1
|
Li TJ, Feng Q, Nie TY, Gao YH, Yang L, Zhao LB, Xue X, Zhao Z, Cai WM, Rui D, Han JM, Liu L. The long-term impact of hypertriglyceridemia-waist phenotype on major adverse cardiovascular events in elderly patients with OSA. Sleep Breath 2025; 29:125. [PMID: 40056266 DOI: 10.1007/s11325-025-03257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/23/2024] [Accepted: 01/22/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION The hypertriglyceridemia-waist (HTGW) phenotype is a prevalent risk factor for cardiovascular diseases and obstructive sleep apnea (OSA). However, the impactof the HTGW phenotype on the simultaneous occurrence of OSA and cardiovascular diseases remains unexplored. This study aimed to determine whether the HTGW phenotype elevates the incidence of major adverse cardiovascular events (MACE) in patients with OSA, such as hospitalization for unstable angina and heart failure, myocardial infarction, and cardiovascular death, in patients with OSA. METHODS A total of 1,290 patients with OSA were recruited from six hospitals for follow-up. According to the Chinese population criteria recommended by the International Diabetes Federation, the patients were divided into four groups: normal triglyceride waist circumference (NTNW) phenotype, pure high triglyceride (HTNW) phenotype, pure high waist circumference (NTGW) phenotype, and HTGW phenotype. The prognosis for MACE was evaluated using Cox proportional hazards analysis. The prognosis of MACE was evaluated using Cox proportional hazards analysis. RESULTS 207 (17.9%) developed an HTGW phenotype. After a median of 42 months of follow-up, 119 (10.3%) experienced MACE. Cox proportional hazards analysis revealed that patients exhibiting the HTGW phenotype had a 1.963-fold higher risk of developing MACE than patients with the NTNW phenotype (P = 0.012). These results remained significant after adjusting for confounders, and a 2.186-fold increased risk of MACE was found in patients with NTGW phenotype (P = 0.012). Subgroup analyses revealed an increased risk of MACE in OSA patients with HTGW phenotype and NTGW phenotype that were older than or equal to 70 years, male, and had moderate-to-severe OSA (all P-values < 0.05). CONCLUSION The HTGW and NTGW phenotypes significantly increase MACE risk among elderly patients with OSA.
Collapse
Affiliation(s)
- Tian-Jiao Li
- Medical College, Yan' an University, Yan', Shaanxi Province, 716000, China
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiao Feng
- Medical College, Yan' an University, Yan', Shaanxi Province, 716000, China
| | - Ting-Yu Nie
- Medical College, Yan' an University, Yan', Shaanxi Province, 716000, China
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ying-Hui Gao
- PKU-UPenn Sleep Center, Peking University International Hospital, Beijing, 102206, China
| | - Ling Yang
- Medical College, Yan' an University, Yan', Shaanxi Province, 716000, China
| | - Li-Bo Zhao
- Graduate School of Medical School of Chinese PLA, Beijing, 100853, China
| | - Xin Xue
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhe Zhao
- Graduate School of Medical School of Chinese PLA, Beijing, 100853, China
| | - Wei-Meng Cai
- Graduate School of Medical School of Chinese PLA, Beijing, 100853, China
| | - Dong Rui
- Graduate School of Medical School of Chinese PLA, Beijing, 100853, China
| | - Ji-Ming Han
- Medical College, Yan' an University, Yan', Shaanxi Province, 716000, China.
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Liu Z, Huang N, Liu C, Wu C, Zhou L, Liu X, Lei H. Mitochondrial DNA in atherosclerosis research progress: a mini review. Front Immunol 2025; 16:1526390. [PMID: 39991161 PMCID: PMC11842404 DOI: 10.3389/fimmu.2025.1526390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that primarily affects large and medium-sized arteries and is one of the leading causes of death worldwide. This article reviews the multifaceted role of mitochondrial DNA (mtDNA) in AS, including its structure, function, release, and relationship with inflammation. Damage and release of mtDNA are considered central drivers in the development of AS, as they participate in the progression of AS by activating inflammatory pathways and affecting lipid metabolism. Therefore, therapeutic strategies targeting mtDNA and its downstream effects may provide new avenues to address this global health challenge.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Nan Huang
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Chan Liu
- Department of Clinical Pharmacy, Liuyang People’s Hospital, Liuyang, China
| | - Can Wu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Ling Zhou
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Haibo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
3
|
Xiao Q, Wang L, Wang J, Wang M, Wang DW, Ding H. A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3. Mol Metab 2024; 88:102011. [PMID: 39173944 PMCID: PMC11399561 DOI: 10.1016/j.molmet.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
4
|
Borén J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr 2024; 44:179-204. [PMID: 38635875 DOI: 10.1146/annurev-nutr-062222-020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden;
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Abstract
The link between elevated LDL-C, low HDL-C, elevated triglycerides, and an increased risk for cardiovascular disease has solidified over the past decades. Concomitantly, the number of agents to treat dyslipidemia proliferated in clinical trials, proving or refuting their clinical efficacy. Many of these agents' role in reducing cardiovascular disease morbidity and mortality is now clear. Recently, there has been an explosion in emerging therapeutics for the primary and secondary prevention of cardiovascular disease through the control of dyslipidemia. This article reviews standard, new, and emerging treatments for hyperlipidemia.
Collapse
Affiliation(s)
- Brian V Reamy
- Academic Affairs, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Brian Ford
- Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Charles Goodman
- Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Hernandez-Baixauli J, Chomiciute G, Alcaide-Hidalgo JM, Crescenti A, Baselga-Escudero L, Palacios-Jordan H, Foguet-Romero E, Pedret A, Valls RM, Solà R, Mulero M, Del Bas JM. Developing a model to predict the early risk of hypertriglyceridemia based on inhibiting lipoprotein lipase (LPL): a translational study. Sci Rep 2023; 13:22646. [PMID: 38114521 PMCID: PMC10730820 DOI: 10.1038/s41598-023-49277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
| | | | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
| | | | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204, Reus, Spain
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204, Reus, Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
| | - Rosa M Valls
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
- Internal Medicine Service, Hospital Universitari Sant Joan de Reus, Av/del Doctor Josep Laporte, 2, 43204, Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Àrea Biotecnologia, Reus, Spain.
| |
Collapse
|
7
|
Kurooka N, Eguchi J, Wada J. Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes. J Diabetes Investig 2023; 14:1148-1156. [PMID: 37448184 PMCID: PMC10512915 DOI: 10.1111/jdi.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications.
Collapse
Affiliation(s)
- Naoko Kurooka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
8
|
Nouni C, Theodosis-Nobelos P, Rekka EA. Antioxidant and Hypolipidemic Activities of Cinnamic Acid Derivatives. Molecules 2023; 28:6732. [PMID: 37764507 PMCID: PMC10535275 DOI: 10.3390/molecules28186732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress and hyperlipidemia are important factors for the initiation and progression of various cell degenerative pathological conditions, including cardiovascular and neurological diseases. A series of cinnamic acid-derived acids, such as ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, p-coumaric acid, and (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid, were esterified or amidated with various moieties, bearing different biological activities, and evaluated. The antioxidant and radical scavenging abilities of the compounds via inhibition of rat hepatic microsomal membrane lipid peroxidation, as well as their interaction with the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), were assessed. Further, their hypolipidemic activity in vivo was tested. The majority of the obtained compounds demonstrated considerable radical scavenging and antioxidant action, with a parallel decrease in Triton-induced hyperlipidemia in rats. The (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid derivative with morpholine and 4-methylpiperidine (compounds 4 and 13, respectively) significantly decreased triglycerides and total cholesterol in the plasma of hyperlipidemic rats, with an antioxidant capacity similar to that of the antioxidant Trolox. The compounds were designed to exhibit antioxidant and hypolipidemic pharmacological actions, and this succeeded for the majority of them. Thus, such agents may be of interest in conditions and diseases implicating oxidative stress and dyslipidemia.
Collapse
Affiliation(s)
- Christina Nouni
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Monoclonal Antibodies, Gene Silencing and Gene Editing (CRISPR) Therapies for the Treatment of Hyperlipidemia-The Future Is Here. Pharmaceutics 2023; 15:pharmaceutics15020459. [PMID: 36839781 PMCID: PMC9963609 DOI: 10.3390/pharmaceutics15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
Hyperlipidemia is a significant risk factor for atherosclerotic cardiovascular disease. Undertreatment of elevated lipids persists despite existing therapies. Here, we provide an update on monoclonal antibodies, gene silencing therapies, and gene editing techniques for the management of hyperlipidemia. The current era of cutting-edge pharmaceuticals targeting low density lipoprotein cholesterol, PCSK9, lipoprotein (a), angiopoietin-like 3, and apolipoprotein C3 are reviewed. We outline what is known, studies in progress, and futuristic goals. This review of available and upcoming biotechnological lipid therapies is presented for clinicians managing patients with familial hyperlipidemia, statin intolerance, hypertriglyceridemia, or elevated lipoprotein (a) levels.
Collapse
|