1
|
Song D, Li Y, Yang LL, Luo YX, Yao XQ. Bridging systemic metabolic dysfunction and Alzheimer's disease: the liver interface. Mol Neurodegener 2025; 20:61. [PMID: 40437610 PMCID: PMC12121119 DOI: 10.1186/s13024-025-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as a systemic disorder with a substantial metabolic disorder component, where the liver significantly impacts the brain via the liver-brain axis. Key mechanisms include the liver's role in clearing peripheral β-amyloid (Aβ), the influence of hepatic enzymes and metabolites on cognitive decline, and the systemic effects of metabolic disorders on AD progression. Hepatokines, liver-secreted proteins including fibroblast growth factor (FGF)-21, selenoprotein P (SELENOP), Fetuin-A, Midbrain astrocyte-derived neurotrophic factor (MANF), apolipoprotein J (ApoJ), sex hormone-binding globulin (SHBG), Adropin and Angiopoietin-like protein 3 (ANGPTL3), could regulate insulin sensitivity, lipid metabolism, oxidative stress, immune responses, and neurotrophic support. These pathways are closely linked to core AD pathologies, including Aβ aggregation, tau hyperphosphorylation, neuroinflammation, oxidative stress and mitochondrial dysfunction. Lifestyle interventions, including exercise and dietary modifications, that regulate hepatokines expression may offer novel preventive and therapeutic strategies for AD. This review synthesizes current knowledge on the liver-brain crosstalk in AD, emphasizing the mechanistic role of liver in bridging metabolic dysfunction with neurodegeneration and underscores the diagnostic and therapeutic potential of hepatokines in addressing AD's complex pathology.
Collapse
Affiliation(s)
- Dan Song
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
2
|
Zhang Q, Zheng P, Pan Y, Zhou H, Fu Y, Jia E. Phosphoglycerate Mutase 5 Is Important Mediator for Instigating Arterial Lipid Accumulation and Aggravating Atherosclerosis. JACC Basic Transl Sci 2025. [DOI: 10.1016/j.jacbts.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
3
|
Swarnakar R, Sahu D, Bahinipati J, Pradhan T, Meher D, Sarangi R, Mahapatra S. The significance of ANGPTL3 and ANGPTL4 proteins in the development of dyslipidemia in Type 2 diabetes mellitus. J Family Med Prim Care 2025; 14:947-953. [PMID: 40256107 PMCID: PMC12007761 DOI: 10.4103/jfmpc.jfmpc_1256_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 04/22/2025] Open
Abstract
Background Dyslipidemia is the leading cause of cardiovascular disease (CVD) in Type 2 diabetes mellitus patients. As a result, it is critical to target and manage the level of atherogenic lipids. Angiopoietin-like proteins 3 and 4 (ANGPTL 3 and ANGPTL 4) play an important role in the intravascular lipolysis of triglyceride-rich lipoproteins by blocking the enzyme lipoprotein lipase. This study aimed to determine the amounts of these angiopoietin-like proteins in T2DM and find their association with dyslipidemia in T2DM. Material and Methods Sixty-one T2DM patients of age group 25-65 years and 27 healthy age-matched control participants were enrolled in the study. Glycemic status (FBS, PPBS, HbA1C), serum lipid parameters (cholesterol, TG, LDL, VLDL, HDL, Tc/HDL ratio), free fatty acid, serum insulin, and ANGPTL3, 4 were measured. A correlation was found between the ANGPTLs and the above parameters in T2DM patients. Results Serum ANGPTL3 (P < 0.05) and ANGPTL4 (P < 0.001) were significantly decreased in T2DM. ANGPTL4 was also negatively correlated to PPBS (0.03), HbA1C (P = 0.05), and IR (P = 0.04). However, no such correlation was observed with ANGPTL 3. It was observed that lipid parameters were correlated with ANGPTL3 (LDL (P = 0.03), TC/HDL (P = 0.02)). There was a significant relationship between ANGPTL3 and 4 with FFA (P = 0.001 and P = 0.03, respectively). Conclusion This study shows that ANGPTL 3,4 may be associated with dyslipidemia in T2DM. ANGPTL4 is more correlated with glycemic status.
Collapse
Affiliation(s)
- Rik Swarnakar
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Debadyuti Sahu
- Department of Biochemistry, BSSCCRI, Bhubaneswar, Odisha, India
| | - Jyotirmayee Bahinipati
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Tapaswini Pradhan
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Dayanidhi Meher
- Department of Endocrinology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rajlaxmi Sarangi
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Srikrushna Mahapatra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Li X, Li ZF, Wu NQ. Remnant Cholesterol and Residual Risk of Atherosclerotic Cardiovascular Disease. Rev Cardiovasc Med 2025; 26:25985. [PMID: 40026498 PMCID: PMC11868899 DOI: 10.31083/rcm25985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 03/05/2025] Open
Abstract
Remnant cholesterol (RC) is increasingly recognized as a key target in the treatment of atherosclerotic cardiovascular disease (ASCVD), addressing much of the residual risk that persists despite standard therapies. However, integrating RC into clinical practice remains challenging. Key issues, such as the development of accessible RC measurement methods, the identification of safe and effective medications, the determination of optimal target levels, and the creation of RC-based risk stratification strategies, require further investigation. This article explores the complex role of RC in ASCVD development, including its definition, metabolic pathways, and its association with both the overall risk and residual risk of ASCVD in primary and secondary prevention. It also examines the effect of current lipid-lowering therapies on RC levels and their influence on cardiovascular outcomes. Recent research has highlighted promising advancements in therapies aimed at lowering RC, which show potential for reducing major adverse cardiovascular events (MACEs). Inhibitors such as angiopoietin-like protein 3 (ANGPTL3), apolipoprotein C-III (apoCIII), and proprotein convertase subtilisin/kexin type 9 (PCSK9) have demonstrated their ability to modulate RC and reduce MACEs by targeting specific proteins involved in RC synthesis and metabolism. There is a pressing need for larger randomized controlled trials to clarify the role of RC in relevant patient populations. The development of targeted RC-lowering therapies holds the promise of significantly reducing the high rates of morbidity and mortality associated with ASCVD.
Collapse
Affiliation(s)
- Xi Li
- Cardiometabolic Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, 100037 Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, 100037 Beijing, China
| | - Na-Qiong Wu
- Cardiometabolic Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, 100037 Beijing, China
| |
Collapse
|
5
|
Daghlas I, Gill D. Leveraging Mendelian randomization to inform drug discovery and development for ischemic stroke. J Cereb Blood Flow Metab 2024:271678X241305916. [PMID: 39628323 PMCID: PMC11615907 DOI: 10.1177/0271678x241305916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Discovery and development of efficacious and safe pharmacological therapies is fraught with challenges. As proteins constitute the majority of drug targets and are encoded by genes, naturally occurring genetic variation within populations can provide valuable insights to inform drug discovery and development efforts. The drug target Mendelian randomization (MR) paradigm leverages these principles to investigate the causal effects of drug targets in humans. This review examines the application of drug target MR in informing the efficacy and development of therapeutics for ischemic stroke prevention and treatment. We consider applications of MR for existing and novel treatment strategies, including targeting blood pressure, lipid metabolism, coagulation, inflammation and glycemic control. Several of these genetically supported targets are under evaluation in late-stage clinical trials. Methodological limitations of drug target MR are addressed, followed by an outline of future research directions. We anticipate that careful application of drug target MR will enhance the efficiency of drug development for ischemic stroke, consequently accelerating the delivery of effective medications to patients.
Collapse
Affiliation(s)
- Iyas Daghlas
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
6
|
Chan DC, Watts GF. Inhibition of the ANGPTL3/8 Complex for the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 27:6. [PMID: 39565562 DOI: 10.1007/s11883-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW Dyslipidemia is a casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with dyslipidemias. Angiopoietin-like protein 3 (ANGPTL3) and ANGPTL8 play key roles in triglyceride trafficking and energy balance in humans. We review the functional role of these ANGPTL proteins in the regulation of lipoprotein metabolism, and recent clinical trials targeting ANGPTL3 and ANGPTL3/8 with monoclonal antibody and/or nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS Cumulative evidence supports the roles of ANGPTL3 and ANGPTL8 in lipid metabolism through inhibition of lipoprotein lipase and endothelial lipase activity. ANGPTL3 and ANGPTL3/8 inhibitors are effective in lowering plasma triglycerides and low-density lipoprotein (LDL)-cholesterol, with the possible advantage of raising high-density lipoprotein (HDL)-cholesterol with the inhibition of ANGPTL3/8. Therapeutic inhibition of ANGPTL3 and ANGPTL3/8 can lower plasma triglyceride and LDL-cholesterol levels possibly by lowering production and upregulating catabolism of triglyceride-rich lipoprotein and LDL particles. However, the effect of these novel agents on HDL metabolism remains unclear. The cardiovascular benefits of ANGPTL3 and ABGPTL3/8 inhibitors may also include improvement in vascular inflammation, but this requires further investigation.
Collapse
Affiliation(s)
- Dick C Chan
- Medical School, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Australia.
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
7
|
Wang H, Hu X, Zhang Y, Zhu A, Fan J, Wu Z, Wang X, Hu W, Ju D. Simultaneously blocking ANGPTL3 and IL-1β for the treatment of atherosclerosis through lipid-lowering and anti-inflammation. Inflamm Res 2024; 73:1931-1944. [PMID: 39254873 DOI: 10.1007/s00011-024-01941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Blood lipid levels play a critical role in the progression of atherosclerosis. However, even with adequate lipid reduction, significant residual cardiovascular risk remains. Therefore, it is necessary to seek novel therapeutic strategies for atherosclerosis that can not only lower lipid levels but also inhibit inflammation simultaneously. METHODS The fusion protein FD03-IL-1Ra was designed by linking the Angiopoietin-like 3 (ANGPTL3) nanobody and human interleukin-1 receptor antagonist (IL-1Ra) sequences to a mutated human immunoglobulin gamma 1 (IgG1) Fc. This construct was transfected into HEK293 cells for expression. The purity and thermal stability of the fusion protein were assessed using SDS-PAGE, SEC-HPLC, and differential scanning calorimetry. Binding affinities of the fusion protein to ANGPTL3 and IL-1 receptor were measured using Biacore T200. The biological activity of the fusion protein was validated through in vitro experiments. The therapeutic efficacy of the fusion protein was evaluated in an ApoE-/- mouse model of atherosclerosis, including serum lipid level determination, histological analysis of aorta and aortic sinus sections, and detection of inflammatory and oxidative stress markers. ImageJ software was utilized for quantitative image analysis. Statistical analysis was performed using one-way ANOVA followed by Bonferroni post hoc test. RESULTS The FD03-IL-1Ra fusion protein was successfully expressed, with no polymer formation detected, and it demonstrated good thermal and conformational stability. High affinity for both murine and human ANGPTL3 was exhibited by FD03-IL-1Ra, and it was able to antagonize hANGPTL3's inhibition of LPL activity. FD03-IL-1Ra also showed high affinity for both murine and human IL-1R, inhibiting IL-6 expression in A549 cells induced by IL-1β stimulation, as well as suppressing IL-1β-induced activity inhibition in A375.S2 cells. Our study revealed that the fusion protein effectively lowered serum lipid levels and alleviated inflammatory responses in mice. Furthermore, the fusion protein enhanced plaque stability by increasing collagen content within atherosclerotic plaques. CONCLUSIONS These findings highlighted the potential of bifunctional interleukin-1 receptor antagonist and ANGPTL3 antibody fusion proteins for ameliorating the progression of atherosclerosis, presenting a promising novel therapeutic approach targeting both inflammation and lipid levels.
Collapse
Affiliation(s)
- Hanqi Wang
- Department of Cardiology, Minhang Hospital, Fudan University, No. 170 Zisong Road, Minhang District, Shanghai, China
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhengyu Wu
- TAU Cambridge Ltd, The Bradfield Centre UNIT 184, Cambridge Science Park, Cambridge, CB4 0GA, UK
| | - Xuebin Wang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Putuo District, Shanghai, China.
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, No. 170 Zisong Road, Minhang District, Shanghai, China.
| | - Dianwen Ju
- Department of Cardiology, Minhang Hospital, Fudan University, No. 170 Zisong Road, Minhang District, Shanghai, China.
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, No. 826 Zhangheng Road, Pudong New District, Shanghai, China.
| |
Collapse
|
8
|
Munshi ID, Acharya M, Mukherjee S, Mani I. Recent development in CRISPR-Cas systems for cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:47-93. [PMID: 39824585 DOI: 10.1016/bs.pmbts.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies. The therapeutic potential of gene editing is also explored, with a focus on genes like PCSK9 and ANGPTL3 that play critical roles in lipid metabolism and cardiovascular health, offering promising avenues for new treatments. Furthermore, the expanding applications of CRISPR in heart tissue regeneration are examined, which could revolutionize the repair of damaged heart tissue. Cutting-edge techniques such as base editing and prime editing are discussed, highlighting their potential to further refine genetic interventions. The discussion concludes by addressing the challenges associated with delivering CRISPR components efficiently and safely, while also exploring recent innovations that may overcome these hurdles, providing insights into the future directions of CRISPR technology in cardiovascular medicine.
Collapse
Affiliation(s)
- Ingita Dey Munshi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Acharya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sridip Mukherjee
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
9
|
Zhu Y, Cai SS, Ma J, Cheng L, Wei C, Aggarwal A, Toh WH, Shin C, Shen R, Kong J, Mao SA, Lao YH, Leong KW, Mao HQ. Optimization of lipid nanoparticles for gene editing of the liver via intraduodenal delivery. Biomaterials 2024; 308:122559. [PMID: 38583366 PMCID: PMC11099935 DOI: 10.1016/j.biomaterials.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.
Collapse
Affiliation(s)
- Yining Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Shuting Sarah Cai
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leonardo Cheng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Christine Wei
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ataes Aggarwal
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Charles Shin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ruochen Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shuming Alan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Xu D, Xie L, Cheng C, Xue F, Sun C. Triglyceride-rich lipoproteins and cardiovascular diseases. Front Endocrinol (Lausanne) 2024; 15:1409653. [PMID: 38883601 PMCID: PMC11176465 DOI: 10.3389/fendo.2024.1409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
11
|
Moss CE, Johnston SA, Kimble JV, Clements M, Codd V, Hamby S, Goodall AH, Deshmukh S, Sudbery I, Coca D, Wilson HL, Kiss-Toth E. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep 2024; 43:114073. [PMID: 38578825 DOI: 10.1016/j.celrep.2024.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.
Collapse
Affiliation(s)
- Charlotte E Moss
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Joshua V Kimble
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Martha Clements
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Hamby
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sumeet Deshmukh
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Daniel Coca
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK; Department of Autonomic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Heather L Wilson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK.
| | - Endre Kiss-Toth
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK; Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
12
|
Liu S, Ke J, Feng X, Wang Z, Wang X, Yang L, Zhao D. The Effect of Canagliflozin on High-Density Lipoprotein Cholesterol and Angiopoietin-Like Protein 3 in Type 2 Diabetes Mellitus. J Diabetes Res 2024; 2024:2431441. [PMID: 38577301 PMCID: PMC10994702 DOI: 10.1155/2024/2431441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Background Diabetes mellitus is often accompanied by dyslipidemia. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, as a novel therapeutic agent for the treatment of type 2 diabetes mellitus (T2DM), have been reported to exert effects on lipid, while the results remain controversial. This study is aimed at exploring the effect of SGLT2 inhibitor canagliflozin on lipid profile. Methods This study was a single-center, open-label, nonrandomized, prospective study. Metformin (500 mg three times per day) or canagliflozin (100 mg, once daily) was administered for 12 weeks. Fasting blood samples were collected before and 12 weeks after treatment. Serum lipid profile levels and angiopoietin-like protein 3 (ANGPTL3) were determined. In animal experiment, C57BL/6 J mice were divided into three groups including control, STZ + HFD, and STZ + HFD + canagliflozin. Lipid profile and plasma ANGPTL3 level were measured after 12 week's treatment. Moreover, the expression of ANGPTL3 was detected in the liver tissues. Results There was a decreased trend in low-density lipoprotein cholesterol (LDL-c) and triglycerides (TG) after canagliflozin treatment, while canagliflozin significantly increased high-density lipoprotein cholesterol (HDL-c) level and decreased plasma ANGPTL3 level. In addition, the expression of ANGPTL3 in liver tissues decreased obviously in diabetic mice with canagliflozin treatment. Conclusions Canagliflozin increases HDL-c level and suppresses ANGPTL3 expression in patients with T2DM and diabetic mice. The reduction of ANGPTL3 may contribute to the increase of HDL-c. However, the specific mechanism needs further research. This trial is registered with ChiCTR1900021231.
Collapse
Affiliation(s)
- Simo Liu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Feng
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zongwei Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Institute of Medical Genomics, Biomedical Sciences College, Shandong First Medical University, Taian, Shandong, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wu NQ, Li ZF, Lu MY, Li JJ. Monoclonal antibodies for dyslipidemia in adults: a focus on vulnerable patients groups. Expert Opin Biol Ther 2024; 24:157-169. [PMID: 38375817 DOI: 10.1080/14712598.2024.2321374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Dyslipidemia significantly contributes to atherosclerotic cardiovascular disease (ASCVD). Patients with lipid-rich vulnerable plaques are particularly susceptible to cardiovascular complications. Despite available lipid-lowering therapies (LLTs), challenges in effective lipid management remain. AREAS COVERED This article reviews monoclonal antibody (mAb) therapy in dyslipidemia, particularly focusing on vulnerable plaques and patients. We have reviewed the definitions of vulnerable plaques and patients, outlined the efficacy of traditional LLTs, and discussed in-depth the mAbs targeting PCSK9. We extensively discuss the potential mechanisms, intracoronary imaging, and clinical evidence of PCSK9mAbs in vulnerable plaques and patients. A brief overview of promising mAbs targeting other targets such as ANGPTL3 is also provided. EXPERT OPINION Research consistently supports the potential of mAb therapies in treating adult dyslipidemia, particularly in vulnerable patients. PCSK9mAbs are effective in regulating lipid parameters, such as LDL-C and Lp(a), and exhibit anti-inflammatory and anti-thrombotic properties. These antibodies also maintain endothelial and smooth muscle health, contributing to the stabilization of vulnerable plaques and reduction in adverse cardiovascular events. Future research aims to further understand PCSK9 and other targets like ANGPTL3, focusing on vulnerable groups. Overall, mAbs are emerging as a promising and superior approach in dyslipidemia management and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Na-Qiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Meng-Ying Lu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
15
|
Zhao Z, Fu Y, Lian H, Liu Y, Liu J, Sun L, Zhang Y. Correlation between the serum FABP4, ANGPTL3, and ANGPTL4 levels and coronary artery disease. Clin Cardiol 2024; 47:e24246. [PMID: 38425231 PMCID: PMC10905153 DOI: 10.1002/clc.24246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Lipid metabolism related factors, such as angiopoietin-like protein 3 (ANGPTL3), angiopoietin-like 4 (ANGPTL4), fatty acid-binding protein 4 (FABP4) are newly discovered factors that can affect coronary artery disease (CAD). In this study, we aimed to investigate the relationship between CAD and these lipid metabolism factors. HYPOTHESIS ANGPTL3, ANGPTL4, and FABP4 may provide a new method for the control of CAD risk factors and the prevention and treatment of CAD. METHODS We enrolled 284 consecutive inpatients with suspected CAD and divided them into CAD and non-CAD groups based on the coronary angiography results. Serum ANGPTL3, ANGPTL4, FABP4, and tumor necrosis factor-α (TNF-α) levels were estimated using the enzyme-linked immunosorbent assay. Multivariate logistic regression was used to assess the risk factors for CAD. The receiver operating characteristic curve was used to determine the cutoff and diagnostic values. RESULTS The serum TNF-α, FABP4, ANGPTL3, and ANGPTL4 values showed a significant difference between the CAD and non-CAD groups (p < .05). After adjusting for confounding factors, the FABP4, ANGPTL3, and ANGPTL4 levels were independently associated with CAD (p < .05). The ANGPTL3 expression level was an independent risk factor for CAD in patients with hypertension, but not in those without hypertension. The ANGPTL3 > 67.53 ng/mL, ANGPTL4 > 29.95 ng/mL, and FABP4 > 1421.25 ng/L combination had the highest diagnostic value for CAD. CONCLUSION ANGPTL3, ANGPTL4, and FABP4 were identified as independent risk factors for CAD and have valuable clinical implications for the diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Zhuoyan Zhao
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Ying Fu
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Huan Lian
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Yixiang Liu
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
| | - Jingyi Liu
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
- Hebei Key Laboratory of Panvascular DiseasesChengdeChina
| | - Lixian Sun
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
- Hebei Key Laboratory of Panvascular DiseasesChengdeChina
| | - Ying Zhang
- Department of CardiologyThe Affiliated Hospital of Chengde Medical UniversityChengdeChina
- Hebei Key Laboratory of Panvascular DiseasesChengdeChina
| |
Collapse
|
16
|
Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. Unveiling Familial Hypercholesterolemia-Review, Cardiovascular Complications, Lipid-Lowering Treatment and Its Efficacy. Int J Mol Sci 2024; 25:1637. [PMID: 38338916 PMCID: PMC10855128 DOI: 10.3390/ijms25031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder primarily transmitted in an autosomal-dominant manner. We distinguish two main forms of FH, which differ in the severity of the disease, namely homozygous familial hypercholesterolemia (HoFH) and heterozygous familial hypercholesterolemia (HeFH). The characteristic feature of this disease is a high concentration of low-density lipoprotein cholesterol (LDL-C) in the blood. However, the level may significantly vary between the two mentioned types of FH, and it is decidedly higher in HoFH. A chronically elevated concentration of LDL-C in the plasma leads to the occurrence of certain abnormalities, such as xanthomas in the tendons and skin, as well as corneal arcus. Nevertheless, a significantly more severe phenomenon is leading to the premature onset of cardiovascular disease (CVD) and its clinical implications, such as cardiac events, stroke or vascular dementia, even at a relatively young age. Due to the danger posed by this medical condition, we have investigated how both non-pharmacological and selected pharmacological treatment impact the course of FH, thereby reducing or postponing the risk of clinical manifestations of CVD. The primary objective of this review is to provide a comprehensive summary of the current understanding of FH, the effectiveness of lipid-lowering therapy in FH and to explain the anatomopathological correlation between FH and premature CVD development, with its complications.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
17
|
Srivastava RAK. New opportunities in the management and treatment of refractory hypercholesterolemia using in vivo CRISPR-mediated genome/base editing. Nutr Metab Cardiovasc Dis 2023; 33:2317-2325. [PMID: 37805309 DOI: 10.1016/j.numecd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/09/2023]
Abstract
AIMS Refractory hypercholesterolemia (RH), caused primarily by the loss-of-function mutation of LDL receptor (LDLR) gene seen in HoFH and HeFH patients, remains a major risk factor for atherosclerotic cardiovascular disease (ASCVD). Statin and ezetimibe combination therapy lower circulating LDL by 30% in HoFH patients. PCSK9 mAB, being an LDLR-dependent therapy, is not effective in HoFH, but lowers LDL by 25% in HeFH patients. A maximum reduction of 50% was noted in HoFH patients treated with ANGPTL3 mAB, which was not enough to achieve therapeutic goal of LDL. Therefore, new approaches are warranted to offer hopes to individuals intolerant to higher dose statins and not able to achieve recommended LDL level. DATA SYNTHESIS New approaches to lower LDL include gene therapy and gene editing. AAV-based gene therapy has shown encouraging results in animal models. Using CRISPR/Cas9-mediated genome/base editing, gain of function and loss of function have been successfully done in animal models. Recent progress in the refinement of genome/base editing has overcome the issues of off-target mutagenesis with ∼1% mutagenesis in case of PCSK9 and almost no off-target mutagenesis in inactivating ANGPTL3 in animal models showing 50% reduction in cholesterol. Current approaches using CRISPR-Cas9 genome/base editing targeting LDLR-dependent and LDLR-independent pathways are underway. CONCLUSIONS The new information on gain of LDLR function and inactivation of ANGPTL3 together with developments in genome/base editing technology to overcome off-target insertion and deletion mutagenesis offer hope to refractory hypercholesterolemic individuals who are at a higher risk of developing ASCVD.
Collapse
|
18
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
19
|
Wojtasińska A, Kućmierz J, Tokarek J, Dybiec J, Rodzeń A, Młynarska E, Rysz J, Franczyk B. New Insights into Cardiovascular Diseases Treatment Based on Molecular Targets. Int J Mol Sci 2023; 24:16735. [PMID: 38069058 PMCID: PMC10706703 DOI: 10.3390/ijms242316735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular diseases (CVDs) which consist of ischemic heart disease, stroke, heart failure, peripheral arterial disease, and several other cardiac and vascular conditions are one of the most common causes of death worldwide and often co-occur with diabetes mellitus and lipid disorders which worsens the prognosis and becomes a therapeutic challenge. Due to the increasing number of patients with CVDs, we need to search for new risk factors and pathophysiological changes to create new strategies for preventing, diagnosing, and treating not only CVDs but also comorbidities like diabetes mellitus and lipid disorders. As increasing amount of patients suffering from CVDs, there are many therapies which focus on new molecular targets like proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein 3, ATP-citrate lyase, or new technologies such as siRNA in treatment of dyslipidemia or sodium-glucose co-transporter-2 and glucagon-like peptide-1 in treatment of diabetes mellitus. Both SGLT-2 inhibitors and GLP-1 receptor agonists are used in the treatment of diabetes, however, they proved to have a beneficial effect in CVDs as well. Moreover, a significant amount of evidence has shown that exosomes seem to be associated with myocardial ischaemia and that exosome levels correlate with the severity of myocardial injury. In our work, we would like to focus on the above mechanisms. The knowledge of them allows for the appearance of new strategies of treatment among patients with CVDs.
Collapse
Affiliation(s)
- Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Anna Rodzeń
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
20
|
Zheng Z, Lyu W, Hong Q, Yang H, Li Y, Zhao S, Ren Y, Xiao Y. Phylogenetic and expression analysis of the angiopoietin-like gene family and their role in lipid metabolism in pigs. Anim Biosci 2023; 36:1517-1529. [PMID: 37170504 PMCID: PMC10475376 DOI: 10.5713/ab.23.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The objective of this study was to investigate the phylogenetic and expression analysis of the angiopoietin-like (ANGPTL) gene family and their role in lipid metabolism in pigs. METHODS In this study, the amino acid sequence analysis, phylogenetic analysis, and chromosome adjacent gene analysis were performed to identify the ANGPTL gene family in pigs. According to the body weight data from 60 Jinhua pigs, different tissues of 6 pigs with average body weight were used to determine the expression profile of ANGPTL1-8. The ileum, subcutaneous fat, and liver of 8 pigs with distinct fatness were selected to analyze the gene expression of ANGPTL3, ANGPTL4, and ANGPTL8. RESULTS The sequence length of ANGPTLs in pigs was between 1,186 and 1,991 bp, and the pig ANGPTL family members shared common features with human homologous genes, including the high similarity of the amino acid sequence and chromosome flanking genes. Amino acid sequence analysis showed that ANGPTL1-7 had a highly conserved domain except for ANGPTL8. Phylogenetic analysis showed that each ANGPTL homologous gene shared a common origin. Quantitative reverse-transcription polymerase chain reaction analysis showed that ANGPTL family members had different expression patterns in different tissues. ANGPTL3 and ANGPTL8 were mainly expressed in the liver, while ANGPTL4 was expressed in many other tissues, such as the intestine and subcutaneous fat. The expression levels of ANGPTL3 in the liver and ANGPTL4 in the liver, intestine and subcutaneous fat of Jinhua pigs with low propensity for adipogenesis were significantly higher than those of high propensity for adipogenesis. CONCLUSION These results increase our knowledge about the biological role of the ANGPTL family in this important economic species, it will also help to better understand the role of ANGPTL3, ANGPTL4, and ANGPTL8 in lipid metabolism of pigs, and provide innovative ideas for developing strategies to improve meat quality of pigs.
Collapse
Affiliation(s)
- Zibin Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193,
China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528000,
China
| | - Shengjun Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023,
China
| | - Ying Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023,
China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021,
China
| |
Collapse
|
21
|
Dybiec J, Baran W, Dąbek B, Fularski P, Młynarska E, Radzioch E, Rysz J, Franczyk B. Advances in Treatment of Dyslipidemia. Int J Mol Sci 2023; 24:13288. [PMID: 37686091 PMCID: PMC10488025 DOI: 10.3390/ijms241713288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Dyslipidemias have emerged as prevalent disorders among patients, posing significant risks for the development and progression of cardiovascular diseases. These conditions are characterized by elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C). This review delves into the current treatment approach, focusing on equalizing these parameters while enhancing the overall quality of life for patients. Through an extensive analysis of clinical trials, we identify disorders that necessitate alternative treatment strategies, notably familial hypercholesterolemia. The primary objective of this review is to consolidate existing information concerning drugs with the potential to revolutionize dyslipidemia management significantly. Among these promising pharmaceuticals, we highlight alirocumab, bempedoic acid, antisense oligonucleotides, angiopoietin-like protein inhibitors, apolipoprotein C-III (APOC3) inhibitors, lomitapide, and cholesterol ester transfer protein (CETP) inhibitors. Our review demonstrates the pivotal roles played by each of these drugs in targeting specific parameters of lipid metabolism. We outline the future landscape of dyslipidemia treatment, envisaging a more tailored and effective therapeutic approach to address this widespread medical concern.
Collapse
Affiliation(s)
- Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Baran
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
22
|
Arnold N, Koenig W. Familial Hypercholesterolemia: Pitfalls and Challenges in Diagnosis and Treatment. Rev Cardiovasc Med 2023; 24:236. [PMID: 39076699 PMCID: PMC11266816 DOI: 10.31083/j.rcm2408236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2024] Open
Abstract
Familial hypercholesterolemia (FH), a condition, which is characterized by a life-long exposure to markedly elevated low-density lipoprotein (LDL) concentrations from birth, and it still remains underdiagnosed and undertreated, despite the fact that its heterogeneous form represents one of the commonest genetic disorders to date. Indeed, only 10% of all estimated affected individuals have been diagnosed worldwide and for the most of them diagnosis comes too late, when atherosclerotic cardiovascular disease (ASCVD) has already been developed. Undiagnosed and undertreated FH leads to accelerated ASCVD with a high rate of premature deaths. Recently, several novel treatment modalities have been introduced, especially for the management of severe hypercholesterolemia. Nonetheless, a substantial number of FH patients still do not achieve guideline-recommended LDL cholesterol target values. In the present review we will summarize and critically discuss pitfalls and challenges in successful diagnosis and treatment of FH.
Collapse
Affiliation(s)
- Natalie Arnold
- Department of Cardiology, University Heart & Vascular Center Hamburg,
University Medical Center Hamburg-Eppendorf, Hamburg, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site
Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München,
80636 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich
Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, 89081
Ulm, Germany
| |
Collapse
|
23
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
24
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
25
|
Polychronopoulos G, Kostourou DT, Tziomalos K. Lipid metabolism and the targeting of angiopoietin-like 3: Experimental drugs under development. Expert Opin Investig Drugs 2023; 32:177-180. [PMID: 36757398 DOI: 10.1080/13543784.2023.2179480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Affiliation(s)
- Georgios Polychronopoulos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Danai-Thomais Kostourou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|