1
|
Olivieri B, Giovannini M, Pessina B, Du Toit G, Barni S, Bonadonna P, Caminati M, Foong R, Mori F, Novembre E, Senna G, Skypala I. IgE-mediated lipid transfer protein allergy in children. Pediatr Allergy Immunol 2025; 36:e70064. [PMID: 40126026 PMCID: PMC11931989 DOI: 10.1111/pai.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Lipid Transfer Protein (LTP) allergy, traditionally more prevalent in adults from Southern Europe, is increasingly recognized in pediatric populations worldwide. This review explores the epidemiology, pathogenesis, clinical manifestations, diagnosis, and management of LTP allergy in children. LTP allergy can present with severe systemic symptoms both in children and adults; in children-only studies, anaphylaxis is reported in up to half of the patients. Moreover, children often display polysensitization to multiple plant-based foods. The prevalence of LTP allergy among children remains under-researched, contributing to diagnostic and clinical practice variability. Key allergenic sources involved include peach (Pru p 3) and other Rosaceae fruits, as well as tree nuts, with cofactors such as physical activity frequently triggering or exacerbating reactions. Advancements in understanding natural tolerance and targeted therapies, along with expanding LTP immunotherapy, offer promising directions for improving the management of this challenging condition in pediatric patients.
Collapse
Affiliation(s)
| | - Mattia Giovannini
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Benedetta Pessina
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - George Du Toit
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Children's Allergy ServiceEvelina London Children's Hospital, Guy's and St Thomas' HospitalLondonUK
| | - Simona Barni
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | | | - Marco Caminati
- Allergy UnitVerona University HospitalVeronaItaly
- Department of MedicineUniversity of VeronaVeronaItaly
| | - Ru‐Xin Foong
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Children's Allergy ServiceEvelina London Children's Hospital, Guy's and St Thomas' HospitalLondonUK
| | - Francesca Mori
- Allergy UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Elio Novembre
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
| | - Gianenrico Senna
- Allergy UnitVerona University HospitalVeronaItaly
- Department of MedicineUniversity of VeronaVeronaItaly
| | - Isabel Skypala
- Department of Allergy & Clinical ImmunologyRoyal Brompton & Harefield Hospitals, Part of Guys and St Thomas NHS Foundation TrustLondonUK
- Department of Inflammation and RepairImperial CollegeLondonUK
| |
Collapse
|
2
|
Kato Y, Morikawa T, Fujieda S. Comprehensive review of pollen-food allergy syndrome: Pathogenesis, epidemiology, and treatment approaches. Allergol Int 2025; 74:42-50. [PMID: 39278756 DOI: 10.1016/j.alit.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Pollen-food allergy syndrome (PFAS) is caused by cross-reaction of a specific pollen antigen with the corresponding food allergen in sensitized individuals. The manifestations are usually limited to oral symptoms; however, sometimes, rhinitis, respiratory and skin symptoms, and anaphylactic shock may occur. In PFAS pathogenesis, when food containing protein antigens (pan-allergens) with high homology to pollen antigens is ingested, mast cells bound to pollen antigen-specific IgE distributed in the oral mucosa cross-react with the food antigen, causing a local type I allergic reaction. The prevalence of PFAS depends on the geographic conditions, such as the type and amount of pollen in the area. PFAS is prevalent in all regions owing to the wide variety of pollen antigens implicated in the disease, such as alder and grass pollen, even outside of the birch habitat area. Basic research on PFAS is expected to significantly contribute to elucidating the pathogenesis and development of therapeutic strategies for PFAS. Currently, effective treatment for patients with PFAS that allows safe consumption of raw foods is lacking, and avoiding the intake of causative foods is the basis of prevention. Furthermore, allergen immunotherapy for PFAS has not yet been established, but various attempts are underway to develop it into a novel treatment strategy. This review highlights the current research landscape on the pathophysiology, epidemiology, and clinical aspects of PFAS. We outline the research gaps that should be addressed to improve the outcomes of patients with PFAS.
Collapse
Affiliation(s)
- Yukinori Kato
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan.
| | - Taiyo Morikawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui, Japan
| |
Collapse
|
3
|
Sakalauskaite S, Pilkyte L, Gasiuniene E, Gradauskiene B. Molecular Profiles of Sensitization to Non-Specific Lipid Transfer Proteins in Lithuania: Single Center Experience. Int J Mol Sci 2024; 25:13535. [PMID: 39769298 PMCID: PMC11676389 DOI: 10.3390/ijms252413535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Non-specific Lipid Transfer proteins (nsLTPs) are relevant allergens of several pollens and plant foods. Sensitization to nsLTPs is not typical in our region. Still, it has become an increasingly common cause of IgE-mediated food allergies and food-induced anaphylaxis in Northern Europe in recent decades. No in-depth studies describe the prevalence of sensitization of molecular components to nsLTPs in Lithuania. This study aimed to determine the sensitization profile of atopic patients at the Immunology and Allergy Department of Kauno Klinikos to the components of nsLTPs, using molecular allergen component analysis. Sixty Lithuanian adults with symptoms of allergic rhinitis and/or allergic asthma and/or food allergies were included into the study. Specific immunoglobulin E (IgE) levels were measured using two in vitro techniques: allergen extract and molecular component analysis. Results showed that 25% of subjects were sensitized to nsLTP-containing allergen sources, mostly to Zea m 14, Mal d 3, Vit v 1, and Art v 3. The median amount of total IgE was higher in nsLTP-sensitized patients than in nsLTP-nonsensitized patients. Based on Cohen's Kappa and McNemar tests, the results of allergen extract and component analysis tests do not always agree, especially when we determine the sensitization to allergen sources containing nsLTPs. Molecular allergen component analysis could be the first choice in determining detailed sensitization to nsLTPs in patients who experienced anaphylaxis of unknown origin.
Collapse
Affiliation(s)
- Sandra Sakalauskaite
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (S.S.); (E.G.)
| | - Ligita Pilkyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Edita Gasiuniene
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (S.S.); (E.G.)
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| |
Collapse
|
4
|
Cavallari N, Johnson A, Nagl C, Seiser S, Rechberger GN, Züllig T, Kufer TA, Elbe-Bürger A, Geiselhart S, Hoffmann-Sommergruber K. Nonspecific lipid-transfer proteins trigger TLR2 and NOD2 signaling and undergo ligand-dependent endocytosis in epithelial cells. J Allergy Clin Immunol 2024; 154:1289-1299. [PMID: 39084297 DOI: 10.1016/j.jaci.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Allergens can cross the epithelial barrier to enter the body but how this cellular passage affects protein structures and the downstream interactions with the immune system are still open questions. OBJECTIVE We sought to show the molecular details and the effects of 3 nonspecific lipid transfer proteins (nsLTPs; Mal d 3 [allergenic nsLTP1 from apple], Cor a 8 [allergenic nsLTP1 from hazelnut], and Pru p 3 [allergenic nsLTP1 from peach]) on epithelial cell uptake and transport. METHODS We used fluorescent imaging, flow cytometry, and proteomic and lipidomic screenings to identify the mechanism involved in nsLTP cellular uptake and signaling on selected epithelial and transgenic cell lines. RESULTS nsLTPs are transported across the epithelium without affecting cell membrane stability or viability, and allergen uptake was largely impaired by inhibition of clathrin-mediated endocytosis. Analysis of the lipidome associated with nsLTPs showed a wide variety of lipid ligands predicted to bind inside the allergen hydrophobic cavity. Importantly, the internalization of nsLTPs was contingent on these ligands in the protein complex. nsLTPs were found to initiate cellular signaling via Toll-like receptor 2 but not the cluster of differentiation 1 protein receptor, despite neither being essential for nsLTP endocytosis. We also provide evidence that the 3 allergens induced intracellular stress signaling through activation of the NOD2 pathway. CONCLUSIONS Our work consolidates the current model on nsLTP-epithelial cell interplay and adds molecular details about cell transport and signaling. In addition, we have developed a versatile toolbox to extend these investigations to other allergens and cell types.
Collapse
Affiliation(s)
- Nicola Cavallari
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Alexander Johnson
- Center for Anatomy & Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria; Medical Imaging Cluster, Vienna, Austria
| | - Christoph Nagl
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Saskia Seiser
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria.
| |
Collapse
|
5
|
Zhao L, Ma T, Wang X, Wang H, Liu Y, Wu S, Fu L, Gilissen L, van Ree R, Wang X, Gao Z. Food-Pollen Cross-Reactivity and its Molecular Diagnosis in China. Curr Allergy Asthma Rep 2024; 24:497-508. [PMID: 38976200 DOI: 10.1007/s11882-024-01162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW Plant-derived foods are one of the most common causative sources of food allergy in China, with a significant relationship to pollinosis. This review aims to provide a comprehensive overview of this food-pollen allergy syndrome and its molecular allergen diagnosis to better understand the cross-reactive basis. RECENT FINDINGS Food-pollen cross-reactivity has been mainly reported in Northern China, Artemisia pollen is the major related inhalant source, followed by tree pollen (Betula), while grass pollen plays a minor role. Pollen allergy is relatively low in Southern China, with allergies to grass pollen being more important than weed and tree pollens. Rosaceae fruits and legume seeds stand out as major related allergenic foods. Non-specific lipid transfer protein (nsLTP) has been found to be the most clinically relevant cross-reacting allergenic component, able to induce severe reactions. PR-10, profilin, defensin, chitinase, and gibberellin-regulated proteins are other important cross-reactive allergen molecules. Artemisia pollen can induce allergenic cross-reactions with a wide range of plant-derived foods in China, and spring tree pollens (Betula) are also important. nsLTP found in both pollen and plant-derived food is considered the most significant allergen in food pollen cross-reactivity. Component-resolved diagnosis with potential allergenic proteins is recommended to improve diagnostic accuracy and predict the potential risk of causing allergic symptoms.
Collapse
Affiliation(s)
- Lan Zhao
- Allergy Research Center, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Ma
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongtian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd, Hangzhou, China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Luud Gilissen
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xueyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Ballmer-Weber BK, Wangorsch A, Bures P, Hanschmann KM, Gadermaier G, Mattsson L, Mills CEN, van Ree R, Lidholm J, Vieths S. New light on an old syndrome: Role of Api g 7 in mugwort pollen-related celery allergy. J Allergy Clin Immunol 2024; 154:679-689.e5. [PMID: 38763171 DOI: 10.1016/j.jaci.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Celery root is known to cause severe allergic reactions in patients sensitized to mugwort pollen. OBJECTIVE We studied clinically well-characterized patients with celery allergy by IgE testing with a comprehensive panel of celery allergens to disentangle the molecular basis of what is known as the celery-mugwort syndrome. METHODS Patients with suspected food allergy to celery underwent a standardized interview. Main inclusion criteria were a positive food challenge with celery or an unambiguous case history of severe anaphylaxis. IgE to celery allergens (rApi g 1.01, rApi g 1.02, rApi g 2, rApi g 4, nApi g 5, rApi g 6, rApi g 7) and to mugwort allergens (rArt v 1, rArt v 3, rArt v 4) were determined. IgE levels ≥0.35 kUA/L were regarded positive. RESULTS Seventy-nine patients with allergy to celery were included. Thirty patients had mild oral or rhinoconjunctival symptoms, and 49 had systemic reactions. Sixty-eight percent had IgE to celery extract, 80% to birch pollen, and 77% to mugwort pollen. A combination of Api g 1.01, 1.02, 4, 5, and 7 increased the diagnostic sensitivity for celery allergy to 92%. The lipid transfer proteins Api g 2 and Api g 6 were not relevant in our celery-allergic population. IgE to Api g 7, detected in 52% of patients, correlated closely (r = 0.86) to Art v 1 from mugwort pollen. Eleven of 12 patients with monosensitization to Api g 7 were IgE negative to celery extract. The odds ratio for developing a severe anaphylactic reaction rather than only mild oral symptoms was about 6 times greater (odds ratio, 5.87; 95% confidence interval, 1.08-32.0; P = .0410) for Api g 7-sensitized versus -nonsensitized subjects. CONCLUSION There is an urgent need for routine diagnostic tests to assess sensitization to Api g 7, not only to increase test sensitivity but also to identify patients at risk of a severe allergic reaction to celery.
Collapse
Affiliation(s)
- Barbara K Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Clinic for Dermatology and Allergology, Kantonsspital St Gallen, St Gallen, Switzerland.
| | | | | | | | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | | | - Clare E N Mills
- Division of Infection, Immunity, and Respiratory Medicine, Manchester Institute of Biotechnology & Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Ronald van Ree
- Departments of Experimental Immunology and Otorhinolaryngology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
7
|
Olivieri B, Skypala IJ. The Diagnosis of Allergy to Lipid Transfer Proteins. Curr Allergy Asthma Rep 2024; 24:509-518. [PMID: 38990405 DOI: 10.1007/s11882-024-01164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW To provide an update on the diagnosis of non-specific Lipid Transfer Protein (nsLTP) allergy. RECENT FINDINGS More publications report the presence of nsLTP allergy in Northern European countries and nsLTP sensitisation in children. Individuals are more likely to have severe reactions if there is recognition of increasing numbers of LTP components. Diagnosis is problematic; not all those with nsLTP allergy will have a positive test to a peach extract containing Pru p 3, the peach nsLTP. Sensitisation to nsLTP is being reported in more countries, including to the nsLTP in Cannabis Sativa in North America. Meals containing multiple nsLTP foods are more likely to be involved in co-factor reactions. Component-resolved diagnostics are superior to skin prick tests, to determine sensitisation to the individual nsLTP allergens causing symptoms and, in the future, the Basophil Activation test may best discriminate between sensitization and clinical allergy.
Collapse
Affiliation(s)
- Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Isabel J Skypala
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, part of Guys and St Thomas NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK.
- Department of Inflammation and repair, Imperial College, London, UK.
| |
Collapse
|
8
|
Biagioni B, Scala E, Cecchi L. What molecular allergy teaches us about genetics and epidemiology of allergies. Curr Opin Allergy Clin Immunol 2024; 24:280-290. [PMID: 38640142 DOI: 10.1097/aci.0000000000000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW To delineate pertinent information regarding the application of molecular allergology within the realm of both genetic and epidemiological facets of allergic diseases. RECENT FINDINGS The emergence of molecular allergy has facilitated the comprehension of the biochemical characteristics of allergens originating from diverse sources. It has allowed for the exploration of sensitization trajectories and provided novel insights into the influence of genetics and environmental exposure on the initiation and development of allergic diseases. This review delves into the primary discoveries related to the genetics and epidemiology of allergies, facilitated by the application of molecular allergy. It also scrutinizes the impact of environmental exposure across varied geoclimatic, socioeconomic, and lifestyle contexts. Additionally, the review introduces specific models of molecular allergy within the realms of plants and animals. SUMMARY The utilization of molecular allergy in clinical practice holds crucially acknowledged diagnostic and therapeutic implications. From a research standpoint, there is a growing need for the widespread adoption of molecular diagnostic tools to achieve a more profound understanding of the epidemiology and natural progression of allergic diseases.
Collapse
Affiliation(s)
- Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI-IRCCS, Rome
| | - Lorenzo Cecchi
- SOSD Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy
| |
Collapse
|
9
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
10
|
Wang X, Chen L, Lan T, Wang H, Wang X. Profiles of apple allergen components and its diagnostic value in Northern China. Front Med (Lausanne) 2024; 11:1388766. [PMID: 38938380 PMCID: PMC11208676 DOI: 10.3389/fmed.2024.1388766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background Limited is known on the profiles of apple allergy in China. Objective To explore the clinical significance of apple allergen components in northern China. Methods This study recruited 40 participants and categorized into apple tolerance (n = 19) and allergy (n = 21) group. The latter was categorized into oral allergy symptoms (OAS, n = 14) and generalized symptoms (GS, n = 7). All participants underwent ImmunoCAP screening to assess sIgE levels of birch, apple, and their components. Results The sensitization rates were 90% for Bet v 1, 85% for Mal d 1, 35% for Bet v 2, and 20% for Mal d 3. The overall positive rate for apple allergens was 97.5%, with half demonstrating mono-sensitization to Mal d 1. Birch, Bet v 1 and Mal d 1 sIgE levels had consistent areas under the curve (AUC 0.747, p = 0.037; AUC 0.799, p = 0.012; AUC 0.902, p < 0.001 respectively) in diagnosing apple allergy. The optimal cut-off values were determined to be 22.85 kUA/L (63.6% sensitivity, 85.7% specificity), 6.84 kUA/L (81.8% sensitivity, 71.4% specificity) and 1.61 kUA/L (93.8% sensitivity, 75.0% specificity), respectively. No allergens or components demonstrated diagnostic value in distinguishing between OAS and GS. Mal d 3 sensitization was correlated with mugwort allergy and higher risk of peach, nuts or legumes generalized allergy. Conclusion Mal d 1 was major allergen and the best for diagnosing apple allergy. Mal d 3 does not necessarily indicate severe allergic reaction to apples in northern China but may indicate mugwort sensitization and an increased risk of peach, nuts or legumes allergy.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing, China
| | - Lijia Chen
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing, China
| | - Tianfei Lan
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongtian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing, China
| |
Collapse
|
11
|
Wąsik J, Likońska A, Kurowski M. IgE-Mediated Allergy and Asymptomatic Sensitization to Cannabis Allergens-Review of Current Knowledge and Presentation of Six Cases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:954. [PMID: 38929571 PMCID: PMC11205784 DOI: 10.3390/medicina60060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Cannabis allergy is a relatively new phenomenon described in the 1970s. Its increased frequency has been observed over the last years due to the increasing therapeutic and recreational use of cannabis-based products. Sensitization possibly leading to allergy symptoms can occur not only through the smoking of cannabis, but also through ingestion, the inhalation of pollen, or direct contact. The severity of symptoms varies from benign pruritus to anaphylaxis. There is scant information available to support clinicians throughout the entire therapeutic process, starting from diagnosis and ending in treatment. In this review, we present six cases of patients in whom molecular in vitro testing revealed sensitization to cannabis extract and/or cannabis-derived nsLTP molecules (Can s 3). Based on these cases, we raise important questions regarding this topic. The article discusses current proposals and highlights the importance of further research not only on cannabis allergy but also on asymptomatic sensitization to cannabis allergens, which may be ascertained in some percentage of the population.
Collapse
Affiliation(s)
- Jakub Wąsik
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland; (J.W.); (A.L.)
- Student Scientific Association, Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Aleksandra Likońska
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland; (J.W.); (A.L.)
| | - Marcin Kurowski
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland; (J.W.); (A.L.)
| |
Collapse
|
12
|
D’Aiuto V, Mormile I, Granata F, Napolitano F, Lamagna L, Della Casa F, de Paulis A, Rossi FW. Worldwide Heterogeneity of Food Allergy: Focus on Peach Allergy in Southern Italy. J Clin Med 2024; 13:3259. [PMID: 38892968 PMCID: PMC11173152 DOI: 10.3390/jcm13113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Food allergy (FA) has shown an increasing prevalence in the last decades, becoming a major public health problem. However, data on the prevalence of FA across the world are heterogeneous because they are influenced by several factors. Among IgE-mediated FA, an important role is played by FA related to plant-derived food which can result from the sensitization to a single protein (specific FA) or to homologous proteins present in different foods (cross-reactive FA) including non-specific lipid transfer proteins (nsLTPs), profilins, and pathogenesis-related class 10 (PR-10). In addition, the clinical presentation of FA is widely heterogeneous ranging from mild symptoms to severe reactions up to anaphylaxis, most frequently associated with nsLTP-related FA (LTP syndrome). Considering the potential life-threatening nature of nsLTP-related FA, the patient's geographical setting should always be taken into account; thereby, it is highly recommended to build a personalized approach for managing FA across the world in the precision medicine era. For this reason, in this review, we aim to provide an overview of the prevalence of nsLTP-mediated allergies in the Mediterranean area and to point out the potential reasons for the different geographical significance of LTP-driven allergies with a particular focus on the allergenic properties of food allergens and their cross reactivity.
Collapse
Affiliation(s)
- Valentina D’Aiuto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Francesca Della Casa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.D.); (I.M.); (F.N.); (F.D.C.); (A.d.P.); (F.W.R.)
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Ridolo E, Barone A, Ottoni M, Peveri S, Montagni M, Nicoletta F. Factors and co-factors influencing clinical manifestations in nsLTPs allergy: between the good and the bad. FRONTIERS IN ALLERGY 2023; 4:1253304. [PMID: 37841053 PMCID: PMC10568476 DOI: 10.3389/falgy.2023.1253304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are a family of plant pan-allergens that represent the primary cause of food allergies in the Mediterranean area, characterized by a wide range of clinical manifestations, ranging from the total absence of symptoms up to anaphylaxis. This wide variety of symptoms is related to the intrinsic capacity of nsLTPs to cause an allergic reaction in a specific subject, but also to the presence of co-factors exacerbating (i.e., exercise, NSAIDs, PPIs, alcohol, cannabis, prolonged fasting, menstruation, acute infections, sleep deprivation, chronic urticaria) or protecting from (i.e., co-sensitization to PR10, profilin or polcalcin) severe reactions. In this picture, recognizing some nsLTPs-related peculiarities (i.e., route, type and number of sensitizations, concentration of the allergen, cross-reactions) and eventual co-factors may help the allergist to define the risk profile of the single patient, in order to promote the appropriate management of the allergy from dietary advices up to the prescription of life-saving epinephrine autoinjector.
Collapse
Affiliation(s)
- Erminia Ridolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Allergology Unit, University Hospital of Parma, Parma, Italy
| | | | - Martina Ottoni
- Allergology Unit, University Hospital of Parma, Parma, Italy
| | - Silvia Peveri
- Departmental Unit of Allergology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Marcello Montagni
- Departmental Unit of Allergology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | | |
Collapse
|
14
|
Alsubaie B, Kharabian-Masouleh A, Furtado A, Al-Dossary O, Al-Mssallem I, Henry RJ. Highly sex specific gene expression in Jojoba. BMC PLANT BIOLOGY 2023; 23:440. [PMID: 37726703 PMCID: PMC10507870 DOI: 10.1186/s12870-023-04444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Dioecious plants have male and female flowers on separate plants. Jojoba is a dioecious plant that is drought-tolerant and native to arid areas. The genome sequence of male and female plants was recently reported and revealed an X and Y chromosome system, with two large male-specific insertions in the Y chromosome. RESULTS A total of 16,923 differentially expressed genes (DEG) were identified between the flowers of the male and female jojoba plants. This represented 40% of the annotated genes in the genome. Many genes, including those responsible for plant environmental responses and those encoding transcription factors (TFs), were specific to male or female reproductive organs. Genes involved in plant hormone metabolism were also found to be associated with flower and pollen development. A total of 8938 up-regulated and 7985 down-regulated genes were identified in comparison between male and female flowers, including many novel genes specific to the jojoba plant. The most differentially expressed genes were associated with reproductive organ development. The highest number of DEG were linked with the Y chromosome in male plants. The male specific parts of the Y chromosome encoded 12 very highly expressed genes including 9 novel genes and 3 known genes associated with TFs and a plant hormone which may play an important role in flower development. CONCLUSION Many genes, largely with unknown functions, may explain the sexual dimorphisms in jojoba plants and the differentiation of male and female flowers.
Collapse
Affiliation(s)
- Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ardashir Kharabian-Masouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
15
|
Kallen EJJ, Revers A, Fernández-Rivas M, Asero R, Ballmer-Weber B, Barreales L, Belohlavkova S, de Blay F, Clausen M, Dubakiene R, Ebisawa M, Fernández-Perez C, Fritsche P, Fukutomi Y, Gislason D, Hoffmann-Sommergruber K, Jedrzejczak-Czechowicz M, Knulst AC, Kowalski ML, Kralimarkova T, Lidholm J, Metzler C, Mills ENC, Papadopoulos NG, Popov TA, Purohit A, Reig I, Seneviratne SL, Sinaniotis A, Takei M, Versteeg SA, Vassilopoulou AE, Vieths S, Welsing PMJ, Zwinderman AH, Le TM, Van Ree R. A European-Japanese study on peach allergy: IgE to Pru p 7 associates with severity. Allergy 2023; 78:2497-2509. [PMID: 37334557 DOI: 10.1111/all.15783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Pru p 3 and Pru p 7 have been implicated as risk factors for severe peach allergy. This study aimed to establish sensitization patterns to five peach components across Europe and in Japan, to explore their relation to pollen and foods and to predict symptom severity. METHODS In twelve European (EuroPrevall project) and one Japanese outpatient clinic, a standardized clinical evaluation was conducted in 1231 patients who reported symptoms to peach and/or were sensitized to peach. Specific IgE against Pru p 1, 2, 3, 4 and 7 and against Cup s 7 was measured in 474 of them. Univariable and multivariable Lasso regression was applied to identify combinations of parameters predicting severity. RESULTS Sensitization to Pru p 3 dominated in Southern Europe but was also quite common in Northern and Central Europe. Sensitization to Pru p 7 was low and variable in the European centers but very dominant in Japan. Severity could be predicted by a model combining age of onset of peach allergy, probable mugwort, Parietaria pollen and latex allergy, and sensitization to Japanese cedar pollen, Pru p 4 and Pru p 7 which resulted in an AUC of 0.73 (95% CI 0.73-0.74). Pru p 3 tended to be a risk factor in South Europe only. CONCLUSIONS Pru p 7 was confirmed as a significant risk factor for severe peach allergy in Europe and Japan. Combining outcomes from clinical and demographic background with serology resulted in a model that could better predict severity than CRD alone.
Collapse
Affiliation(s)
- E J J Kallen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A Revers
- Epidemiology and Data Science (EDS), Amsterdam University Medical Center location University of Amsterdam, Amsterdam, The Netherlands
| | - M Fernández-Rivas
- Department of Allergy, Hospital Clinico San Carlos, Universidad Complutense, IdISSC, ARADyAL, Madrid, Spain
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
- Clinic for Dermatology and Allergology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - L Barreales
- Department of Allergy, Hospital Clinico San Carlos, Universidad Complutense, IdISSC, ARADyAL, Madrid, Spain
| | - S Belohlavkova
- Medical Faculty Pilsen, Charles University Prague, Prague, Czech Republic
| | - F de Blay
- Allergy Division, Chest Disease Department, Strasbourg University Hospital, Strasbourg, France
| | - M Clausen
- Landspitali University Hospital, University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - R Dubakiene
- Clinic of Chest diseases, Allergology and Immunology Institute of Clinic al Medicine Medical Faculty Vilnius University, Vilnius, Lithuania
| | - M Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - C Fernández-Perez
- Servicio de Medicina Preventiva, Area De Santiago de Compostela y Barbanza, Instituto de Investigación Sanitaria de Santiago (IDIS) A Coruña, Santiago, Spain
| | - P Fritsche
- Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Y Fukutomi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - D Gislason
- Landspitali University Hospital, University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - M Jedrzejczak-Czechowicz
- Department of Immunology and Allergy, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M L Kowalski
- Department of Immunology and Allergy, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - T Kralimarkova
- Clinic of Occupational Diseases, University Hospital Sv. Ivan Rilski, Sofia, Bulgaria
| | - J Lidholm
- Thermo Fisher Scientific, Uppsala, Sweden
| | - C Metzler
- Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - E N C Mills
- Division of Infection, Immunity and Respiratory Medicine, Manchester Institute of Biotechnology & Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - N G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - T A Popov
- Clinic of Occupational Diseases, University Hospital Sv. Ivan Rilski, Sofia, Bulgaria
| | - A Purohit
- Allergy Division, Chest Disease Department, Strasbourg University Hospital, Strasbourg, France
| | - I Reig
- Allergist and Pediatrician, Nápoles y Sicilia Health Center, Valencia, Spain
| | - S L Seneviratne
- Institute of Immunity and Transplantation, University College London, London, UK
| | - A Sinaniotis
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - M Takei
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - S A Versteeg
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A E Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - S Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - P M J Welsing
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A H Zwinderman
- Epidemiology and Data Science (EDS), Amsterdam University Medical Center location University of Amsterdam, Amsterdam, The Netherlands
| | - T M Le
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Bochorishvili E, Abramidze T, Mgaloblishvili N, Shengelidze G, Gotua M. Sensitization patterns of plant panallergens in Georgian allergic population from the molecular perspective. Postepy Dermatol Alergol 2023; 40:534-541. [PMID: 37692265 PMCID: PMC10485763 DOI: 10.5114/ada.2023.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction In allergy diagnostics, component-resolved diagnostics (CRD) allows the clinician to assess the presence of specific IgE (sIgE) to allergenic proteins. Molecular diagnostics has improved our ability to identify not only species-specific, but also panallergen components. Aim To characterize the Georgian allergic population according to the most frequently recognized plant panallergen components (profilins, PR-10 and nonspecific lipid transfer proteins) using sensitization data from multiplex CRD and investigate their association with particular allergic diseases. Material and methods Patients, IgE positive to at least one studied panallergen component, were selected out of total 435 allergic individuals and stratified in two age groups: children and adults. Descriptive statistics, Chi square test (χ2) and Pearson Correlation test (r) were used for analysing the data. Results 38% (164/435) of investigated allergic patients showed IgE reactivity to at least one molecule belonging to Profilin, PR-10 and nsLTP families. Generally, PR-10 reactive individuals represented the largest group of patients (56.0%), followed by Profilins (43.0%) and nsLTP (32.0%). For the PR-10 allergen group, IgE sensitization was dominated by Bet v 1, for Profilin - by Hev b 8 and for nsLTP - by Pru p 3. It was shown that sensitization with nsLTPs revealed statistically important associations with allergic rhinitis (p = 0.005) and dermatitis (p = 0.02). PR-10 allergen sensitization was associated with allergic rhinitis (p = 0.04) and asthma (p = 0.04). Conclusions According to our results, sensitization to plant panallergens in the Georgian population creates characteristic features overlapping serotypes of Central Europe and Mediterranean region.
Collapse
Affiliation(s)
- Ekaterine Bochorishvili
- Department of Immunology, Center of Allergy and Immunology, Tbilisi, Georgia
- PhD student, David Tvildiani Medical University, Tbilisi, Georgia
| | - Tamar Abramidze
- Department of Immunology, Center of Allergy and Immunology, Tbilisi, Georgia
| | | | - George Shengelidze
- PhD student, David Tvildiani Medical University, Tbilisi, Georgia
- Department of Allergy, Center of Allergy and Immunology, Tbilisi, Georgia
| | - Maia Gotua
- Department of Allergy, Center of Allergy and Immunology, Tbilisi, Georgia
- David Tvildiani Medical University, Tbilisi, Georgia
| |
Collapse
|
17
|
Sara BV, Ulrike F, Bettina B, Yvonne W, Teresa P, Clara SB, Giovanna AS, Rocío CS, María T, Rocío L, Rosa MC, Joan B, Waltraud S, Mariona P. Improving In Vitro Detection of Sensitization to Lipid Transfer Proteins: A New Molecular Multiplex IgE Assay. Mol Nutr Food Res 2023; 67:e2200906. [PMID: 37195823 DOI: 10.1002/mnfr.202200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/11/2023] [Indexed: 05/19/2023]
Abstract
SCOPE LTP-syndrome is characterized by sensitization (IgE) to multiple non-specific lipid transfer proteins (nsLTPs) with a variable clinical outcome. The treatment is primarily based on offending food avoidance. However, the determination of Pru p 3-specific IgE is currently the main diagnostic tool to assess sensitization to nsLTPs. Herein, the study evaluates improvement of LTP-syndrome diagnosis and clinical management using a new IgE multiplex-immunoblot assay with a high diversity of food nsLTPs. METHODS AND RESULTS An EUROLINE-LTP strip with 28 recombinant nsLTPs from 18 allergenic sources is designed. In total the study investigates 38 patients with LTP-syndrome and compares results from the nsLTPs (LTP-strip) with the respective food extracts of Prick-by-prick (PbP) testing. The agreement exceeds 70% for most nsLTPs, e.g., Pru p 3 (100%), Mal d 3 (97%), Pru av 3 (89%), Pha v 3 isoforms (87%/84%), Ara h 9 (82%), Cor a 8 (82%), and Jug r 3 (82%). The functionality and allergenic relevance of nine recombinant nsLTPs are proven by Basophil activation testing (BAT). CONCLUSIONS The new IgE multiplex-immunoblot nsLTP assay shows a good diagnostic performance allowing culprit food assessment. Negative results from LTP-strip may indicate potentially tolerable foods, improving diet intervention and patients' quality of life.
Collapse
Affiliation(s)
- Balsells-Vives Sara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
| | - Flügge Ulrike
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Brix Bettina
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Weimann Yvonne
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Peralta Teresa
- Department of Clinical Immunology and Rheumatology, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - San Bartolomé Clara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Araujo-Sánchez Giovanna
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Casas-Saucedo Rocío
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Torradeflot María
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Lara Rocío
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Munoz-Cano Rosa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Bartra Joan
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Campus Clínic, Universitat de Barcelona (UB), c. Casanova, 143, Barcelona, 08036, Spain
| | - Suer Waltraud
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Pascal Mariona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Campus Clínic, Universitat de Barcelona (UB), c. Casanova, 143, Barcelona, 08036, Spain
| |
Collapse
|
18
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
19
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
20
|
Martynenko E, Arkhipova T, Akhiyarova G, Sharipova G, Galin I, Seldimirova O, Ivanov R, Nuzhnaya T, Finkina E, Ovchinnikova T, Kudoyarova G. Effects of a Pseudomonas Strain on the Lipid Transfer Proteins, Appoplast Barriers and Activity of Aquaporins Associated with Hydraulic Conductance of Pea Plants. MEMBRANES 2023; 13:208. [PMID: 36837711 PMCID: PMC9959925 DOI: 10.3390/membranes13020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/16/2023]
Abstract
Lipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the Pseudomonas mandelii IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in the process was not studied. Here, we investigated the effects of P. mandelii IB-Ki14 on LTPs, formation of the Casparian bands, hydraulic conductance and activity of aquaporins (AQPs) in pea plants. RT PCR showed a 1.6-1.9-fold up-regulation of the PsLTP-coding genes and an increase in the abundance of LTP proteins in the phloem of pea roots induced by the treatment with P. mandelii IB-Ki14. The treatment was accompanied with increased deposition of suberin in the Casparian bands. Hydraulic conductance did not decrease in association with the bacterial treatment despite strengthening of the apoplast barriers. At the same time, the Fenton reagent, serving as an AQPs inhibitor, decreased hydraulic conductance to a greater extent in treated plants relative to the control group, indicating an increase in the AQP activity by the bacteria. We hypothesize that P. mandelii IB-Ki14 stimulates deposition of suberin, in the biosynthesis of which LTPs are involved, and increases aquaporin activity, which in turn prevents a decrease in hydraulic conductance due to formation of the apoplast barriers in pea roots.
Collapse
Affiliation(s)
- Elena Martynenko
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Arkhipova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Sharipova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ekaterina Finkina
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana Ovchinnikova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
21
|
Albert E, Walsemann T, Behrends J, Jappe U. Lipid transfer protein syndrome in a Northern European patient: An unusual case report. Front Med (Lausanne) 2023; 10:1049477. [PMID: 36824608 PMCID: PMC9941155 DOI: 10.3389/fmed.2023.1049477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) as the primary sensitizer in plant-food allergic patients used to be seen primarily in the Mediterranean area. However, more recently, increasing numbers of clinically relevant sensitizations are being observed in Northern Europe. We herein report an unusual case of a woman who developed an anaphylactic reaction during a meal including a variety of different foods ranging from fruits and nuts to oats, wheat, and salmon. Allergy diagnostics showed no Bet v 1 sensitization but an nsLTP-mediated food allergy. Despite the much more prominent birch food syndrome in Central and Northern Europe, LTPs should be considered disease-causing agents, especially for patients developing severe reactions after consuming LTP-containing foods.
Collapse
Affiliation(s)
- E. Albert
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany
| | - T. Walsemann
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany
| | - J. Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - U. Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany,Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III - Pneumology, University of Lübeck, Lübeck, Germany,*Correspondence: U. Jappe,
| |
Collapse
|
22
|
Peach extract induces systemic and local immune responses in an experimental food allergy model. Sci Rep 2023; 13:1892. [PMID: 36732575 PMCID: PMC9894845 DOI: 10.1038/s41598-023-28933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Peach allergy is among the most frequent food allergies in the Mediterranean area, often eliciting severe anaphylactic reactions in patients. Due to the risk of severe symptoms, studies in humans are limited, leading to a lack of therapeutic options. This study aimed to develop a peach allergy mouse model as a tool to better understand the pathomechanism and to allow preclinical investigations on the development of optimized strategies for immunotherapy. CBA/J mice were sensitized intraperitoneally with peach extract or PBS, using alum as adjuvant. Afterwards, extract was administered intragastrically to involve the intestinal tract. Allergen provocation was performed via intraperitoneal injection of extract, measuring drop of body temperature as main read out of anaphylaxis. The model induced allergy-related symptoms in mice, including decrease of body temperature. Antibody levels in serum and intestinal homogenates revealed a Th2 response with increased levels of mMCPT-1, peach- and Pru p 3-specific IgE, IgG1 and IgG2a as well as increased levels of IL-4 and IL-13. FACS analysis of small intestine lamina propria revealed increased amounts of T cells, neutrophils and DCs in peach allergic mice. These data suggest the successful establishment of a peach allergy mouse model, inducing systemic as well as local gastrointestinal reactions.
Collapse
|
23
|
Olivieri B, Stoenchev KV, Skypala IJ. Anaphylaxis across Europe: are pollen food syndrome and lipid transfer protein allergy so far apart? Curr Opin Allergy Clin Immunol 2022; 22:291-297. [PMID: 35942860 DOI: 10.1097/aci.0000000000000847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Traditionally pollen-food syndrome (PFS) is considered to be a mild cross-reacting food allergy affecting only Northern Europe, with lipid transfer protein (LTP) allergy being more severe and mainly occurring in Southern Europe. This review seeks to update the reader on both types of plant food allergy and to determine whether the stereotypical presentations of these plant food allergies remain the same, with a particular focus on reaction severity. RECENT FINDINGS Recent findings suggest that both these types of plant food allergy occur in children and adults. Although it is true that PFS allergy is more prevalent in Northern Europe and LTP allergy is more well known in Southern Europe, these conditions are not hidebound by geography, and the increasing spread and allergenicity of pollen due to global warming continues to change their presentation. Both conditions have a spectrum of symptom severity, with PFS sometimes presenting with more severe symptoms, including anaphylaxis and LTP allergy with milder reactions. SUMMARY It is important to consider that in many parts of Europe, reactions to plant foods, especially fruits or vegetables, could be mediated either by pollen cross-reactivity or primary sensitization to LTP allergens. All those presenting with symptoms to plant foods will benefit from a detailed clinical history and appropriate tests so that an accurate diagnosis can be made, and correct management implemented.
Collapse
Affiliation(s)
- Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Kostadin V Stoenchev
- Royal Brompton & Harefield Hospitals, Part of Guys and St Thomas NHS Foundation Trust, London, United Kingdom
| | - Isabel J Skypala
- Royal Brompton & Harefield Hospitals, Part of Guys and St Thomas NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Pazos-Castro D, Margain C, Gonzalez-Klein Z, Amores-Borge M, Yuste-Calvo C, Garrido-Arandia M, Zurita L, Esteban V, Tome-Amat J, Diaz-Perales A, Ponz F. Suitability of potyviral recombinant virus-like particles bearing a complete food allergen for immunotherapy vaccines. Front Immunol 2022; 13:986823. [PMID: 36159839 PMCID: PMC9492988 DOI: 10.3389/fimmu.2022.986823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Virus-like particles (VLPs) have been gaining attention as potential platforms for delivery of cargos in nanomedicine. Although animal viruses are largely selected due to their immunostimulatory capacities, VLPs from plant viruses constitute a promising alternative to be considered. VLPs derived from Turnip mosaic virus (TuMV) have proven to present a tridimensional structure suited to display molecules of interest on their surface, making them interesting tools to be studied in theragnostic strategies. Here, we study their potential in the treatment of food allergy by genetically coupling TuMV-derived VLPs to Pru p 3, one of the most dominant allergens in Mediterranean climates. VLPs-Pru p 3 were generated by cloning a synthetic gene encoding the TuMV coat protein and Pru p 3, separated by a linker, into a transient high-expression vector, followed by agroinfiltration in Nicotiana benthamiana plants. The generated fusion protein self-assembled in planta to form the VLPs, which were purified by exclusion chromatography. Their elongated morphology was confirmed by electron microscopy and their size (~400 nm), and monodispersity was confirmed by dynamic light scattering. Initial in vitro characterization confirmed that they were able to induce proliferation of human immune cells. This proliferative capability was enhanced when coupled with the natural lipid ligand of Pru p 3. The resultant formulation, called VLP-Complex, was also able to be transported by intestinal epithelial cells, without affecting the monolayer integrity. In light of all these results, VLP-Complex was furtherly tested in a mouse model of food allergy. Sublingual administration of VLP-Complex could effectively reduce some serological markers associated with allergic responses in mice, such as anti-Pru p 3 sIgE and sIgG2a. Noteworthy, no associated macroscopic, nephritic, or hepatic toxicity was detected, as assessed by weight, blood urea nitrogen (BUN) and galectin-3 analyses, respectively. Our results highlight the standardized production of allergen-coated TuMV-VLPs in N. benthamiana plants. The resulting formula exerts notable immunomodulatory properties without the need for potentially hazardous adjuvants. Accordingly, no detectable toxicity associated to their administration was detected. As a result, we propose them as good candidates to be furtherly studied in the treatment of immune-based pathologies.
Collapse
Affiliation(s)
- Diego Pazos-Castro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Clémence Margain
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Zulema Gonzalez-Klein
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Marina Amores-Borge
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Yuste-Calvo
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria Garrido-Arandia
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Lucía Zurita
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jaime Tome-Amat
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain
| | - Araceli Diaz-Perales
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Araceli Diaz-Perales, ; Fernando Ponz,
| | - Fernando Ponz
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Araceli Diaz-Perales, ; Fernando Ponz,
| |
Collapse
|
25
|
Sánchez-Ruano L, Fernández-Lozano C, Ferrer M, Gómez F, de la Hoz B, Martínez-Botas J, Goikoetxea MJ. Differences in Linear Epitopes of Ara h 9 Recognition in Peanut Allergic and Tolerant, Peach Allergic Patients. FRONTIERS IN ALLERGY 2022; 3:896617. [PMID: 35935018 PMCID: PMC9352880 DOI: 10.3389/falgy.2022.896617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Peanut-allergic patients from the Mediterranean region are predominantly sensitized to the lipid transfer protein (LTP) Ara h 9, and the peach LTP Pru p 3 seems to be the primary sensitizer. However, LTP sensitization in peanut allergy is not a predictive marker for clinically relevant symptoms. Objective We aimed to identify sequential epitopes of IgE and IgG4 from Pru p 3 and Ara h 9 in peach-allergic patients sensitized to peanuts. We also sought to determine the differences in IgE and IgG4 binding between patients who had developed peanut allergy and those tolerating peanuts. Methods A total of 46 peach-allergic patients sensitized to peanuts were selected. A total of 35 patients were allergic to peanuts (peanut-allergic group) and 11 were tolerant to peanuts (peanut-tolerant group). We measured sIgE and sIgG4 in peanut, peach, and their recombinant allergen (Ara h 1, Ara h 2, Ara h 3, Ara h 8, and Ara h 9) with fluorescence enzyme immunoassay. We examined the IgE and IgG4 binding to sequential epitopes using a peptide microarray corresponding to linear sequences of the LTPs Ara h 9 and Pru p 3 with a library of overlapping peptides with a length of 20 amino acids (aa) and an offset of 3 aa. Results The frequency and the intensity of IgE recognition of Ara h 9 and Pru p 3 peptides were higher in the peanut-tolerant group than in the peanut-allergic group. We found four Ara h 9 peptides (p4, p14, p21, and p25) and four Pru p 3 peptides (p1, p3, p21, and p24) with a significantly elevated IgE recognition in peanut-tolerant patients. Only one peptide of Ara h 9 (p4) recognized by IgG4 was significantly elevated in the peanut-tolerant group. The IgG4/IgE ratio of Ara h 9 peptide 4 was significantly higher in peanut-tolerant patients than in peanut-allergic patients, while no significant differences were observed in the IgG4/IgE ratio of this peptide in Pru p 3. Conclusion Although we found significant differences in IgE and IgG4 recognition of Ara h 9 and Pru p 3 between peanut-tolerant and peanut-allergic patients (all of whom were allergic to peach), polyclonal IgE peptide recognition of both LTPs was observed in peach-allergic patients tolerating peanuts. However, the IgG4 blocking antibodies against Ara h 9 peptide 4 could provide an explanation for the absence of clinical reactivity in peanut-tolerant peach-allergic patients. Further studies are needed to validate the usefulness of IgG4 antibodies against Ara h 9 peptide 4 for peanut allergy diagnosis.
Collapse
Affiliation(s)
- L. Sánchez-Ruano
- Allergy Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - C. Fernández-Lozano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M. Ferrer
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Navarra Health Research Institute (IDISNA, Instituto de Investigacion Sanitaria de Navarra), Pamplona, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
| | - F. Gómez
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - B. de la Hoz
- Allergy Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
| | - J. Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)-Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: J. Martínez-Botas
| | - M. J. Goikoetxea
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Navarra Health Research Institute (IDISNA, Instituto de Investigacion Sanitaria de Navarra), Pamplona, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
- M. J. Goikoetxea
| |
Collapse
|
26
|
Guryanova SV, Finkina EI, Melnikova DN, Bogdanov IV, Bohle B, Ovchinnikova TV. How Do Pollen Allergens Sensitize? Front Mol Biosci 2022; 9:900533. [PMID: 35782860 PMCID: PMC9245541 DOI: 10.3389/fmolb.2022.900533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Plant pollen is one of the main sources of allergens causing allergic diseases such as allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also present in other allergen sources. As a result, sensitized individuals may also experience food allergies. The mechanism of sensitization and development of allergic inflammation is a consequence of the interaction of allergens with a large number of molecular factors that often are acting in a complex with other compounds, for example low-molecular-mass ligands, which contribute to the induction a type 2-driven response of immune system. In this review, special attention is paid not only to properties of allergens but also to an important role of their interaction with lipids and other hydrophobic molecules in pollen sensitization. The reactions of epithelial cells lining the nasal and bronchial mucosa and of other immunocompetent cells will also be considered, in particular the mechanisms of the activation of B and T lymphocytes and the formation of allergen-specific antibody responses.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia, The Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
| | - Ekaterina I. Finkina
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Daria N. Melnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Ivan V. Bogdanov
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatiana V. Ovchinnikova
- Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Tatiana V. Ovchinnikova,
| |
Collapse
|
27
|
Luengo O, Galvan-Blasco P, Cardona V. Molecular diagnosis contribution for personalized medicine. Curr Opin Allergy Clin Immunol 2022; 22:175-180. [PMID: 35174793 DOI: 10.1097/aci.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of the current review is to highlight the most recent findings in molecular allergy and its applicability in precision medicine for allergic patients. RECENT FINDINGS Molecular allergy provides useful information in areas of respiratory allergy (house dust mites, pet dander and pollen allergy), food allergy (tree nuts, peanuts, fruits and vegetables), hymenoptera venom allergy and others, in order to improve management of patients. Regional differences in sensitization profiles, assay characteristics and interpretation of molecular sensitization in relation to whole extracts and total immunoglobulin E need to be taken into account. Studies of the impact of such strategies are needed. SUMMARY Molecular allergy diagnosis represents a major contribution for personalized medicine. It aids in the assesment of risk prediction, disease severity, genuine/cross-reactive sensitization, and finally to apply precise management strategies.
Collapse
Affiliation(s)
- Olga Luengo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| | - Paula Galvan-Blasco
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| | - Victoria Cardona
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron
- Vall d'Hebron Institut de Recerca (VHIR), Immunomediated Diseases and Innovative Therapies, Barcelona
- ARADyAL Research Network, Instituto de Salud Carlos III (ISCIII), Madrid
- Universitat Autonomade Barcelona (UAB), Medicine Department, Barcelona, Spain
| |
Collapse
|
28
|
Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J. Lipid Ligands and Allergenic LTPs: Redefining the Paradigm of the Protein-Centered Vision in Allergy. FRONTIERS IN ALLERGY 2022; 3:864652. [PMID: 35769581 PMCID: PMC9234880 DOI: 10.3389/falgy.2022.864652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Lipid Transfer Proteins (LTPs) have been described as one of the most prevalent and cross-reactive allergen families in the general population. They are widely distributed among the plant kingdom, as well as in different plant organs ranging from pollen to fruits. Thus, they can initiate allergic reactions with very different outcomes, such as asthma and food allergy. Several mouse models have been developed to unravel the mechanisms that lead LTPs to promote such strong sensitization patterns. Interestingly, the union of certain ligands can strengthen the allergenic capacity of LTPs, suggesting that not only is the protein relevant in the sensitization process, but also the ligands that LTPs carry in their cavity. In fact, different LTPs with pro-allergenic capacity have been shown to transport similar ligands, thus positioning lipids in a central role during the first stages of the allergic response. Here, we offer the latest advances in the use of experimental animals to study the topic, remarking differences among them and providing future researchers a tool to choose the most suitable model to achieve their goals. Also, recent results derived from metabolomic studies in humans are included, highlighting how allergic diseases alter the lipidic metabolism toward a pathogenic state in the individual. Altogether, this review offers a comprehensive body of work that sums up the background evidence supporting the role of lipids as modulators of allergic diseases. Studying the role of lipids during allergic sensitization might broaden our understanding of the molecular events leading to tolerance breakdown in the epithelium, thus helping us to understand how allergy is initiated and established in the individuals.
Collapse
Affiliation(s)
- Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Jaime Tome-Amat
| |
Collapse
|
29
|
Basophil Activation Test Utility as a Diagnostic Tool in LTP Allergy. Int J Mol Sci 2022; 23:ijms23094979. [PMID: 35563370 PMCID: PMC9105056 DOI: 10.3390/ijms23094979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Plant-food allergy is an increasing problem, with nonspecific lipid transfer proteins (nsLTPs) triggering mild/severe reactions. Pru p 3 is the major sensitizer in LTP food allergy (FA). However, in vivo and in vitro diagnosis is hampered by the need for differentiating between asymptomatic sensitization and allergy with clinical relevance. The basophil activation test (BAT) is an ex vivo method able to identify specific IgE related to the allergic response. Thus, we aimed to establish the value of BAT in a precise diagnosis of LTP-allergic patients. Ninety-two individuals with peach allergy sensitized to LTP, Pru p 3, were finally included, and 40.2% of them had symptoms to peanut (n = 37). In addition, 16 healthy subjects were recruited. BAT was performed with Pru p 3 and Ara h 9 (peanut LTP) at seven ten-fold concentrations, and was evaluated by flow cytometry, measuring the percentage of CD63 (%CD63+) and CD203c (%CD203chigh) cells, basophil allergen threshold sensitivity (CD-Sens), and area under the dose−response curve (AUC). Significant changes in BAT parameters (%CD63+ and %CD203chigh) were found between the controls and patients. However, comparisons for %CD63+, %CD203chigh, AUC, and CD-Sens showed similar levels among patients with different symptoms. An optimal cut-off was established from ROC curves, showing a significant positive percentage of BAT in patients compared to controls and great values of sensitivity (>87.5%) and specificity (>85%). In addition, BAT showed differences in LTP-allergic patients tolerant to peanut using its corresponding LTP, Ara h 9. BAT can be used as a potential diagnostic tool for identifying LTP allergy and for differentiating peanut tolerance, although neither reactivity nor sensitivity can distinguish the severity of the clinical symptoms.
Collapse
|
30
|
Balsells-Vives S, San Bartolomé C, Casas-Saucedo R, Ruano-Zaragoza M, Rius J, Torradeflot M, Bartra J, Munoz-Cano R, Pascal M. Low Levels Matter: Clinical Relevance of Low Pru p 3 sIgE in Patients With Peach Allergy. FRONTIERS IN ALLERGY 2022; 3:868267. [PMID: 35769570 PMCID: PMC9234939 DOI: 10.3389/falgy.2022.868267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Many clinical lab settings still use 0.35 KUA/L as the cut-off for serum specific-IgE (sIgE) immunoassays, while the detection limit is 0.1 KUA/L. The clinical relevance of -low-level sIgE (0.1-0.35 KUA/L) remains controversial. Pru p 3 sIgE is considered to be the main routine tool for assessing lipid transfer protein (LTP) sensitization. We aimed to evaluate the clinical relevance of Pru p 3 sIgE low levels in a population diagnosed with LTP allergy. Adults diagnosed with LTP allergy and Pru p 3 sIgE ≥ 0.1 KUA/L between 2012 and 2019 were included. Clinical data were reviewed. nPru p 3 basophil activation test (BAT) was performed and basophil reactivity (BR) and sensitivity (BS) correlated with the peach allergy symptoms. Pru p 3 sIgE from 496 subjects was recorded, 114 (23.0%) between 0.1 and 0.34 KUA/L (grLOW), the rest ≥ 0.35 KUA/L (grB). A total of 44.7% in grLOW and 59.9% in grB were allergic. Urticaria was more frequent in grLOW. In grLOW, Pru p 3 sIgE was higher in patients with local compared with systemic symptoms. In grB, Pru p 3 sIgE was higher in allergic patients. Pru p 3/Total IgE ratios were higher in allergic vs. tolerant in both groups. In BAT, BR was similar in both groups. In grLOW, it was higher on allergic compared with tolerant (p = 0.0286), and on those having systemic vs. local symptoms (p = 0.0286). BS showed no significant difference between groups. Patients with low levels represent a non-negligible fraction and around 45% are peach allergic. BAT showed functional sIgE in them. Pru p 3 sensitizations should be carefully evaluated even when sIgE levels are low.
Collapse
Affiliation(s)
- Sara Balsells-Vives
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Clara San Bartolomé
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomedic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rocío Casas-Saucedo
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Section, Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, Barcelona, Spain
- Spanish Research Network on Allergy (ARADyAL, Red Nacional de Alergia–Asma, Reacciones Adversas y Alérgicas-), Instituto de Salud Carlos III, Madrid, Spain
| | - María Ruano-Zaragoza
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Section, Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, Barcelona, Spain
- Spanish Research Network on Allergy (ARADyAL, Red Nacional de Alergia–Asma, Reacciones Adversas y Alérgicas-), Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina Rius
- Department of Immunology, Centre de Diagnòstic Biomedic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria Torradeflot
- Department of Immunology, Centre de Diagnòstic Biomedic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joan Bartra
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Section, Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, Barcelona, Spain
- Spanish Research Network on Allergy (ARADyAL, Red Nacional de Alergia–Asma, Reacciones Adversas y Alérgicas-), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Munoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Section, Department of Pneumology, Institut Clínic Respiratori (ICR), Hospital Clínic de Barcelona, Barcelona, Spain
- Spanish Research Network on Allergy (ARADyAL, Red Nacional de Alergia–Asma, Reacciones Adversas y Alérgicas-), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Pascal
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomedic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Spanish Research Network on Allergy (ARADyAL, Red Nacional de Alergia–Asma, Reacciones Adversas y Alérgicas-), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Nahrungsmittelunverträglichkeiten - eine diagnostische Herausforderung. ALLERGO JOURNAL 2022. [DOI: 10.1007/s15007-021-4932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Kleine-Tebbe J, Brans R, Jappe U. Allergene - Auslöser der verschiedenen Allergievarianten. ALLERGO JOURNAL 2022; 31:16-31. [PMID: 35340910 PMCID: PMC8934605 DOI: 10.1007/s15007-022-4980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Kleine-Tebbe
- Dermatologie, Umweltmedizin, Allergie- und Asthmazentrum Westend, Spandauer Damm 130, Haus 9, 14050 Berlin, Germany
| | | | - Uta Jappe
- Oberärztin, Klinische und Molekulare Allergologie - Forschungszentrum Borstel, Parkallee 35, 23845 Borstel, Germany
| |
Collapse
|
33
|
Abstract
This review provides a global overview on Rosaceae allergy and details the particularities of each fruit allergy induced by ten Rosaceae species: almond/peach/cherry/apricot/plum (Amygdaleae), apple/pear (Maleae), and raspberry/blackberry/strawberry (Rosoideae). Data on clinical symptoms, prevalence, diagnosis, and immunotherapies for the treatment of Rosaceae allergy are herein stated. Allergen molecular characterization, cross-reactivity/co-sensitization phenomena, the impact of food processing and digestibility, and the methods currently available for the Rosaceae detection/quantification in foods are also described. Rosaceae allergy has a major impact in context to pollen-food allergy syndrome (PFAS) and lipid transfer protein (LTP) allergies, being greatly influenced by geography, environment, and presence of cofactors. Peach, apple, and almond allergies are probably the ones most affecting the quality of life of the allergic-patients, although allergies to other Rosaceae fruits cannot be overlooked. From patients' perspective, self-allergy management and an efficient avoidance of multiple fruits are often difficult to achieve, which might raise the risk for cross-reactivity and co-sensitization phenomena and increase the severity of the induced allergic responses with time. At this point, the absence of effective allergy diagnosis (lack of specific molecular markers) and studies advancing potential immunotherapies are some gaps that certainly will prompt the progress on novel strategies to manage Rosaceae food allergies.
Collapse
Affiliation(s)
- Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules 2021; 12:biom12010024. [PMID: 35053172 PMCID: PMC8774254 DOI: 10.3390/biom12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have revealed an interest in the composition of beer biomolecules as a colloidal system and their influence on the formation of beer taste. The purpose of this research was to establish biochemical interactions between the biomolecules of plant-based raw materials of beer in order to understand the overall structure of beer as a complex system of bound biomolecules. Generally accepted methods of analytical research in the field of brewing, biochemistry and proteomics were used to solve the research objectives. The studies allowed us to establish the relationship between the grain and plant-based raw materials used, as well as the processing technologies and biomolecular profiles of beer. The qualitative profile of the distribution of protein compounds as a framework for the formation of a colloidal system and the role of carbohydrate dextrins and phenol compounds are given. This article provides information about the presence of biogenic compounds in the structure of beer that positively affect the functioning of the body. A critical assessment of the influence of some parameters on the completeness of beer taste by biomolecules is given. Conclusion: the conducted analytical studies allowed us to confirm the hypothesis about the nitrogen structure of beer and the relationship of other biomolecules with protein substances, and to identify the main factors affecting the distribution of biomolecules by fractions.
Collapse
|
35
|
Asero R, Pravettoni V, Scala E, Villalta D. Lipid transfer protein allergy: A review of current controversies. Clin Exp Allergy 2021; 52:222-230. [PMID: 34773669 DOI: 10.1111/cea.14049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
Sensitization to lipid transfer protein (LTP), the most frequent cause of food allergy in southern Europe, still shows several controversial, but also intriguing, aspects. Some of these include the degree of cross-reactivity between LTPs from botanically distant sources, the definition of risk factors, the role of some cofactors, clinical outcomes, geographical differences and the identification of the primary sensitizer in different areas. This review article tries to analyse and comment on these aspects point by point suggesting some explanatory hypotheses with the final scope to stimulate critical thoughts and elicit the scientific discussion about this issue in the readership.
Collapse
Affiliation(s)
- Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Milan, Italy
| | - Valerio Pravettoni
- Department of General Medicine, Immunology and Allergy, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI - IRCCS, Rome, Italy
| | - Danilo Villalta
- Immunologia e allergologia, Ospedale S. Maria degli Angeli, Pordenone, Italy
| |
Collapse
|
36
|
Sudharson S, Kalic T, Hafner C, Breiteneder H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019-03/2021. Allergy 2021; 76:3359-3373. [PMID: 34310736 PMCID: PMC9290965 DOI: 10.1111/all.15021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
The WHO/IUIS Allergen Nomenclature Database (http://allergen.org) provides up‐to‐date expert‐reviewed data on newly discovered allergens and their unambiguous nomenclature to allergen researchers worldwide. This review discusses the 106 allergens that were accepted by the Allergen Nomenclature Sub‐Committee between 01/2019 and 03/2021. Information about protein family membership, patient cohorts, and assays used for allergen characterization is summarized. A first allergenic fungal triosephosphate isomerase, Asp t 36, was discovered in Aspergillus terreus. Plant allergens contained 1 contact, 38 respiratory, and 16 food allergens. Can s 4 from Indian hemp was identified as the first allergenic oxygen‐evolving enhancer protein 2 and Cic a 1 from chickpeas as the first allergenic group 4 late embryogenesis abundant protein. Among the animal allergens were 19 respiratory, 28 food, and 3 venom allergens. Important discoveries include Rap v 2, an allergenic paramyosin in molluscs, and Sal s 4 and Pan h 4, allergenic fish tropomyosins. Paramyosins and tropomyosins were previously known mainly as arthropod allergens. Collagens from barramundi, Lat c 6, and salmon, Sal s 6, were the first members from the collagen superfamily added to the database. In summary, the addition of 106 new allergens to the previously listed 930 allergens reflects the continuous linear growth of the allergen database. In addition, 17 newly described allergen sources were included.
Collapse
Affiliation(s)
- Srinidhi Sudharson
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christine Hafner
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
| | - Heimo Breiteneder
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
37
|
Worm M, Reese I, Ballmer-Weber B, Beyer K, Bischoff SC, Bohle B, Brockow K, Claßen M, Fischer PJ, Hamelmann E, Jappe U, Kleine-Tebbe J, Klimek L, Koletzko B, Lange L, Lau S, Lepp U, Mahler V, Nemat K, Raithel M, Saloga J, Schäfer C, Schnadt S, Schreiber J, Szépfalusi Z, Treudler R, Wagenmann M, Werfel T, Zuberbier T. Update of the S2k guideline on the management of IgE-mediated food allergies. Allergol Select 2021; 5:195-243. [PMID: 34263109 PMCID: PMC8276640 DOI: 10.5414/alx02257e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Margitta Worm
- Allergology and Immunology, Department of Dermatology, Venereology, and Allergology, Charité – Universitätsmedizin Berlin, Germany
| | - Imke Reese
- Nutritional Counseling and Therapy, Focus on Allergology, Munich, Germany
| | - Barbara Ballmer-Weber
- University Hospital Zurich, Department of Dermatology, Zurich, Switzerland, and Cantonal Hospital St. Gallen, Department of Dermatology and Allergology, St. Gallen, Switzerland
| | - Kirsten Beyer
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, Stuttgart, Germany
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Knut Brockow
- Department of Dermatology and Allergology, Biederstein, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin Claßen
- Klinik für Kinder und Jugendmedizin/Päd. Intensivmedizin, Eltern-Kind-Zentrum Prof. Hess Klinikum Bremen-Mitte
| | - Peter J. Fischer
- Practice for Pediatric and Adolescent Medicine m. S. Allergology and Pediatric Pneumology, Schwäbisch Gmünd
| | - Eckard Hamelmann
- University Clinic for Pediatric and Adolescent Medicine, Evangelisches Klinikum Bethel gGmbH, Bielefeld
| | - Uta Jappe
- Research Group Clinical and Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Borstel
- Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III, University Hospital Schleswig-Holstein, Lübeck
| | | | | | - Berthold Koletzko
- Pediatric Clinic and Pediatric Polyclinic, Dr. von Haunersches Kinderspital, Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University, Munich
| | - Lars Lange
- Pediatric and Adolescent Medicine, St.- Marien-Hospital, Bonn
| | - Susanne Lau
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Ute Lepp
- Practice for Pulmonary Medicine and Allergology, Buxtehude
| | | | - Katja Nemat
- Practice for Pediatric Pneumology/Allergology at the Children’s Center Dresden (Kid), Dresen
| | | | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz
| | - Christiane Schäfer
- Nutritional Therapy, Focus on Allergology and Gastroenterology, Schwarzenbek, Germany
| | - Sabine Schnadt
- German Allergy and Asthma Association, Mönchengladbach, Germany
| | - Jens Schreiber
- Pneumology, University Hospital of Otto von Guericke University, Magdeburg, Germany
| | - Zsolt Szépfalusi
- University Hospital for Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Regina Treudler
- Clinic of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Germany
| | | | - Thomas Werfel
- Clinic of Dermatology, Allergology and Venerology, Hannover Medical School, Germany, and
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin
| |
Collapse
|
38
|
Maximiano MR, Franco OL. Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides 2021; 140:170531. [PMID: 33746031 DOI: 10.1016/j.peptides.2021.170531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Plant AMPs are usually cysteine-rich, and can be classified in several classes, including lipid transfer proteins (LTPs). LTPs are small plant cationic peptides, and can be classified in two subclasses, LTP1 (9-10 kDa) and LTP2 (7 kDa). They have been identified and isolated from various plant species and can be involved in a number of processes, including responses against several phytopathogens. LTP1 presents 4 parallel α- helices and a 310-helix fragment. These structures form a tunnel with large and small entrances. LTP2 presents 3 parallel α- helices, which form a cavity with triangular structure. Both LTP subclasses present a hydrophobic cavity, which makes interaction with different lipids and general hydrophobic molecules possible. Several studies report a broad spectrum of activity of plant LTPs, including antibacterial, antifungal, antiviral, antitumoral, and insecticidal activity. Thus, these molecules can be employed in human and animal health as an alternative to the conventional treatment of disease, well as providing the source of novel drugs. However, employing peptides in human health can present challenges, such as the toxicity of peptides, the difference between the results found in in vitro assays and in pre-clinical or clinical tests and their low efficiency against Gram-negative bacteria. In this context, plant LTPs can be an interesting alternative means by which to bypass such challenges. This review addresses the versatility of plant LTPs, their broad spectrum of activities and their potential applications in human and animal health and in agricultural production, and examines challenges in their biotechnological application.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|