1
|
Raja DC, Shroff J, Nair A, Abhilash SP, Tuan LQ, Mehta A, Abhayaratna WP, Sanders P, Frankel DS, Marchlinski FE, Pathak RK. Correlation of extent of left ventricular endocardial unipolar low-voltage zones with ventricular tachycardia in nonischemic cardiomyopathy. Heart Rhythm 2024; 21:1970-1977. [PMID: 38636932 DOI: 10.1016/j.hrthm.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Endocardial electrogram (EGM) characteristics in nonischemic cardiomyopathy (NICM) have not been explored adequately for prognostication. OBJECTIVE We aimed to study correlation of bipolar and unipolar EGM characteristics with left ventricular ejection fraction (LVEF) and ventricular tachycardia (VT) in NICM. METHODS Electroanatomic mapping of the left ventricle was performed. EGM characteristics were correlated with LVEF. Differences between groups with and without VT and predictors of VT were studied. RESULTS In 43 patients, unipolar EGM variables had better correlation with baseline LVEF than bipolar EGM variables: unipolar voltage (r = +0.36), peak negative unipolar voltage (r = -0.42), peak positive unipolar voltage (r = +0.38), and percentage area of unipolar low-voltage zone (LVZ; r = -0.41). Global mean unipolar voltage (hazard ratio [HR], 0.4; 95% confidence interval [CI], 0.2-0.8), extent of unipolar LVZ (HR, 1.6; 95% CI, 1.1-2.3), and percentage area of unipolar LVZ (HR, 1.6; 95% CI, 1.1-2.3) were significant predictors of VT. For classification of patients with VT, extent of unipolar LVZ had an area under the curve of 0.82 (95% CI, 0.69-0.95; P < .001), and percentage area of unipolar LVZ had an area under the curve of 0.83 (95% CI, 0.71-0.96; P = .01). Cutoff of >3 segments for extent of unipolar LVZ had the best diagnostic accuracy (sensitivity, 90%; specificity, 67%) and cutoff of 33% for percentage area of unipolar LVZ had the best diagnostic accuracy (sensitivity, 95%; specificity, 60%) for VT. CONCLUSION In NICM, extent and percentage area of unipolar LVZs are significant predictors of VT. Cutoffs of >3 segments of unipolar LVZ and >33% area of unipolar LVZ have good diagnostic accuracies for association with VT.
Collapse
Affiliation(s)
- Deep Chandh Raja
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Jenish Shroff
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Anugrah Nair
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Sreevilasam P Abhilash
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Lukah Q Tuan
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Abhinav Mehta
- The Australian National University, Australian Capital Territory, Australia
| | | | - Prashanthan Sanders
- Center for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - David S Frankel
- Section of Cardiac Electrophysiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Francis E Marchlinski
- Section of Cardiac Electrophysiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rajeev Kumar Pathak
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia.
| |
Collapse
|
2
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Heart Fail Clin 2024; 20:407-417. [PMID: 39216926 DOI: 10.1016/j.hfc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
3
|
Ponnusamy SS, Vijayaraman P, Ellenbogen KA. Left Bundle Branch Block-associated Cardiomyopathy: A New Approach. Arrhythm Electrophysiol Rev 2024; 13:e15. [PMID: 39450115 PMCID: PMC11499974 DOI: 10.15420/aer.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 10/26/2024] Open
Abstract
Left bundle branch block (LBBB) is frequently associated with structural heart disease, and predicts higher rates of morbidity and mortality. In patients with cardiomyopathy (ejection fraction <35%) and LBBB, current guidelines recommend cardiac resynchronisation therapy (CRT) after 3 months of medical therapy. However, studies have suggested that medical therapy alone would be less effective, and the majority of patients would still need CRT at the end of 3 months. Conversely, CRT trials have shown better results and favourable clinical outcomes in patients with LBBB. In the absence of any other known aetiology, LBBB-associated cardiomyopathy represents a potentially reversible form of cardiomyopathy, with the majority of the patients having reverse remodelling after CRT by left bundle branch pacing. This review provides the mechanism, published evidence and role of conduction system pacing for patients with LBBB-associated cardiomyopathy.
Collapse
|
4
|
Chick W, Monkhouse C, Muthumala A, Ahsan S, Papageorgiou N. Implantable Cardiac Devices in Patients with Brady- and Tachy-Arrhythmias: An Update of the Literature. Rev Cardiovasc Med 2024; 25:162. [PMID: 39076493 PMCID: PMC11267218 DOI: 10.31083/j.rcm2505162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 07/31/2024] Open
Abstract
Implantable cardiac devices are a vital treatment option in the management of tachy/brady-arrhythmias and heart failure with conduction disease. In the recent years, these devices have become increasingly sophisticated, with high implantation success rates and longevity. However, these devices are not without risks and complications, which need to be carefully considered before implantation. In an era of rapidly evolving cardiac device therapies, this review article will provide an update on the literature and outline some of the emerging technologies that aim to maximise the efficiency of implantable devices and reduce complications. We discuss novel pacing techniques, including alternative pacing sites in anti-bradycardia and biventricular pacing, as well as the latest evidence surrounding leadless device technologies and patient selection for implantable device therapies.
Collapse
Affiliation(s)
- William Chick
- Cardiology Department, Lister Hospital, East and North NHS Hertfordshire NHS Trust, SG1 4AB Stevenage, UK
| | - Christopher Monkhouse
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital London, Barts Health NHS Trust, EC1A 7BE London, UK
| | - Amal Muthumala
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital London, Barts Health NHS Trust, EC1A 7BE London, UK
| | - Syed Ahsan
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital London, Barts Health NHS Trust, EC1A 7BE London, UK
| | - Nikolaos Papageorgiou
- Cardiology Department, Lister Hospital, East and North NHS Hertfordshire NHS Trust, SG1 4AB Stevenage, UK
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital London, Barts Health NHS Trust, EC1A 7BE London, UK
- Institute of Cardiovascular Science, University College London, WC1E 6BT London, UK
| |
Collapse
|
5
|
van der Lingen ALCJ, Verstraelen TE, van Erven L, Meeder JG, Theuns DA, Vernooy K, Wilde AAM, Maass AH, Allaart CP. Assessment of ICD eligibility in non-ischaemic cardiomyopathy patients: a position statement by the Task Force of the Dutch Society of Cardiology. Neth Heart J 2024; 32:190-197. [PMID: 38634993 DOI: 10.1007/s12471-024-01859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 04/19/2024] Open
Abstract
International guidelines recommend implantation of an implantable cardioverter-defibrillator (ICD) in non-ischaemic cardiomyopathy (NICM) patients with a left ventricular ejection fraction (LVEF) below 35% despite optimal medical therapy and a life expectancy of more than 1 year with good functional status. We propose refinement of these recommendations in patients with NICM, with careful consideration of additional risk parameters for both arrhythmic and non-arrhythmic death. These additional parameters include late gadolinium enhancement on cardiac magnetic resonance imaging and genetic testing for high-risk genetic variants to further assess arrhythmic risk, and age, comorbidities and sex for assessment of non-arrhythmic mortality risk. Moreover, several risk modifiers should be taken into account, such as concomitant arrhythmias that may affect LVEF (atrial fibrillation, premature ventricular beats) and resynchronisation therapy. Even though currently no valid cut-off values have been established, the proposed approach provides a more careful consideration of risks that may result in withholding ICD implantation in patients with low arrhythmic risk and substantial non-arrhythmic mortality risk.
Collapse
Affiliation(s)
- Anne-Lotte C J van der Lingen
- Department of Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom E Verstraelen
- Department of Cardiology, Heart Centre, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Lieselot van Erven
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joan G Meeder
- Department of Cardiology, VieCuri Medical Centre Noord-Limburg, Venlo, The Netherlands
| | - Dominic A Theuns
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Heart Centre, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, University Medical Centre Groningen, Heart Centre, University of Groningen, Groningen, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Wang J, Tang L, Bai Y, Zhao X, Tian T, Mihos CG, Delmo EMJ, Li P. Screening and identification of hub genes for ischemic cardiomyopathy and construction and validation of a clinical prognosis model using bioinformatics analysis. J Thorac Dis 2024; 16:2421-2431. [PMID: 38738215 PMCID: PMC11087634 DOI: 10.21037/jtd-23-1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/12/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Myocardial ischemia and hypoxia may result in myocardial cell necrosis, scar formation, and hyperplasia. We aim to explore the differentially expressed genes (DEGs) in ischemic cardiomyopathy (ICM), construct and identify a clinical prognosis model using bioinformatics methods, so as to screen potential biomarkers of ICM to provide a basis for the early diagnosis and treatment of ICM. METHODS Based on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database, R language was used to screen DEGs in healthy myocardial (n=5) and ICM myocardial tissues (n=12). DEGs were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI). Receiver operating characteristic (ROC) curves were drawn to verify the target genes. RESULTS A total of 259 genes with significantly changed fold change (FC) values were obtained through conditional screening, including up-regulated genes and down-regulated genes. The first two hub genes [interleukin-6 (IL-6) and Ras homologous gene family member A (RHOA)] with the largest degree value among the above up-regulated and down-regulated genes were selected and their expression values were combined in the gene chip to draw the ROC curve based on the pROC package of R language. The area under the ROC curve (AUC) values of IL-6 and RHOA were 0.956 and 0.995, respectively. The expression levels of Sqstm1, Nos2, IL-6, RHOA, and Zfp36 genes in the ICM group are lower than those in the blank control group and the difference was statistically significant (P<0.05). RHOA and Stat3 were identified as the key genes controlling the occurrence and development of ICM. CONCLUSIONS ICM is closely related to the changes of extracellular matrix (ECM) and oxidoreductase activity. The IL-6 and RHOA are expected to become potential targets for ICM treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of General Practice, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Liying Tang
- Department of General Practice, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuzhi Bai
- Department of General Practice, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Zhao
- Department of General Practice, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tian Tian
- Department of General Practice, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Christos G. Mihos
- Echocardiography Laboratory, Columbia University Irving Medical Center, Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, USA
| | | | - Pei Li
- Department of General Practice, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Bourke J, Tynan M, Stevenson H, Bremner L, Gonzalez-Fernandez O, McDiarmid AK. Arrhythmias and cardiac MRI associations in patients with established cardiac dystrophinopathy. Open Heart 2024; 11:e002590. [PMID: 38569668 PMCID: PMC10989184 DOI: 10.1136/openhrt-2023-002590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
AIMS Some patients with cardiac dystrophinopathy die suddenly. Whether such deaths are preventable by specific antiarrhythmic management or simply indicate heart failure overwhelming medical therapies is uncertain. The aim of this prospective, cohort study was to describe the occurrence and nature of cardiac arrhythmias recorded during prolonged continuous ECG rhythm surveillance in patients with established cardiac dystrophinopathy and relate them to abnormalities on cardiac MRI. METHODS AND RESULTS A cohort of 10 patients (36.3 years; 3 female) with LVEF<40% due to Duchenne (3) or Becker muscular (4) dystrophy or Duchenne muscular dystrophy-gene carrying effects in females (3) were recruited, had cardiac MRI, ECG signal-averaging and ECG loop-recorder implants. All were on standard of care heart medications and none had prior history of arrhythmias.No deaths or brady arrhythmias occurred during median follow-up 30 months (range 13-35). Self-limiting episodes of asymptomatic tachyarrhythmia (range 1-29) were confirmed in 8 (80%) patients (ventricular only 2; ventricular and atrial 6). Higher ventricular arrhythmia burden correlated with extent of myocardial fibrosis (extracellular volume%, p=0.029; native T1, p=0.49; late gadolinium enhancement, p=0.49), but not with LVEF% (p=1.0) on MRI and atrial arrhythmias with left atrial dilatation. Features of VT episodes suggested various underlying arrhythmia mechanisms. CONCLUSIONS The overall prevalence of arrhythmias was low. Even in such a small sample size, higher arrhythmia counts occurred in those with larger scar burden and greater ventricular volume, suggesting key roles for myocardial stretch as well as disease progression in arrhythmogenesis. These features overlap with the stage of left ventricular dysfunction when heart failure also becomes overt. The findings of this pilot study should help inform the design of a definitive study of specific antiarrhythmic management in dystrophinopathy. TRIAL REGISTRATION NUMBER ISRCTN15622536.
Collapse
Affiliation(s)
- John Bourke
- Department of Cardiology, NUTH NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret Tynan
- Department of Cardiology, NUTH NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Hannah Stevenson
- Cardiology Research, NUTH NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Leslie Bremner
- Cardiology Research, NUTH NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | | | - Adam K McDiarmid
- Department of Cardiology, NUTH NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Santoro F, Vitale E, Ragnatela I, Cetera R, Leopzzi A, Mallardi A, Matera A, Mele M, Correale M, Brunetti ND. Multidisciplinary approach in cardiomyopathies: From genetics to advanced imaging. Heart Fail Rev 2024; 29:445-462. [PMID: 38041702 DOI: 10.1007/s10741-023-10373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Cardiomyopathies are myocardial diseases characterized by mechanical and electrical dysfunction of the heart muscle which could lead to heart failure and life-threatening arrhythmias. Certainly, an accurate anamnesis, a meticulous physical examination, and an ECG are cornerstones in raising the diagnostic suspicion. However, cardiovascular imaging techniques are indispensable to diagnose a specific cardiomyopathy, to stratify the risk related to the disease and even to track the response to the therapy. Echocardiography is often the first exam that the patient undergoes, because of its non-invasiveness, wide availability, and cost-effectiveness. Cardiac magnetic resonance imaging allows to integrate and implement the information obtained with the echography. Furthermore, cardiomyopathies' genetic basis has been investigated over the years and the list of genetic mutations deemed potentially pathogenic is expected to grow further. The aim of this review is to show echocardiographic, cardiac magnetic resonance imaging, and genetic features of several cardiomyopathies: dilated cardiomyopathy (DMC), hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), left ventricular noncompaction cardiomyopathy (LVNC), myocarditis, and takotsubo cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Santoro
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy.
| | - Enrica Vitale
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Rosa Cetera
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | | | | | - Annalisa Matera
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Marco Mele
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Michele Correale
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, Cardiology Unit, Policlinico "Riuniti", University of Foggia, Viale Pinto n.1, 71122, Foggia, Italy
| |
Collapse
|
9
|
Qi B, Huang N, Yang ZJ, Zheng WB, Gui C. Causal Relationship Between Immune Cells/Cytokines and Dilated Cardiomyopathy. Int Heart J 2024; 65:254-262. [PMID: 38556335 DOI: 10.1536/ihj.23-215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
To date, whether there is any causal relationship between dilated cardiomyopathy (DCM) and the changes in the levels/expression of immune cells/cytokines is still unclear. This study aimed to investigate the causal relationship between the levels of various types of immune cells/cytokines and DCM. Herein, two-sample Mendelian randomization (MR) (TSMR) using R software was conducted. Single nucleotide polymorphisms (SNPs) related to the levels of various types of immune cells/cytokines and DCM were screened based on the genome-wide association studies (GWAS) obtained from open-source databases. The TSMR was conducted using inverse variance weighted (IVW), method, MR-Egger regression, weighted median method, and simple estimator based on mode to explore the causal association between the levels of each immune cell/cytokine and DCM. Sensitivity analysis was conducted using MR-Egger regression and a leave-one-out sensitivity test. A total of 1816 SNPs related to host immune status and DCM were identified. The IVW results showed a relationship between DCM and the circulating levels of basophils/eosinophils, total eosinophils-basophils, lymphocytes, and C-reactive protein (CRP). Increased lymphocytes levels (odds ratio (OR) = 0.91, 95% confidence interval (CI): 0.84-0.97, P = 0.005) were seen as protective against DCM, whereas increased basophil (OR = 1.18, 95% CI: 1.04-1.33, P = 0.022), eosinophil (OR = 1.1, 95% CI: 1.03-1.17, P = 0.007), eosinophil-basophil (OR = 1.09, 95% CI: 1.02-1.17, P = 0.014), and CRP (OR = 1.1, 95% CI: 1.03-1.18, P = 0.013) levels were associated with an increased risk of DCM. These analyses revealed that there may be a relationship between immune cells/select cytokine status and the onset of DCM. Future studies are required to further validate these outcomes in animal models and clinical trials.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Nan Huang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Zhi-Jie Yang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Wen-Bo Zheng
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Chun Gui
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
10
|
Houweling AC, Lekanne Deprez RH, Wilde AAM. Human Genetics of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:977-990. [PMID: 38884765 DOI: 10.1007/978-3-031-44087-8_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The identification of a disease-causing variant in a patient diagnosed with cardiomyopathy allows for presymptomatic testing in at risk relatives. Carriers of a pathogenic variant can subsequently be screened at intervals by a cardiologist to assess the risk for potentially life-threatening arrhythmias which can be life-saving. In addition, gene-specific recommendations for risk stratification and disease specific pharmacological options for therapy are beginning to emerge. The large variability in disease penetrance, symptoms, and prognosis, and in some families even in cardiomyopathy subtype, makes genetic counseling both of great importance and complicated.
Collapse
Affiliation(s)
- Arjan C Houweling
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Qi B, Wang HY, Ma X, Chi YF, Gui C. Identification of the Key Genes of Immune Infiltration in Dilated Cardiomyopathy. Int Heart J 2023; 64:1054-1064. [PMID: 37967988 DOI: 10.1536/ihj.23-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure. In this study, we screened the immune infiltration-related genes associated with DCM to explore the potential molecular mechanisms and provide a basis for the early diagnosis and development of new immunotherapeutic targets. A dataset related to DCM was downloaded from the Gene Expression Omnibus (GEO) database. R software was applied to the genetic differential analysis of patients with DCM and healthy individuals, and the obtained differential expressed genes (DEGs) were screened for differentially expressed immune-related genes (DEIRGs) after comparison with the immune microsatellite database. Gene functional analysis established a protein interaction network (PPI). The immune infiltration in patients with DCM versus normal controls was assessed using the CIBERSORT algorithm, the hub genes were screened using the MOCDE app, and the hubs were validated in multiple datasets. A total of 246 DEGs were screened (adj. P < 0.05 and |logFC| > 0.3), and a total of 170 DEIRGs were compared. Gene Ontology analysis showed significant (adj. P < 0.05) Biological Process entries of 591, Cellular Component of 10, and Molecular Function of 39; Kyoto Encyclopedia of Genes and Genomes showed 20 significant entries, mainly focused on cytokines involved in immune-related response, etc. A protein interaction network comprising 28 hub DEGs was constructed in combination with the PPI network interactions. DEIRG was mainly distributed in the T-cell receptor pathway by immune infiltration detection analysis, and significant changes in central memory T-cells were found by analyzing T-cell-related subpathways, where INSR, HLA-B, IFITM1, and HBEGF were significantly differentially expressed. We selected 632 hospitalized patients for validation and found that INSR and HLA-B expression were associated with DCM development by Nomogram. The expression of HLA-B in peripheral blood T-cells was higher in DCM patients than in the normal group, as verified by qRT-PCR. However, the detailed mechanism needs to be further explored.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Hai-Yan Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Xiao Ma
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Yu-Feng Chi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| | - Chun Gui
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
12
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Cardiol Clin 2023; 41:545-555. [PMID: 37743077 DOI: 10.1016/j.ccl.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
13
|
Hong H, Kim J, Min H, Kim YW, Kim TY. Association of B-Type Natriuretic Peptide Level with Clinical Outcome in Out-of-Hospital Cardiac Arrest in Emergency Department Patients. Diagnostics (Basel) 2023; 13:2522. [PMID: 37568885 PMCID: PMC10417783 DOI: 10.3390/diagnostics13152522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES B-type natriuretic peptide (BNP) is used for outcome assessment of various diseases. We designed this study to investigate whether BNP, which has been proven useful in the risk stratification of sudden cardiac arrest (SCA) of cardiac etiology, can also prove to be a valuable prognostic tool for SCA also included with non-cardiac etiology. In this study, we aim to investigate the relationship between measured BNP levels and clinical outcomes in SCA, regardless of the cause of SCA. METHODS This retrospective multicenter observational study was performed in two tertiary university hospitals and one general hospital between January 2015 and December 2020. The total number of SCA patients was 1625. The patients with out-of-hospital cardiac arrest over 19 years old and acquired laboratory data, including BNP at emergency department (ED) arrival, were included. BNP was measured during advanced Cardiovascular Life Support (ACLS). The exclusion criteria were age under 18 years, traumatic arrest, and without BNP. RESULTS The median BNP was 171.8 (range; 5-5000) pg/mL in the return of Spontaneous Circulation (ROSC), higher than No-ROSC (p = 0.007). The median BNP concentration was 99.7 (range; 5-3040.68) pg/mL in the survival to discharge, which was significantly lower than the death group (p = 0.012). The odds ratio of survival to discharge decreased proportionally to the BNP level. The odds ratio of neurologic outcome was not correlated with the BNP level. CONCLUSION In patients with SCA of all origins, low BNP concentration measured during ACLS correlated with an increased ratio of survival to discharge. However, BNP measured during ACLS was not found to be an independent factor.
Collapse
Affiliation(s)
- Heejin Hong
- Department of Emergency Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, 27, Dongguk-ro, Ilsandong-gu, Goyang 10326, Republic of Korea
| | - Jihyun Kim
- Department of Emergency Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, 27, Dongguk-ro, Ilsandong-gu, Goyang 10326, Republic of Korea
| | - Hana Min
- Department of Emergency Medicine, National Health Insurance Service Ilsan Hospital, 100, Ilsan-ro, Ilsandong-gu, Goyang 10444, Republic of Korea
| | - Yong Won Kim
- Department of Emergency Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, 27, Dongguk-ro, Ilsandong-gu, Goyang 10326, Republic of Korea
| | - Tae-Youn Kim
- Department of Emergency Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, 27, Dongguk-ro, Ilsandong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
14
|
Li X, Zhang X, Liu Y, Shu F, Shao S, Tan N, Jiang L. Relationship between serum chloride and prognosis in non-ischaemic dilated cardiomyopathy: a large retrospective cohort study. BMJ Open 2022; 12:e067061. [PMID: 36535716 PMCID: PMC9764625 DOI: 10.1136/bmjopen-2022-067061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Serum chloride has a unique homeostatic role in modulating neurohormonal pathways. Some studies have reported that hypochloremia has potential prognostic value in cardiovascular diseases; thus, we aimed to investigate the association of baseline serum chloride with clinical outcomes in elderly patients with non-ischaemic dilated cardiomyopathy (NIDCM). DESIGN Retrospective study. SETTING AND PARTICIPANT A total of 1088 patients (age ≥60 years) diagnosed with NIDCM were enrolled from January 2010 to December 2019. RESULTS Logistic regression analyses showed that serum chloride was significantly associated with in-hospital death. Receiver operating characteristic (ROC) curve analyses showed that serum chloride had excellent prognostic ability for in-hospital and long-term death (area under the curve (AUC)=0.690 and AUC=0.710, respectively). Kaplan-Meier survival analysis showed that the patients with hypochloremia had worse prognoses than those without hypochloremia (log-rank χ2=56.69, p<0.001). After adjusting for age, serum calcium, serum sodium, left ventricular ejection fraction, lg NT-proBNP and use of diuretics, serum chloride remained an independent predictor of long-term death (HR 0.934, 95% CI 0.913 to 0.954, p<0.001). CONCLUSIONS Serum chloride concentration was a prognostic indicator in elderly patients with NIDCM, and hypochloremia was significantly associated with both in-hospital and long-term poor outcomes.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Xiaonan Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Yaoxin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Fen Shu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Sisi Shao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Lei Jiang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Lv S, Zhang W, Yuan P, Lu C, Dong J, Zhang J. QiShenYiQi pill for myocardial collagen metabolism and apoptosis in rats of autoimmune cardiomyopathy. PHARMACEUTICAL BIOLOGY 2022; 60:722-728. [PMID: 35361037 PMCID: PMC8979511 DOI: 10.1080/13880209.2022.2056206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT QiShenYiQi pill (QSYQ) is a traditional Chinese medicine with a myocardial protective effect. OBJECTIVE To explore the effect of QSYQ on myocardial collagen metabolism in rats with autoimmune cardiomyopathy and explore the underlying mechanism from the aspect of apoptosis. MATERIALS AND METHODS We established an autoimmune cardiomyopathy model using Lewis rats. The rats were then randomly divided into six groups (n = 8): control, model, 3-methyladenine (15 mg/kg, intraperitoneal injection), QSYQ low-dose (135 mg/kg, gavage), QSYQ medium dose (270 mg/kg, gavage), and QSYQ high-dose (540 mg/kg, gavage) for four weeks. Van Gieson staining was applied for myocardial pathological characteristics, TUNEL fluorescence for myocardial cell apoptosis, enzyme-linked immunosorbent assay (ELISA) for serum PICP, PIIINP, and CTX-I levels, and western blot analysis for type I/III myocardial collagen, Bcl-2, Bax, and caspase-3 proteins. RESULTS Results showed that QSYQ (135, 270, or 540 mg/kg) significantly reduced the expression of myocardial type I/III collagen, and concentrations of serum PICP, PIIINP, and CTX-I in rats. Moreover, QSYQ could alleviate myocardial fibrosis more effectively at a higher dose. QSYQ could also inhibit myocardial apoptosis via downregulating Bcl-2 expression, and upregulating Bax and caspase-3 expression levels. DISCUSSION AND CONCLUSIONS The QSYQ can improve myocardial collagen metabolism by inhibiting apoptosis, which provides a potential therapeutic approach for autoimmune cardiomyopathy.
Collapse
Affiliation(s)
- Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China
| | - Wanqin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Peng Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Chunmiao Lu
- Jiashan Hospital of Traditional Chinese Medicine, Zhejiang, China
| | | | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| |
Collapse
|
16
|
Petersen A, Nagel SN, Hamm B, Elgeti T, Schaafs LA. Cardiac magnetic resonance imaging in patients with left bundle branch block: Patterns of dyssynchrony and implications for late gadolinium enhancement imaging. Front Cardiovasc Med 2022; 9:977414. [PMID: 36337885 PMCID: PMC9631472 DOI: 10.3389/fcvm.2022.977414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Left bundle branch block (LBBB) is a ventricular conduction delay with high prevalence. Aim of our study is to identify possible recurring patterns of artefacts in late gadolinium enhancement (LGE) imaging in patients with LBBB who undergo cardiac magnetic resonance imaging (MRI) and to define parameters of mechanical dyssynchrony associated with artefacts in LGE images. Materials and methods Fifty-five patients with LBBB and 62 controls were retrospectively included. Inversion time (TI) scout and LGE images were reviewed for artefacts. Dyssynchrony was identified using cardiac MRI by determining left ventricular systolic dyssynchrony indices (global, septal segments, and free wall segments) derived from strain analysis and features of mechanical dyssynchrony (apical rocking and septal flash). Results Thirty-seven patients (67%) with LBBB exhibited inhomogeneous myocardial nulling in TI scout images. Among them 25 (68%) patients also showed recurring artefact patterns in the septum or free wall on LGE images and artefacts also persisted in 18 (72%) of those cases when utilising phase sensitive inversion recovery. Only the systolic dyssynchrony index of septal segments allowed differentiation of patient subgroups (artefact/no artefact) and healthy controls (given as median, median ± interquartile range); LBBB with artefact: 10.44% (0.44–20.44%); LBBB without artefact: 6.82% (-2.18–15.83%); controls: 4.38% (1.38–7.38%); p < 0.05 with an area under the curve of 0.863 (81% sensitivity, 89% specificity). Septal flash and apical rocking were more frequent in the LBBB with artefact group than in the LBBB without artefact group (70 and 62% versus 33 and 17%; p < 0.05). Conclusion Patients with LBBB show recurring artefact patterns in LGE imaging. Use of strain analysis and evaluation of mechanical dyssynchrony may predict the occurrence of such artefacts already during the examination and counteract misinterpretation.
Collapse
|
17
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
18
|
Xintarakou A, Kariki O, Doundoulakis I, Arsenos P, Soulaidopoulos S, Laina A, Xydis P, Kordalis A, Nakas N, Theofilou A, Vlachopoulos C, Tsioufis K, Gatzoulis KA. The Role of Genetics in Risk Stratification Strategy of Dilated Cardiomyopathy. Rev Cardiovasc Med 2022; 23:305. [PMID: 39077708 PMCID: PMC11262384 DOI: 10.31083/j.rcm2309305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 07/31/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a heart disorder of diverse etiologies that affects millions of people worldwide, associated with increased mortality rate and high risk of sudden cardiac death. Patients with DCM are characterized by a wide range of clinical and pre-clinical phenotypes which are related with different outcomes. Dominant studies have failed to demonstrate the value of the left ventricular ejection fraction as the only indicator for patients' assessment and arrhythmic events prediction, thus making sudden cardiac death (SCD) risk stratification strategy improvement, more crucial than ever. The multifactorial two-step approach, examining non-invasive and invasive risk factors, represents an alternative process that enhances the accurate diagnosis and the individualization of patients' management. The role of genetic testing, regarding diagnosis and decision making, is of great importance, as pathogenic variants have been detected in several patients either they had a disease relative family history or not. At the same time there are specific genes mutations that have been associated with the prognosis of the disease. The aim of this review is to summarize the latest data regarding the genetic substrate of DCM and the value of genetic testing in patients' assessment and arrhythmic risk evaluation. Undoubtedly, the appropriate application of genetic testing and the thoughtful analysis of the results will contribute to the identification of patients who will receive major benefit from an implantable defibrillator as preventive treatment of SCD.
Collapse
Affiliation(s)
- Anastasia Xintarakou
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Ourania Kariki
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, 17674 Kallithea, Greece
| | - Ioannis Doundoulakis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Petros Arsenos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Stergios Soulaidopoulos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Aggeliki Laina
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Xydis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Athanasios Kordalis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Nikolaos Nakas
- Department of Cardiology, General Hospital of Nikaia-Piraeus “Agios Panteleimon”, Piraeus, 18454 Nikaia, Greece
| | - Alexia Theofilou
- Department of Cardiology, General Hospital of Nikaia-Piraeus “Agios Panteleimon”, Piraeus, 18454 Nikaia, Greece
| | - Charalampos Vlachopoulos
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Konstantinos A Gatzoulis
- First Cardiology Department, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
19
|
Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, Johnson B, Morales A, Regalado E, Rojahn S, Vatta M, Nussbaum RL, McNally EM. Assessment of the Diagnostic Yield of Combined Cardiomyopathy and Arrhythmia Genetic Testing. JAMA Cardiol 2022; 7:966-974. [PMID: 35947370 PMCID: PMC9366660 DOI: 10.1001/jamacardio.2022.2455] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Genetic testing can guide management of both cardiomyopathies and arrhythmias, but cost, yield, and uncertain results can be barriers to its use. It is unknown whether combined disease testing can improve diagnostic yield and clinical utility for patients with a suspected genetic cardiomyopathy or arrhythmia. Objective To evaluate the diagnostic yield and clinical management implications of combined cardiomyopathy and arrhythmia genetic testing through a no-charge, sponsored program for patients with a suspected genetic cardiomyopathy or arrhythmia. Design, Setting, and Participants This cohort study involved a retrospective review of DNA sequencing results for cardiomyopathy- and arrhythmia-associated genes. The study included 4782 patients with a suspected genetic cardiomyopathy or arrhythmia who were referred for genetic testing by 1203 clinicians; all patients participated in a no-charge, sponsored genetic testing program for cases of suspected genetic cardiomyopathy and arrhythmia at a single testing site from July 12, 2019, through July 9, 2020. Main Outcomes and Measures Positive gene findings from combined cardiomyopathy and arrhythmia testing were compared with findings from smaller subtype-specific gene panels and clinician-provided diagnoses. Results Among 4782 patients (mean [SD] age, 40.5 [21.3] years; 2551 male [53.3%]) who received genetic testing, 39 patients (0.8%) were Ashkenazi Jewish, 113 (2.4%) were Asian, 571 (11.9%) were Black or African American, 375 (7.8%) were Hispanic, 2866 (59.9%) were White, 240 (5.0%) were of multiple races and/or ethnicities, 138 (2.9%) were of other races and/or ethnicities, and 440 (9.2%) were of unknown race and/or ethnicity. A positive result (molecular diagnosis) was confirmed in 954 of 4782 patients (19.9%). Of those, 630 patients with positive results (66.0%) had the potential to inform clinical management associated with adverse clinical outcomes, increased arrhythmia risk, or targeted therapies. Combined cardiomyopathy and arrhythmia gene panel testing identified clinically relevant variants for 1 in 5 patients suspected of having a genetic cardiomyopathy or arrhythmia. If only patients with a high suspicion of genetic cardiomyopathy or arrhythmia had been tested, at least 137 positive results (14.4%) would have been missed. If testing had been restricted to panels associated with the clinician-provided diagnostic indications, 75 of 689 positive results (10.9%) would have been missed; 27 of 75 findings (36.0%) gained through combined testing involved a cardiomyopathy indication with an arrhythmia genetic finding or vice versa. Cascade testing of family members yielded 402 of 958 positive results (42.0%). Overall, 2446 of 4782 patients (51.2%) had only variants of uncertain significance. Patients referred for arrhythmogenic cardiomyopathy had the lowest rate of variants of uncertain significance (81 of 176 patients [46.0%]), and patients referred for catecholaminergic polymorphic ventricular tachycardia had the highest rate (48 of 76 patients [63.2%]). Conclusions and Relevance In this study, comprehensive genetic testing for cardiomyopathies and arrhythmias revealed diagnoses that would have been missed by disease-specific testing. In addition, comprehensive testing provided diagnostic and prognostic information that could have potentially changed management and monitoring strategies for patients and their family members. These results suggest that this improved diagnostic yield may outweigh the burden of uncertain results.
Collapse
Affiliation(s)
- Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Allison L Cirino
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts.,Institute of Health Professions, Massachusetts General Hospital, Boston
| | | | | | - John Garcia
- Invitae Corporation, San Francisco, California
| | | | | | - Ana Morales
- Invitae Corporation, San Francisco, California
| | | | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
20
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
21
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
22
|
Poovieng J, Sakboonyarat B, Nasomsong W. Bacterial etiology and mortality rate in community-acquired pneumonia, healthcare-associated pneumonia and hospital-acquired pneumonia in Thai university hospital. Sci Rep 2022; 12:9004. [PMID: 35637232 PMCID: PMC9150030 DOI: 10.1038/s41598-022-12904-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
Pneumonia is caused by infection at the pulmonary parenchyma which constitutes a crucial risk factor for morbidity and mortality. We aimed to determine the mortality rate and its risk factors as well as etiology among inpatients with community-acquired pneumonia (CAP), hospital-acquired pneumonia (HAP) and healthcare-associated pneumonia (HCAP). A hospital-based retrospective cohort study was conducted in a university hospital located in Bangkok, Thailand. A total of 250 inpatients with pneumonia was included in the present study. The inhospital mortality rate was 1.25 (95% CI 0.99-1.56) per 100 person-days. The present study reported that overall pneumonia caused by gram-negative pathogens accounted for 60.5%. P. aeruginosa was a frequent gram-negative pathogen among these participants, especially among patients with HCAP and HAP. Adjusted hazard ratio (AHR) of inhospital mortality among patients with HAP was 1.75 (95% CI 1.01-3.03) times that of those among patients with CAP, while AHR for 28-day mortality among patients with HAP compared with those with CAP was 2.81 (95% CI 1.38-5.75). Individual risks factors including cardiomyopathy, active-smoker and insulin use were potential risk factors for mortality. Initial qSOFA and acid-based disturbance should be assessed to improve proper management and outcomes.
Collapse
Affiliation(s)
- Jaturon Poovieng
- Department of Medicine, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Boonsub Sakboonyarat
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Worapong Nasomsong
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Sun M, Sun W, Zhao X, Li Z, Dalbeth N, Ji A, He Y, Qu H, Zheng G, Ma L, Wang J, Shi Y, Fang X, Chen H, Merriman TR, Li C. A machine learning-assisted model for renal urate underexcretion with genetic and clinical variables among Chinese men with gout. Arthritis Res Ther 2022; 24:67. [PMID: 35264217 PMCID: PMC8905745 DOI: 10.1186/s13075-022-02755-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/28/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The objective of this study was to develop and validate a prediction model for renal urate underexcretion (RUE) in male gout patients. METHODS Men with gout enrolled from multicenter cohorts in China were analyzed as the development and validation data sets. The RUE phenotype was defined as fractional excretion of uric acid (FEUA) <5.5%. Candidate genetic and clinical features were screened by the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. Machine learning algorithms (stochastic gradient descent (SGD), logistic regression, support vector machine) were performed to construct a predictive classifier of RUE. Models were assessed by the area under the receiver operating characteristic curve (AUC) and the precision-recall curve (PRC). RESULTS One thousand two hundred thirty-eight and two thousand twenty-three patients were enrolled as the development and validation cohorts, with 1220 and 754 randomly chosen patients genotyped, respectively. Rs3775948.GG of SLC2A9/GLUT9, rs504915.AA of NRXN2/URAT1, and 7 clinical features (age, hypertension, nephrolithiasis, blood glucose, serum urate, urea nitrogen, and creatinine) were generated by LASSO. Two additional SNP variants (rs2231142.GG of ABCG2 and rs11231463.GG of SLC22A9/OAT7) were selected based on their contributions to gout in the development cohort and their reported effects on renal urate handling. The optimized classifiers yielded AUCs of ~0.914 and PRCs of ~0.980 using these 11 variables. The SGD model was conducted in the validation cohort with an AUC of 0.899 and the PRC of 0.957. CONCLUSIONS A prediction model for RUE composed of four SNPs and readily accessible clinical features was established with acceptable accuracy for men with gout.
Collapse
Affiliation(s)
- Mingshu Sun
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenyan Sun
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuetong Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Li
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Aichang Ji
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuwei He
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guangmin Zheng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lidan Ma
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiayi Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yongyong Shi
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand. .,Department of Medicine, University of Alabama Birmingham, Birmingham, AL, USA.
| | - Changgui Li
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout & Shandong Provincial Key Laboratory of Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Wang M, Xu Y, Wang S, Zhao T, Cai H, Wang Y, Zou R, Wang C. Predictive value of electrocardiographic markers in children with dilated cardiomyopathy. Front Pediatr 2022; 10:917730. [PMID: 36081634 PMCID: PMC9445218 DOI: 10.3389/fped.2022.917730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) refers to a heterogeneous group of cardiomyopathies characterized by ventricular dilatation and myocardial systolic dysfunction, which can lead to serious consequences such as malign arrhythmia, sudden death, heart failure, and thromboembolism. With its economical, non-invasive, simple and reproducible advantages, electrocardiogram (ECG) has become an important indicator for assessing the prognosis of cardiovascular diseases. In recent years, more and more studies of electrocardiography on DCM have been carried out, but there is still a lack of a comprehensive summary of its prognostic value. This article reviews the prognostic value of electrocardiographic markers in children with DCM.
Collapse
Affiliation(s)
- Miao Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xu
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Wang
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zhao
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Cai
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Runmei Zou
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Merlo M, Grilli G, Cappelletto C, Masé M, Porcari A, Ferro MD, Gigli M, Stolfo D, Zecchin M, De Luca A, Mestroni L, Sinagra G. The Arrhythmic Phenotype in Cardiomyopathy. Heart Fail Clin 2022; 18:101-113. [PMID: 34776072 PMCID: PMC11744940 DOI: 10.1016/j.hfc.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the wide phenotypic spectrum of cardiomyopathies, sudden cardiac death (SCD) has always been the most visible and devastating disease complication. The introduction of implantable cardioverter-defibrillators for SCD prevention by the late 1980s has moved the question from how to whom we should protect from SCD, leaving clinicians with a measure of uncertainty regarding the most reliable option to guide identification of the highest-risk patients. In this review, we will go through all the available evidence in the field of arrhythmic expression and arrhythmic risk stratification in the different phenotypes of cardiomyopathies to provide practical suggestions in daily clinical management.
Collapse
Affiliation(s)
- Marco Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy.
| | - Giulia Grilli
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Chiara Cappelletto
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Marco Masé
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Aldostefano Porcari
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Matteo Dal Ferro
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Massimo Zecchin
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Antonio De Luca
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| |
Collapse
|
26
|
Pour-Ghaz I, Heckle M, Ifedili I, Kayali S, Nance C, Kabra R, Jha SK, Jefferies JL, Levine YC. Beyond Ejection Fraction: Novel Clinical Approaches Towards Sudden Cardiac Death Risk Stratification in Patients with Dilated Cardiomyopathy. Curr Cardiol Rev 2022; 18:e040821195265. [PMID: 34348632 PMCID: PMC9413734 DOI: 10.2174/1573403x17666210804125939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Implantable Cardioverter-Defibrillator (ICD) therapy is indicated for patients at risk for sudden cardiac death due to ventricular tachyarrhythmia. The most commonly used risk stratification algorithms use Left Ventricular Ejection Fraction (LVEF) to determine which patients qualify for ICD therapy, even though LVEF is a better marker of total mortality than ventricular tachyarrhythmias mortality. This review evaluates imaging tools and novel biomarkers proposed for better risk stratifying arrhythmic substrate, thereby identifying optimal ICD therapy candidates.
Collapse
MESH Headings
- Cardiomyopathy, Dilated/complications
- Cardiomyopathy, Dilated/therapy
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Humans
- Risk Assessment/methods
- Risk Factors
- Stroke Volume
- Tachycardia, Ventricular/complications
- Tachycardia, Ventricular/therapy
- Ventricular Function, Left
Collapse
Affiliation(s)
- Issa Pour-Ghaz
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mark Heckle
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ikechukwu Ifedili
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sharif Kayali
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christopher Nance
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rajesh Kabra
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Sunil K. Jha
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - John L. Jefferies
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| | - Yehoshua C. Levine
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA
- Methodist Le Bonheur Healthcare, Memphis, TN, USA
| |
Collapse
|
27
|
Titin-Related Dilated Cardiomyopathy: The Clinical Trajectory and the Role of Circulating Biomarkers in the Clinical Assessment. Diagnostics (Basel) 2021; 12:diagnostics12010013. [PMID: 35054181 PMCID: PMC8775078 DOI: 10.3390/diagnostics12010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022] Open
Abstract
Titin truncating variants (TTNtv) are known as the leading cause of inherited dilated cardiomyopathy (DCM). Nevertheless, it is unclear whether circulating cardiac biomarkers are helpful in detection and risk assessment. We sought to assess 1) early indicators of cardiotitinopathy including the serum biomarkers high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in clinically stable patients, and 2) predictors of outcome among TTNtv carriers. Our single-center cohort consisted of 108 TTNtv carriers (including 70 DCM patients) from 43 families. Clinical, laboratory and follow-up data were analyzed. The earliest abnormality was left ventricular dysfunction, present in 8, 26 and 47% of patients in the second, third and fourth decade of life, respectively. It was followed by symptoms of heart failure, linked to NT-proBNP elevation and severe left ventricular systolic dysfunction, and later by arrhythmias. Hs-cTnT serum levels were increased in the late stage of the disease only. During the median follow-up of 5.2 years, both malignant ventricular arrhythmia (MVA) and end-stage heart failure (esHF) occurred in 12% of TTNtv carriers. In multivariable analysis, NT-proBNP level ≥650 pg/mL was the best predictor of both composite endpoints (MVA and esHF) and of MVA alone. In conclusion, echocardiographic abnormalities are the first detectable anomalies in the course of cardiotitinopathies. The assessment of circulating cardiac biomarkers is not useful in the detection of the disease onset but may be helpful in risk assessment.
Collapse
|
28
|
Asher C, Puyol-Antón E, Rizvi M, Ruijsink B, Chiribiri A, Razavi R, Carr-White G. The Role of AI in Characterizing the DCM Phenotype. Front Cardiovasc Med 2021; 8:787614. [PMID: 34993240 PMCID: PMC8724536 DOI: 10.3389/fcvm.2021.787614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and dysfunction in the absence of coronary disease. Emerging evidence suggests many patients remain vulnerable to major adverse outcomes despite clear therapeutic success of modern evidence-based heart failure therapy. In this era of personalized medical care, the conventional assessment of left ventricular ejection fraction falls short in fully predicting evolution and risk of outcomes in this heterogenous group of heart muscle disease, as such, a more refined means of phenotyping this disease appears essential. Cardiac MRI (CMR) is well-placed in this respect, not only for its diagnostic utility, but the wealth of information captured in global and regional function assessment with the addition of unique tissue characterization across different disease states and patient cohorts. Advanced tools are needed to leverage these sensitive metrics and integrate with clinical, genetic and biochemical information for personalized, and more clinically useful characterization of the dilated cardiomyopathy phenotype. Recent advances in artificial intelligence offers the unique opportunity to impact clinical decision making through enhanced precision image-analysis tasks, multi-source extraction of relevant features and seamless integration to enhance understanding, improve diagnosis, and subsequently clinical outcomes. Focusing particularly on deep learning, a subfield of artificial intelligence, that has garnered significant interest in the imaging community, this paper reviews the main developments that could offer more robust disease characterization and risk stratification in the Dilated Cardiomyopathy phenotype. Given its promising utility in the non-invasive assessment of cardiac diseases, we firstly highlight the key applications in CMR, set to enable comprehensive quantitative measures of function beyond the standard of care assessment. Concurrently, we revisit the added value of tissue characterization techniques for risk stratification, showcasing the deep learning platforms that overcome limitations in current clinical workflows and discuss how they could be utilized to better differentiate at-risk subgroups of this phenotype. The final section of this paper is dedicated to the allied clinical applications to imaging, that incorporate artificial intelligence and have harnessed the comprehensive abundance of data from genetics and relevant clinical variables to facilitate better classification and enable enhanced risk prediction for relevant outcomes.
Collapse
Affiliation(s)
- Clint Asher
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Esther Puyol-Antón
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Maleeha Rizvi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Bram Ruijsink
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amedeo Chiribiri
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Gerry Carr-White
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| |
Collapse
|
29
|
Use of Cardiac Contractility Modulation in an Older Patient with Non-Ischemic Dilated Cardiomyopathy: A Case Report. Clin Pract 2021; 11:835-840. [PMID: 34842623 PMCID: PMC8628722 DOI: 10.3390/clinpract11040098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiac contractility modulation (CCM) is a novel device-based therapy used in patients with HFrEF. CCM therapy is associated with an improvement in exercise tolerance, increased quality of life, reduced HF hospitalizations, and reverse remodelling of the left ventricle in patients with HFrEF. In this case, we report the clinical benefit of CCM in an older patient with advanced HFrEF due to ischemic dilated cardiomyopathy with frequent heart failure-related hospitalizations and poor quality of life despite optimal medical therapy.
Collapse
|
30
|
Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P, Thomas D. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells 2021; 10:2767. [PMID: 34685747 PMCID: PMC8534398 DOI: 10.3390/cells10102767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmias contribute significantly to morbidity and mortality in patients with heart failure (HF). Pathomechanisms underlying arrhythmogenicity in patients with structural heart disease and impaired cardiac function include myocardial fibrosis and the remodeling of ion channels, affecting electrophysiologic properties of ventricular cardiomyocytes. The dysregulation of ion channel expression has been associated with cardiomyopathy and with the development of arrhythmias. However, the underlying molecular signaling pathways are increasingly recognized. This review summarizes clinical and cellular electrophysiologic characteristics observed in dilated cardiomyopathy (DCM) with ionic and structural alterations at the ventricular level. Furthermore, potential translational strategies and therapeutic options are highlighted.
Collapse
Affiliation(s)
- Christine Mages
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Deckers JW, Arshi B, van den Berge JC, Constantinescu AA. Preventive implantable cardioverter defibrillator therapy in contemporary clinical practice: need for more stringent selection criteria. ESC Heart Fail 2021; 8:3656-3662. [PMID: 34337903 PMCID: PMC8497353 DOI: 10.1002/ehf2.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
While the efficacy of the intracardiac defibrillators (ICDs) for primary prevention is not disputed, the relevant studies were carried out a long time ago. Most pertinent trials, including MADIT-II, SCD-Heft, and DEFINITE, recruited patients more than 20 years ago. Since then, improved therapeutic modalities including, in addition to cardiac resynchronization therapy, mineralocorticoid receptor antagonists, angiotensin receptor-neprilysin inhibitors, and, most recently, inhibitors of sodium-glucose cotransporter 2, have lowered present-day rates of mortality and of sudden cardiac death. Thus, nowadays, ICD therapy may be less effective than previously reported, and not as beneficial as many people currently believe. However, criteria for ICD implantation remain very inclusive. The patient must (only) be symptomatic and have ejection fraction (EF) ≤ 35%. The choice of EF 35% is notable because the average EF in all large trials was much lower, and clinical benefit was mainly limited to EF ≤ 30%. This EF cut-off value defines a substantial portion of potential ICD recipients. It seems therefore reasonable to limit ICD eligibility criteria in the EF range 30-35% to patients at highest risk only. We discuss and present some rational criteria to assist the clinician in improving risk stratification for preventive ICD implantation.
Collapse
Affiliation(s)
- Jaap W. Deckers
- Department of Cardiology, ThoraxcenterErasmus Medical Center RotterdamDr. Molewaterplein 40Rotterdam3015 GDThe Netherlands
- Department of EpidemiologyErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Banafsheh Arshi
- Department of EpidemiologyErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Jan C. van den Berge
- Department of Cardiology, ThoraxcenterErasmus Medical Center RotterdamDr. Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Alina A. Constantinescu
- Department of Cardiology, ThoraxcenterErasmus Medical Center RotterdamDr. Molewaterplein 40Rotterdam3015 GDThe Netherlands
| |
Collapse
|
32
|
A Novel Gene Signature to Predict Survival Time and Incident Ventricular Arrhythmias in Patients with Dilated Cardiomyopathy. DISEASE MARKERS 2021; 2020:8847635. [PMID: 33014188 PMCID: PMC7512094 DOI: 10.1155/2020/8847635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
The mortality in nonischaemic dilated cardiomyopathy (NIDCM) patients is still at a high level; sudden death in NIDCM can be caused by ventricular tachycardia. It is necessary to explore the pathogenesis of ventricular arrhythmias (VA) in NIDCM. Differentially expressed genes (DEGs) were identified by comparing the gene expression of NIDCM patients with or without VA in the gene expression profile of GSE135055. A total of 228 DEGs were obtained, and 3 genes were screened out to be significantly related to the survival time of NIDCM patients. We established a prediction model on two-gene (TOMM22, PPP2R5A) signature for the survival time of NIDCM patients. The area under the curve (AUC) was 0.75 calculated by the ROC curve analysis. These risk genes are probably new targets for exploring the pathogenesis of NIDCM with VA; the prediction model for survival time and incident ventricular arrhythmias is useful in clinical decision making for individual treatment.
Collapse
|
33
|
Kayvanpour E, Sammani A, Sedaghat-Hamedani F, Lehmann DH, Broezel A, Koelemenoglu J, Chmielewski P, Curjol A, Socie P, Miersch T, Haas J, Gi WT, Richard P, Płoski R, Truszkowska G, Baas AF, Foss-Nieradko B, Michalak E, Stępień-Wojno M, Zakrzewska-Koperska J, Śpiewak M, Zieliński T, Villard E, Te Riele ASJM, Katus HA, Frey N, Bilińska ZT, Charron P, Asselbergs FW, Meder B. A novel risk model for predicting potentially life-threatening arrhythmias in non-ischemic dilated cardiomyopathy (DCM-SVA risk). Int J Cardiol 2021; 339:75-82. [PMID: 34245791 DOI: 10.1016/j.ijcard.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Non-ischemic dilated cardiomyopathy (DCM) can be complicated by sustained ventricular arrhythmias (SVA) and sudden cardiac death (SCD). By now, left-ventricular ejection fraction (LV-EF) is the main guideline criterion for primary prophylactic ICD implantation, potentially leading either to overtreatment or failed detection of patients at risk without severely impaired LV-EF. The aim of the European multi-center study DETECTIN-HF was to establish a clinical risk calculator for individualized risk stratification of DCM patients. METHODS 1393 patients (68% male, mean age 50.7 ± 14.3y) from four European countries were included. The outcome was occurrence of first potentially life-threatening ventricular arrhythmia. The model was developed using Cox proportional hazards, and internally validated using cross validation. The model included seven independent and easily accessible clinical parameters sex, history of non-sustained ventricular tachycardia, history of syncope, family history of cardiomyopathy, QRS duration, LV-EF, and history of atrial fibrillation. The model was also expanded to account for presence of LGE as the eight8h parameter for cases with available cMRI and scar information. RESULTS During a mean follow-up period of 57.0 months, 193 (13.8%) patients experienced an arrhythmic event. The calibration slope of the developed model was 00.97 (95% CI 0.90-1.03) and the C-index was 0.72 (95% CI 0.71-0.73). Compared to current guidelines, the model was able to protect the same number of patients (5-year risk ≥8.5%) with 15% fewer ICD implantations. CONCLUSIONS This DCM-SVA risk model could improve decision making in primary prevention of SCD in non-ischemic DCM using easily accessible clinical information and will likely reduce overtreatment.
Collapse
MESH Headings
- Adult
- Aged
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/epidemiology
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/epidemiology
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Female
- Humans
- Male
- Middle Aged
- Risk Factors
- Stroke Volume
- Ventricular Function, Left
Collapse
Affiliation(s)
- Elham Kayvanpour
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Arjan Sammani
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Farbod Sedaghat-Hamedani
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - David H Lehmann
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Alicia Broezel
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Jan Koelemenoglu
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Przemysław Chmielewski
- Department of Medical Biology, The Cardinal Stefan Wyszyński National Institute of Cardiology, Warsaw, Poland
| | - Angelique Curjol
- APHP, Referral Center for Hereditary Heart Disease, Department of Genetics and Department of Cardiology, Pitié Salpêtrière Hospital, Paris, France
| | - Pierre Socie
- APHP, Referral Center for Hereditary Heart Disease, Department of Genetics and Department of Cardiology, Pitié Salpêtrière Hospital, Paris, France; Department of Cardiology, Center Hospitalier de Chartres, Chartres, France
| | - Tobias Miersch
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany
| | - Jan Haas
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Weng-Tein Gi
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Pascale Richard
- APHP, UF Molecular Cardiogenetics and Myogenetics, Pitié Salpêtrière Hospital, Paris, France
| | - Rafał Płoski
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Grażyna Truszkowska
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Annette F Baas
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Bogna Foss-Nieradko
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Ewa Michalak
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Małgorzata Stępień-Wojno
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | - Mateusz Śpiewak
- Department of Radiology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Tomasz Zieliński
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Eric Villard
- Sorbonne Université, INSERM UMRS 1166 and ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Anneline S J M Te Riele
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Hugo A Katus
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Norbert Frey
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Zofia T Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Philippe Charron
- APHP, Referral Center for Hereditary Heart Disease, Department of Genetics and Department of Cardiology, Pitié Salpêtrière Hospital, Paris, France; Sorbonne Université, INSERM UMRS 1166 and ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Institute of Cardiovascular Science and Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | - Benjamin Meder
- University Hospital of Heidelberg, Cardiology, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany; Department of Genetics, Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
CMR-Based Risk Stratification of Sudden Cardiac Death and Use of Implantable Cardioverter-Defibrillator in Non-Ischemic Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22137115. [PMID: 34281168 PMCID: PMC8268120 DOI: 10.3390/ijms22137115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Non-ischemic cardiomyopathy (NICM) is one of the most important entities for arrhythmias and sudden cardiac death (SCD). Previous studies suggest a lower benefit of implantable cardioverter–defibrillator (ICD) therapy in patients with NICM as compared to ischemic cardiomyopathy (ICM). Nevertheless, current guidelines do not differentiate between the two subgroups in recommending ICD implantation. Hence, risk stratification is required to determine the subgroup of patients with NICM who will likely benefit from ICD therapy. Various predictors have been proposed, among others genetic mutations, left-ventricular ejection fraction (LVEF), left-ventricular end-diastolic volume (LVEDD), and T-wave alternans (TWA). In addition to these parameters, cardiovascular magnetic resonance imaging (CMR) has the potential to further improve risk stratification. CMR allows the comprehensive analysis of cardiac function and myocardial tissue composition. A range of CMR parameters have been associated with SCD. Applicable examples include late gadolinium enhancement (LGE), T1 relaxation times, and myocardial strain. This review evaluates the epidemiological aspects of SCD in NICM, the role of CMR for risk stratification, and resulting indications for ICD implantation.
Collapse
|
35
|
Histone deacetylase 2-dependent ventricular electrical remodeling in a porcine model of early heart failure. Life Sci 2021; 281:119769. [PMID: 34186046 DOI: 10.1016/j.lfs.2021.119769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
AIMS Heart failure (HF) is linked to electrical remodeling that promotes ventricular arrhythmias. Underlying molecular signaling is insufficiently understood, in particular concerning patients with early disease stages. Previous observations suggest a key role for epigenetic mechanisms in cardiac remodeling processes. We hypothesized that histone deacetylases (HDACs) 1 and 2 contribute to cellular electrophysiological dysregulation in ventricular cardiomyocytes during HF development. MATERIALS AND METHODS HDAC and ion channel expression was quantified in a porcine model of early HF induced by short-term atrial tachypacing, resulting in atrial fibrillation with rapid ventricular rate response. Anti-Hdac1 and anti-Hdac2 siRNA treatment was employed in neonatal murine cardiomyocytes (NMCM) to study effects of HDACs on ion channel mRNA expression and action potential duration (APD). KEY FINDINGS Early HF was characterized by mild reduction of left ventricular ejection fraction, prolonged QTc intervals, and increased ventricular effective refractory periods. Delayed repolarization was linked to significant downregulation of HDAC2 in left ventricular (LV) tissue. In addition, there was a tendency towards reduced transcript expression of KCNJ2/Kir2.1 K+ channels. In NMCM, knock-down of Hdac2 recapitulated AP prolongation. Finally, siRNA-mediated suppression of Hdac2 reduced Kcnh2/Kv11.1 K+ channel expression. SIGNIFICANCE Suppression of HDAC2 is linked to ventricular electrical remodeling of APD and ion channel expression in early stages of heart failure. This previously unrecognized mechanism may serve as basis for future approaches to prevention and treatment of ventricular arrhythmias.
Collapse
|
36
|
Anghel L, Sascău R, Zota IM, Stătescu C. Well-Known and Novel Serum Biomarkers for Risk Stratification of Patients with Non-ischemic Dilated Cardiomyopathy. Int J Mol Sci 2021; 22:5688. [PMID: 34073616 PMCID: PMC8198011 DOI: 10.3390/ijms22115688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy encompasses a wide spectrum of myocardial disorders, characterized by left ventricular dilatation with systolic impairment and increased risk of sudden cardiac death. In spite of all the therapeutic progress that has been made in recent years, dilated cardiomyopathy continues to be an important cause of cardiac transplant, being associated with an enormous cost burden for health care systems worldwide. Predicting the prognosis of patients with dilated cardiomyopathy is essential to individualize treatment. Late gadolinium enhancement-cardiac magnetic resonance imaging, microvolt T-wave alternans, and genetic testing have emerged as powerful tools in predicting sudden cardiac death occurrence and maximizing patient's selection. Despite all these new diagnostic modalities, additional tests to complement or replace current tools are required for better risk stratification. Therefore, biomarkers are an easy and important tool that can help to detect patients at risk of adverse cardiovascular events. Additionally, identifying potential biomarkers involved in dilated cardiomyopathy can provide us important information regarding the diagnostic, prognostic, risk stratification, and response to treatment for these patients. Many potential biomarkers have been studied in patients with dilated cardiomyopathy, but only a few have been adopted in current practice. Therefore, the aim of our review is to provide the clinicians with an update on the well-known and novel biomarkers that can be useful for risk stratification of patients with non-ischemic dilated cardiomyopathy.
Collapse
Affiliation(s)
- Larisa Anghel
- Internal Medicine Department, ”Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (L.A.); (I.M.Z.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| | - Radu Sascău
- Internal Medicine Department, ”Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (L.A.); (I.M.Z.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| | - Ioana Mădălina Zota
- Internal Medicine Department, ”Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (L.A.); (I.M.Z.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| | - Cristian Stătescu
- Internal Medicine Department, ”Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania; (L.A.); (I.M.Z.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| |
Collapse
|
37
|
Downgrade of cardiac defibrillator devices to pacemakers in elderly heart failure patients: clinical considerations and the importance of shared decision-making. Neth Heart J 2021; 29:243-252. [PMID: 33710494 PMCID: PMC8062634 DOI: 10.1007/s12471-021-01555-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 11/11/2022] Open
Abstract
Implantable cardioverter defibrillators are implanted on a large scale in patients with heart failure (HF) for the prevention of sudden cardiac death. There are different scenarios in which defibrillator therapy is no longer desired or indicated, and this is occurring increasingly in elderly patients. Usually device therapy is continued until the device has reached battery depletion. At that time, the decision needs to be made to either replace it or to downgrade to a pacing-only device. This decision is dependent on many factors, including the vitality of the patient and his/her preferences, but may also be influenced by changes in recommendations in guidelines. In the last few years, there has been an increased awareness that discussions around these decisions are important and useful. Advanced care planning and shared decision-making have become important and are increasingly recognised as such. In this short review we describe six elderly patients with HF, in whose cases we discussed these issues, and we aim to provide some scientific and ethical rationale for clinical decision-making in this context. Current guidelines advocate the discussion of end-of-life options at the time of device implantation, and physicians should realise that their choices influence patients’ options in this critical phase of their illness.
Collapse
|
38
|
Rodríguez-Angulo HO, Lamsfus-Calle A, Isoler-Alcaráz J, Galán-Martínez J, Herreros-Cabello A, Callejas-Hernández F, Chorro-de-Villaceballos MA, Maza MC, Santi-Rocca J, Poveda C, Moral-Salmoral JD, Marques J, Mendoza I, Ramírez JD, Guhl F, Carrillo I, Pérez-Tanoira R, Górgolas M, Pérez-Ayala A, Monge-Maillo B, Norman F, Pérez-Molina JA, López-Vélez R, Fresno M, Gironès N. Autoantibodies against the immunodominant sCha epitope discriminate the risk of sudden death in chronic Chagas cardiomyopathy. Ann N Y Acad Sci 2021; 1497:27-38. [PMID: 33682151 DOI: 10.1111/nyas.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
In Chagas disease (ChD) caused by Trypanosoma cruzi, new biomarkers to predict chronic cardiac pathology are urgently needed. Previous studies in chagasic patients with mild symptomatology showed that antibodies against the immunodominant R3 epitope of sCha, a fragment of the human basic helix-loop-helix transcription factor like 5, correlated with cardiac pathology. To validate sCha as a biomarker and to understand the origin of anti-sCha antibodies, we conducted a multicenter study with several cohorts of chagasic patients with severe cardiac symptomatology. We found that levels of antibodies against sCha discriminated the high risk of sudden death, indicating they could be useful for ChD prognosis. We investigated the origin of the antibodies and performed an alanine scan of the R3 epitope. We identified a minimal epitope MRQLD, and a BLAST search retrieved several T. cruzi antigens. Five of the hits had known or putative functions, of which phosphonopyruvate decarboxylase showed the highest cross-reactivity with sCha, confirming the role of molecular mimicry in the development of anti-sCha antibodies. Altogether, we demonstrate that the development of antibodies against sCha, which originated by molecular mimicry with T. cruzi antigens, could discriminate electrocardiographic alterations associated with a high risk of sudden death.
Collapse
Affiliation(s)
| | - Andrés Lamsfus-Calle
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,VIVEbiotech S. L., Donostia-San Sebastián, Spain
| | | | - Javier Galán-Martínez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | | | | | - María A Chorro-de-Villaceballos
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - María C Maza
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Julien Santi-Rocca
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Science and Healthcare for Oral Welfare - SHOW, Toulouse, France
| | - Cristina Poveda
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | - Juan Marques
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Iván Mendoza
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Parasitología Tropical - CIMPAT, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Irene Carrillo
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Ramón Pérez-Tanoira
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain.,Departamento de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain.,Department of Microbiology, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - Miguel Górgolas
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Ana Pérez-Ayala
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain.,Hospital 12 de Octubre, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Francesca Norman
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José A Pérez-Molina
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rogelio López-Vélez
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
39
|
Sammani A, Baas AF, Asselbergs FW, te Riele ASJM. Diagnosis and Risk Prediction of Dilated Cardiomyopathy in the Era of Big Data and Genomics. J Clin Med 2021; 10:921. [PMID: 33652931 PMCID: PMC7956169 DOI: 10.3390/jcm10050921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and life-threatening ventricular arrhythmias (LTVA). Work-up and risk stratification of DCM is clinically challenging, as there is great heterogeneity in phenotype and genotype. Throughout the last decade, improved genetic testing of patients has identified genotype-phenotype associations and enhanced evaluation of at-risk relatives leading to better patient prognosis. The field is now ripe to explore opportunities to improve personalised risk assessments. Multivariable risk models presented as "risk calculators" can incorporate a multitude of clinical variables and predict outcome (such as heart failure hospitalisations or LTVA). In addition, genetic risk scores derived from genome/exome-wide association studies can estimate an individual's lifetime genetic risk of developing DCM. The use of clinically granular investigations, such as late gadolinium enhancement on cardiac magnetic resonance imaging, is warranted in order to increase predictive performance. To this end, constructing big data infrastructures improves accessibility of data by using electronic health records, existing research databases, and disease registries. By applying methods such as machine and deep learning, we can model complex interactions, identify new phenotype clusters, and perform prognostic modelling. This review aims to provide an overview of the evolution of DCM definitions as well as its clinical work-up and considerations in the era of genomics. In addition, we present exciting examples in the field of big data infrastructures, personalised prognostic assessment, and artificial intelligence.
Collapse
Affiliation(s)
- Arjan Sammani
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3582 CX Utrecht, The Netherlands; (A.S.); (F.W.A.)
| | - Annette F. Baas
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, University of Utrecht, 3582 CX Utrecht, The Netherlands;
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3582 CX Utrecht, The Netherlands; (A.S.); (F.W.A.)
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London WC1E 6BT, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London WC1E 6BT, UK
| | - Anneline S. J. M. te Riele
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3582 CX Utrecht, The Netherlands; (A.S.); (F.W.A.)
| |
Collapse
|
40
|
Cardiac Magnetic Resonance Imaging for Nonischemic Cardiac Disease in Out-of-Hospital Cardiac Arrest Survivors Treated with Targeted Temperature Management: A Multicenter Retrospective Analysis. J Clin Med 2021; 10:jcm10040794. [PMID: 33669339 PMCID: PMC7920317 DOI: 10.3390/jcm10040794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 01/10/2023] Open
Abstract
(1) Background: Cardiac magnetic resonance (CMR) imaging is an emerging tool for investigating nonischemic cardiomyopathies and cardiac systemic disease. However, data on the cardiac arrest population are limited. This study aimed to evaluate the usefulness of CMR imaging in out-of-hospital cardiac arrest (OHCA) survivors treated with targeted temperature management (TTM). (2) Methods: We conducted the retrospective observational study using a multicenter registry of adult non-traumatic comatose OHCA survivors who underwent TTM between January 2010 and December 2019. Of the 949 patients, 389 with OHCA of non-cardiac cause, 145 with significant lesions in the coronary artery, 151 who died during TTM, 81 without further evaluation due to anticipated poor neurological outcome, and 51 whose etiology is underlying disease were excluded. In 36 of the 132 remaining patients, the etiologies included variant angina, long QT syndrome, and complete atrioventricular block in ancillary studies. Fifty-six patients were diagnosed idiopathic ventricular fibrillation without CMR. (3) Results: CMR imaging was performed in the remaining 40 patients with cardiac arrest of unknown cause. The median time from cardiac arrest to CMR imaging was 10.1 days. The CMR finding was normal in 23 patients, non-diagnostic in 12, and abnormal in 5, which suggested non-ischemic cardiomyopathy but did not support the final diagnosis. (4) Conclusions: CMR imaging may not be useful for identifying unknown causes of cardiac arrest in OHCA survivors treated with targeted temperature management without definitive diagnosis even after coronary angiography, echocardiography, and electrophysiology studies. However, further large-scale studies will be needed to confirm these findings.
Collapse
|
41
|
Abboud J, Boehmer AA, Georgopoulos S, Ehrlich JR. ICD-Therapie bei nicht ischämischer dilatativer Kardiomyopathie. AKTUELLE KARDIOLOGIE 2020. [DOI: 10.1055/a-1294-9700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ZusammenfassungDerzeit wird über den Stellenwert primärprophylaktisch implantierter Kardioverter-Defibrillatoren (ICD) bei Patienten mit nicht ischämischer dilatativer Kardiomyopathie (NIDCM) diskutiert. Frühere Studien (DEFINITE, SCD-HeFT) schlossen Patienten ein, die nach heutigem Standard nicht optimal medikamentös und ohne kardiale Resynchronisation (CRT) therapiert wurden. Diese Studien bilden die Grundlage für die Empfehlung der ICD zur Primärprophylaxe des plötzlichen Herztods. Die DANISH-Studie (an der Patienten mit kontemporärer optimaler medikamentöser Therapie sowie hohem Prozentsatz von CRT teilnahmen) zeigte einen Effekt des ICD auf die kardiovaskuläre Sterblichkeit, jedoch ohne Nutzen in Bezug auf Gesamtletalität. Einige Faktoren wie Alter, Komorbiditäten oder Rechtsventrikeldysfunktion fordern Aufmerksamkeit. Insgesamt besteht die Leitlinienempfehlung fort, primärprophylaktische ICD bei NIDCM zu implantieren, wenn eine optimale medikamentöse Therapie und eine
Lebenserwartung > 5 Jahren bestehen.
Collapse
Affiliation(s)
- Jaber Abboud
- Medizinische Klinik I, St. Josefs-Hospital Wiesbaden GmbH, Wiesbaden, Deutschland
| | - Andreas A. Boehmer
- Medizinische Klinik I, St. Josefs-Hospital Wiesbaden GmbH, Wiesbaden, Deutschland
| | | | - Joachim R. Ehrlich
- Medizinische Klinik I, St. Josefs-Hospital Wiesbaden GmbH, Wiesbaden, Deutschland
| |
Collapse
|
42
|
Lippi M, Stadiotti I, Pompilio G, Sommariva E. Human Cell Modeling for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6388. [PMID: 32887493 PMCID: PMC7503257 DOI: 10.3390/ijms21176388] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| |
Collapse
|
43
|
Emerging role of genetic analysis for stratification of sudden cardiac death risk in dilated cardiomyopathy: An illustrative case. HeartRhythm Case Rep 2020; 6:499-502. [PMID: 32817827 PMCID: PMC7424303 DOI: 10.1016/j.hrcr.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Nussinovitch U. Normal ranges and potential modifiers of T-wave morphology parameters among healthy individuals: A meta-analysis. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2020; 43:655-663. [PMID: 32285458 DOI: 10.1111/pace.13918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND T-wave morphology parameters, such as total cosine R-to-T (TCRT), T-wave loop dispersion (TWLD), T-wave morphology dispersion (TMD), and T-wave residuum (TWR), were suggested to be robust markers for adverse cardiovascular outcomes. Yet, the normal range of these parameters is unknown. This study aimed to evaluate the weighted normal values of T-wave morphology parameters of healthy individuals and study the effect of potential modifiers. METHODS A systematic search of studies published in PubMed was conducted. Only those reporting on control groups of healthy individuals were included. Weighted means were calculated for TCRT, TWLD, TMD, and TWR. Linear regression analysis was conducted for age, percentage of males, heart rate, and QTc. RESULTS The weighted TCRT was 0.40 ± 0.05, significantly higher than the various cutoffs previously suggested to identify high risk. There was some overlap between the results of weighted normal TMD (19.42 ± 6.77°), TWLD (38.51 ± 0.31), and relative TWR (0.118 ± 0.056%) and reports on the same parameters from patients with cardiovascular disease. Women were also characterized by higher TWLD, TMD, and relative TWR. TCRT was negatively correlated with age and heart rate, and positively correlated with QTc duration, although all associations were weak (R2 < 0.9). CONCLUSIONS T-wave morphology parameters reported in the medical literature span a broad range of values in healthy individuals. Seemingly abnormal values of TWLD, TMD, and relative TWR were often reported in healthy adults. The variability between studies may stem from methodological issues. Therefore, standardizing the methodology for measuring T-wave morphology is imperative.
Collapse
Affiliation(s)
- Udi Nussinovitch
- Department of Cardiology and Applicative Cardiovascular Research Center (ACRC), Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Yao J, Peters S, Zentner D, Voukelatos J. 586 Prevented Sudden Cardiac Death in DCM With RBM20 Mutation: A Case and Discussion Highlighting Personalised Genomic Medicine. Heart Lung Circ 2020. [DOI: 10.1016/j.hlc.2020.09.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|