajiani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Faramarzi
- Department of Community Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Kavuluru
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - K Asadipooya
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, 2195 Harrodsburg Rd, Suite 125, Lexington, KY, 40504, USA.
| |
Collapse
|
11
|
Ghosh S, Singha PS, Das LK, Ghosh D. Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2. Med Chem 2024; 20:613-629. [PMID: 38317467 DOI: 10.2174/0115734064262843231120051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2). METHODS AND MATERIALS Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19. RESULTS Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus. CONCLUSION The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.
Collapse
Affiliation(s)
- Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly 712 101, West Bengal, India
| | - Partha Sarathi Singha
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Lakshmi Kanta Das
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| |
Collapse
|
12
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
13
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
14
|
He S, Wei J, Feng J, Liu D, Wang N, Chen L, Xiong Y. The application of metagenomic next-generation sequencing in pathogen diagnosis: a bibliometric analysis based on Web of Science. Front Cell Infect Microbiol 2023; 13:1112229. [PMID: 37600953 PMCID: PMC10434771 DOI: 10.3389/fcimb.2023.1112229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Infectious disease is a large burden on public health globally. Metagenomic next-generation sequencing (mNGS) has become popular as a new tool for pathogen diagnosis with numerous advantages compared to conventional methods. Recently, research on mNGS increases yearly. However, no bibliometric analysis has systematically presented the full spectrum of this research field. Therefore, we reviewed all the publications associated with this topic and performed this study to analyze the comprehensive status and future hotspots of mNGS for infectious disease diagnosis. Methods The literature was searched in the Web of Science Core Collection and screened without year or language restrictions, and the characteristics of the studies were also identified. The outcomes included publication years, study types, journals, countries, authorship, institutions, frontiers, and hotspots with trends. Statistical analysis and visualization were conducted using VOSviewer (version 1.6.16) and CiteSpace (version 6.1. R3). Results In total, 325 studies were included in the analysis after screening. Studies were published between 2009 and 2022 with a significantly increasing number from 1 to 118. Most of the studies were original articles and case reports. Frontiers in Cellular and Infection Microbiology and Clinical Infectious Disease were the most commonly cited and co-cited journals. Institutions and researchers from China contributed the most to this field, followed by those from the USA. The hotspots and frontiers of these studies are pneumonia, tuberculosis, and central nervous system infections. Conclusion This study determined that mNGS is a hot topic in the diagnosis of infectious diseases with development trends and provides insights into researchers, institutions, hotspots and frontiers in mNGS, which can offer references to related researchers and future research.
Collapse
Affiliation(s)
- Sike He
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwen Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Neng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Painuli S, Semwal P, Sharma R, Akash S. Superbugs or multidrug resistant microbes: A new threat to the society. Health Sci Rep 2023; 6:e1480. [PMID: 37547359 PMCID: PMC10397562 DOI: 10.1002/hsr2.1480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Affiliation(s)
- Sakshi Painuli
- Natural Products Research LaboratoryUttarakhand Council for BiotechnologyDehradunIndia
| | - Prabhakar Semwal
- Department of BiotechnologyGraphic Era (Deemed to be University)DehradunIndia
- Research and Development CellGraphic Era Hill UniversityDehradunIndia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya KalpanaFaculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu UniversityUttar PradeshVaranasiIndia
| | - Shopnil Akash
- Faculty of Allied Health ScienceDepartment of Pharmacy, Daffodil International UniversityDhakaBangladesh
| |
Collapse
|
16
|
Liang J, Zheng Y, Tong X, Yang N, Dai S. In Silico Identification of Anti-SARS-CoV-2 Medicinal Plants Using Cheminformatics and Machine Learning. Molecules 2022; 28:208. [PMID: 36615401 PMCID: PMC9821958 DOI: 10.3390/molecules28010208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, is spreading rapidly and has caused hundreds of millions of infections and millions of deaths worldwide. Due to the lack of specific vaccines and effective treatments for COVID-19, there is an urgent need to identify effective drugs. Traditional Chinese medicine (TCM) is a valuable resource for identifying novel anti-SARS-CoV-2 drugs based on the important contribution of TCM and its potential benefits in COVID-19 treatment. Herein, we aimed to discover novel anti-SARS-CoV-2 compounds and medicinal plants from TCM by establishing a prediction method of anti-SARS-CoV-2 activity using machine learning methods. We first constructed a benchmark dataset from anti-SARS-CoV-2 bioactivity data collected from the ChEMBL database. Then, we established random forest (RF) and support vector machine (SVM) models that both achieved satisfactory predictive performance with AUC values of 0.90. By using this method, a total of 1011 active anti-SARS-CoV-2 compounds were predicted from the TCMSP database. Among these compounds, six compounds with highly potent activity were confirmed in the anti-SARS-CoV-2 experiments. The molecular fingerprint similarity analysis revealed that only 24 of the 1011 compounds have high similarity to the FDA-approved antiviral drugs, indicating that most of the compounds were structurally novel. Based on the predicted anti-SARS-CoV-2 compounds, we identified 74 anti-SARS-CoV-2 medicinal plants through enrichment analysis. The 74 plants are widely distributed in 68 genera and 43 families, 14 of which belong to antipyretic detoxicate plants. In summary, this study provided several medicinal plants with potential anti-SARS-CoV-2 activity, which offer an attractive starting point and a broader scope to mine for potentially novel anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Jihao Liang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xin Tong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Naixue Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
17
|
Vitiello A, La Porta R, Trama U, Ferrara F, Zovi A, Auti AM, Di Domenico M, Boccellino M. Pandemic COVID-19, an update of current status and new therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1159-1165. [PMID: 35779085 DOI: 10.1007/s00210-022-02265-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
The global COVID-19 pandemic is underway. In recent weeks, several countries throughout the globe, and particularly in Europe, have experienced an exponential increase in the number of individuals infected with COVID-19, probably induced by a new variant of SARS-CoV-2, called the "Omicron variant." Mass vaccination against COVID-19 continues worldwide. Are authorized mRNA vaccines effective against the new Omicron variant? Recently, several pharmaceutical companies have developed oral antiviral pills against SARS-CoV-2, i.e., molnupiravir and paxlovid, that inhibit SARS-CoV-2 viral replication by acting on the RNA polymerase of SARS-CoV. In pre-registration clinical trials, molnupiravir and paxlovid have shown excellent clinical efficacy results, but what impact will these new oral antiviral agents have against pandemic COVID-19? In what specific clinical situations are they preferred over other antivirals such as remdesivir? In this brief review, we explore these important aspects.
Collapse
Affiliation(s)
- Antonio Vitiello
- Pharmaceutical Department, Usl Umbria 1, Via XIV Settembre, 06132, Perugia, Italy
| | - Raffaele La Porta
- Clinical Pathologist, Pathology Department, ASUR Marche, Area Vasta 1, Urbino, Italy
| | - Ugo Trama
- Directorate General for Healthcare and Coordination of the Regional Healthcare System, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Via Dell'amicizia 22, 80035, Naples, Nola, Italy.
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Amogh Milind Auti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
18
|
Ashour NA, Abo Elmaaty A, Sarhan AA, Elkaeed EB, Moussa AM, Erfan IA, Al-Karmalawy AA. A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval. Drug Des Devel Ther 2022; 16:685-715. [PMID: 35321497 PMCID: PMC8935998 DOI: 10.2147/dddt.s354841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Clinical Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| | - Amany A Sarhan
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Riyadh, Saudi Arabia
| | - Ahmed M Moussa
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ibrahim Ali Erfan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| |
Collapse
|
19
|
Khiali S, Khani E, B Rouy S, Entezari-Maleki T. Comprehensive review on molnupiravir in COVID-19: a novel promising antiviral to combat the pandemic. Future Microbiol 2022; 17:377-391. [PMID: 35199608 PMCID: PMC8961474 DOI: 10.2217/fmb-2021-0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the progress in the management of COVID-19, effective oral antiviral agents are still lacking. In the present review, the potential beneficial effects of molnupiravir in the management of COVID-19 are discussed. A literature search in Google Scholar, Scopus, PubMed and clinicaltrials.gov for the relevant articles regarding the pharmacokinetics, pharmacodynamics and clinical trials of molnupiravir in the management of COVID-19 is conducted. Most of the preclinical studies and available clinical trials showed a favorable short-term safety profile of molnupiravir; however, given its possible genotoxic effects, further trials are required to confirm the long-term efficacy and safety of molnupiravir in patients with COVID-19.
Collapse
Affiliation(s)
- Sajad Khiali
- Department of clinical pharmacy, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Elnaz Khani
- Department of clinical pharmacy, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Samineh B Rouy
- Department of clinical pharmacy, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Taher Entezari-Maleki
- Department of clinical pharmacy, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| |
Collapse
|
20
|
Vitiello A, Ferrara F. Association and pharmacological synergism of the triple drug therapy baricitinib/remdesivir/rhACE2 for the management of COVID-19 infection. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:99-104. [PMID: 34669002 PMCID: PMC8527301 DOI: 10.1007/s00210-021-02169-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
A massive vaccination campaign against the global COVID-19 pandemic caused by SARS-CoV-2 virus began worldwide in January 2021. However, studies continue to investigate the most effective and safe drug therapies to manage the various stages of viral infection. It is critical in the therapeutic management of the patient, with ongoing COVID-19 infection, to reduce viral load and replication, and to regulate the generalized hyperinflammatory state caused by the cytokine storm that occurs in the most severe phases. Probably the right drug therapy is represented by the use of different drugs acting in different modalities and on different targets, to avoid also viral drug resistance. In this article, we describe an interesting scientific pharmacological hypothesis arising from the evidence in the literature; we believe that the association of baricitinib/remdesivir/rhACE2, administered at the right time and dose, represents an important pharmacological synergism that can be therapeutically more effective for the treatment of COVID-19 infection than the single administration of drugs and avoid the phenomenon of drug resistance caused by the virus. A new perspective on SARS-CoV-2 management Baricitinib/remdesivir/rhACE2 may have an effective synergism of action Avoiding viral drug resistance is of paramount importance
Collapse
Affiliation(s)
- Antonio Vitiello
- Pharmaceutical Department, Usl Umbria 1, A.Migliorati Street, 06132, Perugia, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia Street 22, 80035, Nola, Naples, Italy.
| |
Collapse
|