1
|
Salar A, Vuković Đerfi K, Pačić A, Škrtić A, Cacev T, Kapitanović S. Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers (Basel) 2024; 16:2916. [PMID: 39199686 PMCID: PMC11353200 DOI: 10.3390/cancers16162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Microsatellite instability (MSI) has been recognized as an important factor in colorectal cancer (CRC). It arises due to deficient mismatch repair (MMR), mostly attributed to MLH1 and MSH2 loss of function leading to a global MMR defect affecting mononucleotide and longer microsatellite loci. Recently, microsatellite instability at tetranucleotide loci, independent of the global MMR defect context, has been suggested to represent a distinct entity with possibly different consequences for tumorigenesis. It arises as a result of an isolated MSH3 loss of function due to its translocation from the nucleus to the cytoplasm under the influence of interleukin-6 (IL-6). In this study the influence of MSH3 and IL-6 signaling pathway polymorphisms (MSH3 exon 1, MSH3+3133A/G, IL-6-174G/C, IL-6R+48892A/C, and gp130+148G/C) on the occurrence of different types of microsatellite instability in sporadic CRC was examined by PCR-RFLP and real-time PCR SNP analyses. A significant difference in distribution of gp130+148G/C genotypes (p = 0.037) and alleles (p = 0.031) was observed in CRC patients with the C allele being less common in tumors with di- and tetranucleotide instability (isolated MSH3 loss of function) compared to tumors without microsatellite instability. A functional polymorphism in gp130 might modulate the IL-6 signaling pathway, directing it toward the occurrence of microsatellite instability corresponding to the IL-6-mediated MSH3 loss of function.
Collapse
Affiliation(s)
- Anamarija Salar
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (A.S.); (K.V.Đ.)
| | - Kristina Vuković Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (A.S.); (K.V.Đ.)
| | - Arijana Pačić
- Department of Pathology and Cytology, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Anita Škrtić
- Department of Pathology and Cytology, University Hospital Merkur, 10000 Zagreb, Croatia;
| | - Tamara Cacev
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (A.S.); (K.V.Đ.)
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (A.S.); (K.V.Đ.)
| |
Collapse
|
2
|
CARETHERS JOHNM. THE JEREMIAH METZGER LECTURE: ENVIRONMENTAL INFLUENCES ON COLORECTAL CANCER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:181-199. [PMID: 39135583 PMCID: PMC11316861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gene-environmental interactions create risk profiles for sporadic cancer development in patients with colorectal cancer (CRC). For instance, a person's socioeconomic status over their lifetime can affect their level of physical activity and type of diet, and their exposure to tobacco and alcohol may affect their gut microbiome and ultimate risk for developing CRC. Metabolic disease can independently or further change the gut microbiome and alter the typical timing of CRC development, such as is observed and linked with early-onset disease. Patients with microsatellite unstable tumors where DNA mismatch repair is defective have altered immune environments as a result of tumor hypermutability and neoantigen generation, allowing for immune checkpoint inhibitor susceptibility; in such cases, the genetics of the tumor changed the environment. The environment can also change the genetics, where interleukin-6-generated inflammation can inactivate MSH3 protein function that is associated with CRCs which are more metastatic, and patients show poor outcomes. Some specific aspects of the local microbial environment that may be influenced by diet and metabolism are associated with CRC risk, such as Fusobacterium nucleatum infection, and may affect the initiation, perpetuation, and spread of CRC. Overall, both the macro- and microenvironments associated with a person play a major role in CRC formation, progression, and metastases.
Collapse
|
3
|
Medina-Rivera M, Phelps S, Sridharan M, Becker J, Lamb N, Kumar C, Sutton M, Bielinsky A, Balakrishnan L, Surtees J. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res 2023; 51:12185-12206. [PMID: 37930834 PMCID: PMC10711559 DOI: 10.1093/nar/gkad934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.
Collapse
Affiliation(s)
- Melisa Medina-Rivera
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Samantha Phelps
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Madhumita Sridharan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jordan Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Charanya Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Anja Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| |
Collapse
|
4
|
Giannopoulou N, Constantinou C. Recent Developments in Diagnostic and Prognostic Biomarkers for Colorectal Cancer: A Narrative Review. Oncology 2023; 101:675-684. [PMID: 37364542 DOI: 10.1159/000531474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Colorectal cancer was reported as the second most common cause of cancer death worldwide, in the year 2020. This disease is an important public health problem considering its high incidence and mortality rates. SUMMARY The molecular events that lead to colorectal cancer include genetic and epigenetic abnormalities. Some of the most important molecular mechanisms involved include the APC/β-catenin pathway, the microsatellite pathway, and the CpG island hypermethylation. Evidence in the literature supports a role for the microbiota in the development of colon carcinogenesis, and specific microbes may contribute to or prevent carcinogenesis. Progress in prevention, screening, and management has improved the overall prognosis of the disease when diagnosed at an early stage; yet metastatic disease continues to have a poor long-term prognosis due to late-stage diagnosis and treatment failure. Biomarkers are a key tool for early detection and prognosis and aim to reduce morbidity and mortality associated with colorectal cancer. The main focus of this narrative review is to provide an update on the recent development of diagnostic and prognostic biomarkers in stool, blood, and tumor tissue samples. KEY MESSAGES The review focuses on recent investigations in microRNAs, cadherins, Piwi-interacting RNAs, circulating cell-free DNA, and microbiome biomarkers which can be applied for the diagnosis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Nefeli Giannopoulou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
5
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Yakushina V, Kavun A, Veselovsky E, Grigoreva T, Belova E, Lebedeva A, Mileyko V, Ivanov M. Microsatellite Instability Detection: The Current Standards, Limitations, and Misinterpretations. JCO Precis Oncol 2023; 7:e2300010. [PMID: 37315263 DOI: 10.1200/po.23.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Valentina Yakushina
- OncoAtlas LLC, Moscow, Russian Federation
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russian Federation
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
| |
Collapse
|
7
|
Song Y, Baxter SS, Dai L, Sanders C, Burkett S, Baugher RN, Mellott SD, Young TB, Lawhorn HE, Difilippantonio S, Karim B, Kadariya Y, Pinto LA, Testa JR, Shoemaker RH. Mesothelioma Mouse Models with Mixed Genomic States of Chromosome and Microsatellite Instability. Cancers (Basel) 2022; 14:3108. [PMID: 35804881 PMCID: PMC9264972 DOI: 10.3390/cancers14133108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Malignant mesothelioma (MMe) is a rare malignancy originating from the linings of the pleural, peritoneal and pericardial cavities. The best-defined risk factor is exposure to carcinogenic mineral fibers (e.g., asbestos). Genomic studies have revealed that the most frequent genetic lesions in human MMe are mutations in tumor suppressor genes. Several genetically engineered mouse models have been generated by introducing the same genetic lesions found in human MMe. However, most of these models require specialized breeding facilities and long-term exposure of mice to asbestos for MMe development. Thus, an alternative model with high tumor penetrance without asbestos is urgently needed. We characterized an orthotopic model using MMe cells derived from Cdkn2a+/-;Nf2+/- mice chronically injected with asbestos. These MMe cells were tumorigenic upon intraperitoneal injection. Moreover, MMe cells showed mixed chromosome and microsatellite instability, supporting the notion that genomic instability is relevant in MMe pathogenesis. In addition, microsatellite markers were detectable in the plasma of tumor-bearing mice, indicating a potential use for early cancer detection and monitoring the effects of interventions. This orthotopic model with rapid development of MMe without asbestos exposure represents genomic instability and specific molecular targets for therapeutic or preventive interventions to enable preclinical proof of concept for the intervention in an immunocompetent setting.
Collapse
Affiliation(s)
- Yurong Song
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Shaneen S. Baxter
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Lisheng Dai
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Chelsea Sanders
- Animal Research Technical Support of Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (C.S.); (S.D.)
| | - Sandra Burkett
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Ryan N. Baugher
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Stephanie D. Mellott
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Todd B. Young
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Heidi E. Lawhorn
- CLIA Molecular Diagnostics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (R.N.B.); (S.D.M.); (T.B.Y.); (H.E.L.)
| | - Simone Difilippantonio
- Animal Research Technical Support of Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (C.S.); (S.D.)
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Yuwaraj Kadariya
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.K.); (J.R.T.)
| | - Ligia A. Pinto
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (S.S.B.); (L.D.); (L.A.P.)
| | - Joseph R. Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (Y.K.); (J.R.T.)
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R, Aleanizy FS. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:169. [PMID: 35010119 PMCID: PMC8746463 DOI: 10.3390/nano12010169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a serious disease that affects millions of people throughout the world, despite considerable advances in therapy. The formation of colorectal adenomas and invasive adenocarcinomas is the consequence of a succession of genetic and epigenetic changes in the normal colonic epithelium. Genetic and epigenetic processes associated with the onset, development, and metastasis of sporadic CRC have been studied in depth, resulting in identifying biomarkers that might be used to predict behaviour and prognosis beyond staging and influence therapeutic options. A novel biomarker, or a group of biomarkers, must be discovered in order to build an accurate and clinically useful test that may be used as an alternative to conventional methods for the early detection of CRC and to identify prospective new therapeutic intervention targets. To minimise the mortality burden of colorectal cancer, new screening methods with higher accuracy and nano-based diagnostic precision are needed. Cytotoxic medication has negative side effects and is restricted by medication resistance. One of the most promising cancer treatment techniques is the use of nano-based carrier system as a medication delivery mechanism. To deliver cytotoxic medicines, targeted nanoparticles might take advantage of differently expressed molecules on the surface of cancer cells. The use of different compounds as ligands on the surface of nanoparticles to interact with cancer cells, enabling the efficient delivery of antitumor medicines. Formulations based on nanoparticles might aid in early cancer diagnosis and help to overcome the limitations of traditional treatments, including low water solubility, nonspecific biodistribution, and restricted bioavailability. This article addresses about the molecular pathogenesis of CRC and highlights about biomarkers. It also provides conceptual knowledge of nanotechnology-based diagnostic techniques and therapeutic approaches for malignant colorectal cancer.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur 492015, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| |
Collapse
|
9
|
Laycock A, Kang A, Ang S, Texler M, Bentel J. Lack of correlation between MSH3 immunohistochemistry and microsatellite analysis for the detection of elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) in colorectal cancers. Hum Pathol 2021; 118:9-17. [PMID: 34537247 DOI: 10.1016/j.humpath.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Immunohistochemical evaluation of mismatch repair protein (MMR) expression is an important screening tool in diagnostic pathology, where it is routinely used to identify subsets of colorectal cancers (CRCs) with either inherited or sporadic forms of microsatellite instability (MSI). MSH3 is not included in current MMR panels, although aberrant MSH3 expression is reported to occur in 40-60% of CRCs and is associated with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and a worse prognosis. In this study, we applied MSH3 immunohistochemistry and tetranucleotide MSI analysis to a cohort of 250 unselected CRCs to evaluate the potential use of the methods in routine practice. Partial, complete, and focal loss of nuclear MSH3 and its cytoplasmic mislocalization were evident in 67% of tumors, whereas MSI was evident in two to six of a panel of six tetranucleotide repeats in 46% of cases. However, concordance between MSH3 immunohistochemistry and tetranucleotide MSI results was only 61%, indicating the unsuitability of this combination of tests in routine pathology practice. MSH3 immunostaining was compromised in areas of tissue crush and autolysis, which are common in biopsy and surgical samples, potentially mitigating against its routine use. Although tetranucleotide MSI is clearly evident in a subset of CRCs, further development of validated sets of tetranucleotide repeats and either MSH3 or other immunohistochemical markers will be required to include EMAST testing in the routine evaluation of CRCs in clinical practice.
Collapse
Affiliation(s)
- Andrew Laycock
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia; University of Notre Dame, Fremantle, 6160 Western Australia, Australia; Curtin University, Perth, 6102 Western Australia, Australia.
| | - Alexandra Kang
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| | - Sophia Ang
- Clinical Services, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| | - Michael Texler
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| | - Jacqueline Bentel
- PathWest Anatomical Pathology, Fiona Stanley Hospital, Perth, 6150 Western Australia, Australia
| |
Collapse
|
10
|
Shin G, Greer SU, Hopmans E, Grimes SM, Lee H, Zhao L, Miotke L, Suarez C, Almeda AF, Haraldsdottir S, Ji HP. Profiling diverse sequence tandem repeats in colorectal cancer reveals co-occurrence of microsatellite and chromosomal instability involving Chromosome 8. Genome Med 2021; 13:145. [PMID: 34488871 PMCID: PMC8420050 DOI: 10.1186/s13073-021-00958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
We developed a sensitive sequencing approach that simultaneously profiles microsatellite instability, chromosomal instability, and subclonal structure in cancer. We assessed diverse repeat motifs across 225 microsatellites on colorectal carcinomas. Our study identified elevated alterations at both selected tetranucleotide and conventional mononucleotide repeats. Many colorectal carcinomas had a mix of genomic instability states that are normally considered exclusive. An MSH3 mutation may have contributed to the mixed states. Increased copy number of chromosome arm 8q was most prevalent among tumors with microsatellite instability, including a case of translocation involving 8q. Subclonal analysis identified co-occurring driver mutations previously known to be exclusive.
Collapse
Affiliation(s)
- GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Erik Hopmans
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Lan Zhao
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Laura Miotke
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Carlos Suarez
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Alison F Almeda
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Sigurdis Haraldsdottir
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA. .,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
11
|
Rüschoff J, Baretton G, Bläker H, Dietmaier W, Dietel M, Hartmann A, Horn LC, Jöhrens K, Kirchner T, Knüchel R, Mayr D, Merkelbach-Bruse S, Schildhaus HU, Schirmacher P, Tiemann M, Tiemann K, Weichert W, Büttner R. MSI testing : What's new? What should be considered? DER PATHOLOGE 2021; 42:110-118. [PMID: 34477921 DOI: 10.1007/s00292-021-00948-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD‑1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI‑H colorectal cancer (CRC). Further indications, such as dMMR/MSI‑H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI‑H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Collapse
Affiliation(s)
- Josef Rüschoff
- Institute of Pathology, Nordhessen und Targos Molecular Pathology GmbH, Germaniastr. 7, 34119, Kassel, Germany.
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Germany
| | - Wolfgang Dietmaier
- Institute of Pathology, Center of Molecular Pathological Diagnostics, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Manfred Dietel
- Institute of Pathology, University Hospital Charité, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Arndt Hartmann
- Pathological Institute, University Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Lars-Christian Horn
- Institute of Pathology, University Hospital Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Germany
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Germany
| | - Thomas Kirchner
- Pathological Institute, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337, München, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Doris Mayr
- Pathological Institute, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337, München, Germany
| | | | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Peter Schirmacher
- Pathological Institute, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Markus Tiemann
- Fangdieckstr. 75a, Institute of Hematopathology Hamburg, 22547, Hamburg, Germany
| | - Katharina Tiemann
- Fangdieckstr. 75a, Institute of Hematopathology Hamburg, 22547, Hamburg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Trogerstr. 18, 81675, München, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Köln, Germany
| |
Collapse
|
12
|
Goold R, Hamilton J, Menneteau T, Flower M, Bunting EL, Aldous SG, Porro A, Vicente JR, Allen ND, Wilkinson H, Bates GP, Sartori AA, Thalassinos K, Balmus G, Tabrizi SJ. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease. Cell Rep 2021; 36:109649. [PMID: 34469738 PMCID: PMC8424649 DOI: 10.1016/j.celrep.2021.109649] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.
Collapse
Affiliation(s)
- Robert Goold
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Joseph Hamilton
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Thomas Menneteau
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Michael Flower
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Emma L Bunting
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah G Aldous
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - José R Vicente
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | | | | | - Gillian P Bates
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Gabriel Balmus
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK.
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK.
| |
Collapse
|
13
|
Rüschoff J, Baretton G, Bläker H, Dietmaier W, Dietel M, Hartmann A, Horn LC, Jöhrens K, Kirchner T, Knüchel R, Mayr D, Merkelbach-Bruse S, Schildhaus HU, Schirmacher P, Tiemann M, Tiemann K, Weichert W, Büttner R. [MSI testing : What is new? What should be considered? German version]. DER PATHOLOGE 2021; 42:414-423. [PMID: 34043067 DOI: 10.1007/s00292-021-00944-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD‑1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI‑H colorectal cancer (CRC). Further indications, such as dMMR/MSI‑H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI‑H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.
Collapse
Affiliation(s)
- Josef Rüschoff
- Institut für Pathologie Nordhessen, TARGOS Molecular Pathology GmbH, Germaniastr. 7, 34119, Kassel, Deutschland.
| | - Gustavo Baretton
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Hendrik Bläker
- Institut für Pathologie, Universitätsklinikum Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Deutschland
| | - Wolfgang Dietmaier
- Institut für Pathologie/Zentrum für molekularpathologische Diagnostik, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Deutschland
| | - Manfred Dietel
- Institut für Pathologie, Campus Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Arndt Hartmann
- Pathologisches Institut, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Deutschland
| | - Lars-Christian Horn
- Institut für Pathologie, Universitätsklinikum Leipzig, Liebigstr. 26, Gebäude G, 04103, Leipzig, Deutschland
| | - Korinna Jöhrens
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Thomas Kirchner
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Ruth Knüchel
- Institut für Pathologie, Universitätsklinikum RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Doris Mayr
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Sabine Merkelbach-Bruse
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Hans-Ulrich Schildhaus
- Institut für Pathologie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Peter Schirmacher
- Pathologisches Institut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland
| | - Markus Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstr. 75a, 22547, Hamburg, Deutschland
| | - Katharina Tiemann
- Institut für Hämatopathologie Hamburg, Fangdieckstr. 75a, 22547, Hamburg, Deutschland
| | - Wilko Weichert
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Reinhard Büttner
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
14
|
Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Guerini-Rocco E, Haricharan S, Fusco N. Mismatch repair-deficient hormone receptor-positive breast cancers: Biology and pathological characterization. Cancer Cell Int 2021; 21:266. [PMID: 34001143 PMCID: PMC8130151 DOI: 10.1186/s12935-021-01976-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
The clinical outcome of patients with a diagnosis of hormone receptor (HR)+ breast cancer has improved remarkably since the arrival of endocrine therapy. Yet, resistance to standard treatments is a major clinical challenge for breast cancer specialists and a life-threatening condition for the patients. In breast cancer, mismatch repair (MMR) status assessment has been demonstrated to be clinically relevant not only in terms of screening for inherited conditions such as Lynch syndrome, but also for prognostication, selection for immunotherapy, and early identification of therapy resistance. Peculiar traits characterize the MMR biology in HR+ breast cancers compared to other cancer types. In these tumors, MMR genetic alterations are relatively rare, occurring in ~3 % of cases. On the other hand, modifications at the protein level can be observed also in the absence of gene alterations and vice versa. In HR+ breast cancers, the prognostic role of MMR deficiency has been confirmed by several studies, but its predictive value remains a matter of controversy. The characterization of MMR status in these patients is troubled by the lack of tumor-specific guidelines and/or companion diagnostic tests. For this reason, precise identification of MMR-deficient breast cancers can be problematic. A deeper understanding of the MMR biology and clinical actionability in HR+ breast cancer may light the path to effective tumor-specific diagnostic tools. For a precise MMR status profiling, the specific strengths and limitations of the available technologies should be taken into consideration. This article aims at providing a comprehensive overview of the current state of knowledge of MMR alterations in HR+ breast cancer. The available armamentarium for MMR testing in these tumors is also examined along with possible strategies for a tailored pathological characterization.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi, 1, 28100, Novara, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Svasti Haricharan
- Department of Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, 92037, La Jolla, CA, USA
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
15
|
Abstract
The occurrence of colorectal cancer (CRC) shows a large disparity among recognized races and ethnicities in the U.S., with Black Americans demonstrating the highest incidence and mortality from this disease. Contributors for the observed CRC disparity appear to be multifactorial and consequential that may be initiated by structured societal issues (e.g., low socioeconomic status and lack of adequate health insurance) that facilitate abnormal environmental factors (through use of tobacco and alcohol, and poor diet composition that modifies one's metabolism, microbiome and local immune microenvironment) and trigger cancer-specific immune and genetic changes (e.g., localized inflammation and somatic driver gene mutations). Mitigating the disparity by prevention through CRC screening has been demonstrated; this has not been adequately shown once CRC has developed. Acquiring additional knowledge into the science behind the observed disparity will inform approaches towards abating both the incidence and mortality of CRC between U.S. racial and ethnic groups.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
de Castro E Gloria H, Jesuíno Nogueira L, Bencke Grudzinski P, da Costa Ghignatti PV, Guecheva TN, Motta Leguisamo N, Saffi J. Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC Cancer 2021; 21:448. [PMID: 33888065 PMCID: PMC8063290 DOI: 10.1186/s12885-021-08188-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background The advances in colorectal cancer (CRC) treatment include the identification of deficiencies in Mismatch Repair (MMR) pathway to predict the benefit of adjuvant 5-fluorouracil (5-FU) and oxaliplatin for stage II CRC and immunotherapy. Defective MMR contributes to chemoresistance in CRC. A growing body of evidence supports the role of Poly-(ADP-ribose) polymerase (PARP) inhibitors, such as Olaparib, in the treatment of different subsets of cancer beyond the tumors with homologous recombination deficiencies. In this work we evaluated the effect of Olaparib on 5-FU cytotoxicity in MMR-deficient and proficient CRC cells and the mechanisms involved. Methods Human colon cancer cell lines, proficient (HT29) and deficient (HCT116) in MMR, were treated with 5-FU and Olaparib. Cytotoxicity was assessed by MTT and clonogenic assays, apoptosis induction and cell cycle progression by flow cytometry, DNA damage by comet assay. Adhesion and transwell migration assays were also performed. Results Our results showed enhancement of the 5-FU citotoxicity by Olaparib in MMR-deficient HCT116 colon cancer cells. Moreover, the combined treatment with Olaparib and 5-FU induced G2/M arrest, apoptosis and polyploidy in these cells. In MMR proficient HT29 cells, the Olaparib alone reduced clonogenic survival, induced DNA damage accumulation and decreased the adhesion and migration capacities. Conclusion Our results suggest benefits of Olaparib inclusion in CRC treatment, as combination with 5-FU for MMR deficient CRC and as monotherapy for MMR proficient CRC. Thus, combined therapy with Olaparib could be a strategy to overcome 5-FU chemotherapeutic resistance in MMR-deficient CRC.
Collapse
Affiliation(s)
- Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st 245, Porto Alegre, RS, Brazil
| | - Laura Jesuíno Nogueira
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | - Patrícia Bencke Grudzinski
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | | | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | - Natalia Motta Leguisamo
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st 245, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Sychevskaya KA, Risinskaya NV, Kravchenko SK, Nikulina EE, Misyurina AE, Magomedova AU, Sudarikov AB. Pitfalls in mononucleotide microsatellite repeats instability assessing (MSI) in the patients with B-cell lymphomas. Klin Lab Diagn 2021; 66:181-186. [PMID: 33793119 DOI: 10.51620/0869-2084-2021-66-3-181-186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analysis of microsatellite instability (MSI) is a routine study in the diagnostics of solid malignancies. The standard for determining MSI is a pentaplex PCR panel of mononucleotide repeats: NR-21, NR-24, NR-27, BAT-25, BAT-26. The presence of MSI is established based on differences in the length of markers in the tumor tissue and in the control, but due to the quasimonomorphic nature of standard mononucleotide loci the use of a control sample is not necessary in the diagnosis of MSI-positive solid tumors. The significance of the MSI phenomenon in oncohematology has not been established. This paper presents the results of a study of MSI in B-cell lymphomas: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), high-grade B-cell lymphoma (HGBL). We have shown that aberrations of mononucleotide markers occur in these diseases, but the nature of the changes does not correspond to the classical MSI in solid neoplasms. This fact requires further study of the pathogenesis of such genetic disorders. Due to the possibility of ambiguous interpretation of the results of the MSI study for previously uncharacterized diseases, strict compliance with the methodology of parallel analysis of the tumor tissue and the control sample is mandatory.
Collapse
|
18
|
Mismatch Repair Status Characterization in Oncologic Pathology: Taking Stock of the Real-World Possibilities. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mismatch repair (MMR) system has a key role in supporting the DNA polymerase proofreading function and in maintaining genome stability. Alterations in the MMR genes are driving events of tumorigenesis, tumor progression, and resistance to therapy. These genetic scars may occur in either hereditary or sporadic settings, with different frequencies across tumor types. Appropriate characterization of the MMR status is a crucial task in oncologic pathology because it allows for both the tailored clinical management of cancer patients and surveillance of individuals at risk. The currently available MMR testing methods have specific strengths and weaknesses, and their application across different tumor types would require a tailored approach. This article highlights the indications and challenges in MMR status assessment for molecular pathologists, focusing on the possible strategies to overcome analytical and pre-analytical issues.
Collapse
|
19
|
Shia J. The diversity of tumours with microsatellite instability: molecular mechanisms and impact upon microsatellite instability testing and mismatch repair protein immunohistochemistry. Histopathology 2021; 78:485-497. [PMID: 33010064 DOI: 10.1111/his.14271] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Microsatellite instability (MSI) as a distinct molecular phenotype in human neoplasms was first recognised in 1993. Since then there has been tremendous progress in our understanding of this phenotype, including its genomic drivers and functional consequences. Currently, the multiple lines of investigation on MSI seem to have converged upon one important facet: its diversity, both genotypically and phenotypically, and both within and across tumour types. This review article offers a pathologist's perspective on our current understanding of this diversity, and highlights its potentially significant impact on the effective use of our current MSI detection tools: PCR- or sequencing-based MSI testing and mismatch repair protein immunohistochemistry.
Collapse
Affiliation(s)
- Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
Kondelin J, Martin S, Katainen R, Renkonen-Sinisalo L, Lepistö A, Koskensalo S, Böhm J, Mecklin JP, Cajuso T, Hänninen UA, Välimäki N, Ravantti J, Rajamäki K, Palin K, Aaltonen LA. No evidence of EMAST in whole genome sequencing data from 248 colorectal cancers. Genes Chromosomes Cancer 2021; 60:463-473. [PMID: 33527622 DOI: 10.1002/gcc.22941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Microsatellite instability (MSI) is caused by defective DNA mismatch repair (MMR), and manifests as accumulation of small insertions and deletions (indels) in short tandem repeats of the genome. Another form of repeat instability, elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), has been suggested to occur in 50% to 60% of colorectal cancer (CRC), of which approximately one quarter are accounted for by MSI. Unlike for MSI, the criteria for defining EMAST is not consensual. EMAST CRCs have been suggested to form a distinct subset of CRCs that has been linked to a higher tumor stage, chronic inflammation, and poor prognosis. EMAST CRCs not exhibiting MSI have been proposed to show instability of di- and trinucleotide repeats in addition to tetranucleotide repeats, but lack instability of mononucleotide repeats. However, previous studies on EMAST have been based on targeted analysis of small sets of marker repeats, often in relatively few samples. To gain insight into tetranucleotide instability on a genome-wide level, we utilized whole genome sequencing data from 227 microsatellite stable (MSS) CRCs, 18 MSI CRCs, 3 POLE-mutated CRCs, and their corresponding normal samples. As expected, we observed tetranucleotide instability in all MSI CRCs, accompanied by instability of mono-, di-, and trinucleotide repeats. Among MSS CRCs, some tumors displayed more microsatellite mutations than others as a continuum, and no distinct subset of tumors with the previously proposed molecular characters of EMAST could be observed. Our results suggest that tetranucleotide repeat mutations in non-MSI CRCs represent stochastic mutation events rather than define a distinct CRC subclass.
Collapse
Affiliation(s)
- Johanna Kondelin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Samantha Martin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, Helsinki University Central Hospital, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Jyväskylä Central Hospital, Jyväskylä, Finland.,Department Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tatiana Cajuso
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Ulrika A Hänninen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Janne Ravantti
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kristiina Rajamäki
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Medicum/Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Eslamizadeh S, Zare AA, Talebi A, Tabaeian SP, Eshkiki ZS, Heydari-Zarnagh H, Akbari A. Differential Expression of miR-20a and miR-145 in Colorectal Tumors as Potential Location-specific miRNAs. Microrna 2020; 10:66-73. [PMID: 33349227 DOI: 10.2174/2211536609666201221123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs), as tissue specific regulators of gene transcription, may be served as biomarkers for Colorectal Cancer (CRC). OBJECTIVE This study aimed to investigate the potential role of the cancer-related hsa-miRNAs as biomarkers in Colon Cancer (CC) and Rectal Cancer (RC). METHODS A total of 148 CRC samples (74 rectum and 74 colon) and 74 adjacent normal tissues were collected to examine the differential expression of selected ten hsa-miRNAs using quantitative Reverse Transcriptase PCR (qRT-PCR). RESULTS The significantly elevated levels of miR-21, miR-133b, miR-18a, miR-20a, and miR-135b, and decreased levels of miR-34a, miR-200c, miR-145, and let-7g were detected in colorectal tumors compared to the healthy tissues (P<0.05). Hsa-miR-20a was significantly overexpressed in rectum compared to colon (p =0.028) from a cut-off value of 3.15 with a sensitivity of 66% and a specificity of 60% and an AUC value of 0.962. Also, hsa-miR-145 was significantly overexpressed in colon compared to the rectum (p =0.02) from a cut-off value of 3.9 with a sensitivity of 55% and a specificity of 61% and an AUC value of 0.91. CONCLUSION In conclusion, hsa-miR-20a and hsa-miR-145, as potential tissue-specific biomarkers for distinguishing RC and CC, improve realizing the molecular differences between these local tumors.
Collapse
Affiliation(s)
- Sara Eslamizadeh
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Zare
- Young Researchers and Elites club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hafez Heydari-Zarnagh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Carethers JM. Assaying Circulating-Tumor DNA To Predict Recurrence of Localized Colon Cancer. DIGESTIVE MEDICINE RESEARCH 2020; 3:112. [PMID: 33511350 PMCID: PMC7840039 DOI: 10.21037/dmr.2020.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine; Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368
| |
Collapse
|
23
|
Raeker MO, Carethers JM. Immunological Features with DNA Microsatellite Alterations in Patients with Colorectal Cancer. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:116-127. [PMID: 33000102 DOI: 10.33696/cancerimmunol.2.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Competent human DNA mismatch repair (MMR) corrects DNA polymerase mistakes made during cell replication to maintain complete DNA fidelity in daughter cells; faulty DNA MMR occurs in the setting of inflammation and neoplasia, creating base substitutions (e.g. point mutations) and frameshift mutations at DNA microsatellite sequences in progeny cells. Frameshift mutations at DNA microsatellite sequences are a detected biomarker termed microsatellite instability (MSI) for human disease, as this marker can prognosticate and determine therapeutic approaches for patients with cancer. There are two types of MSI: MSI-High (MSI-H), defined by frameshifts at mono- and di-nucleotide microsatellite sequences, and elevated microsatellite alterations at selected tetranucleotide repeats or EMAST, defined by frameshifts in di- and tetranucleotide microsatellite sequences but not mononucleotide sequences. Patients with colorectal cancers (CRCs) manifesting MSI-H demonstrate improved survival over patients without an MSI-H tumor, driven by the generation of immunogenic neoantigens caused by novel truncated proteins from genes whose sequences contain coding microsatellites; these patients' tumors contain hundreds of somatic mutations, and show responsiveness to treatment with immune checkpoint inhibitors. Patients with CRCs manifesting EMAST demonstrate poor survival over patients without an EMAST tumor, and may be driven by a more dominant defect in double strand break repair attributed to the MMR protein MSH3 over its frameshift correcting function; these patients' tumors often have a component of inflammation (and are also termed inflammation-associated microsatellite alterations) and show less somatic mutations and lack coding mononucleotide frameshift mutations that seem to generate the neoantigens seen in the majority of MSI-H tumors. Overall, both types of MSI are biomarkers that can prognosticate patients with CRC, can be tested for simultaneously in marker panels, and informs the approach to specific therapy including immunotherapy for their cancers.
Collapse
Affiliation(s)
- Maide O Raeker
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Inflammation-Associated Microsatellite Alterations Caused by MSH3 Dysfunction Are Prevalent in Ulcerative Colitis and Increase With Neoplastic Advancement. Clin Transl Gastroenterol 2020; 10:e00105. [PMID: 31789935 PMCID: PMC6970556 DOI: 10.14309/ctg.0000000000000105] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES: Inflammation-associated microsatellite alterations (also known as elevated microsatellite alterations at selected tetranucleotide repeats [EMAST]) result from IL-6–induced nuclear-to-cytosolic displacement of the DNA mismatch repair (MMR) protein MSH3, allowing frameshifts of dinucleotide or longer microsatellites within DNA. MSH3 also engages homologous recombination to repair double-strand breaks (DSBs), making MSH3 deficiency contributory to both EMAST and DSBs. EMAST is observed in cancers, but given its genesis by cytokines, it may be present in non-neoplastic inflammatory conditions. We examined ulcerative colitis (UC), a preneoplastic condition from prolonged inflammatory duration. METHODS: We assessed 70 UC colons without neoplasia, 5 UC specimens with dysplasia, 14 UC-derived colorectal cancers (CRCs), and 19 early-stage sporadic CRCs for microsatellite instability (MSI) via multiplexed polymerase chain reaction capable of simultaneous detection of MSI-H, MSI-L, and EMAST. We evaluated UC specimens for MSH3 expression via immunohistochemistry. RESULTS: UC, UC with dysplasia, and UC-derived CRCs demonstrated dinucleotide or longer microsatellite frameshifts, with UC showing coincident reduction of nuclear MSH3 expression. No UC specimen, with or without neoplasia, demonstrated mononucleotide frameshifts. EMAST frequency was higher in UC-derived CRCs than UC (71.4% vs 31.4%, P = 0.0045) and higher than early-stage sporadic CRCs (66.7% vs 26.3%, P = 0.0426). EMAST frequency was higher with UC duration >8 years compared with ≤8 years (40% vs 16%, P = 0.0459). DISCUSSION: Inflammation-associated microsatellite alterations/EMAST are prevalent in UC and signify genomic mutations in the absence of neoplasia. Duration of disease and advancement to neoplasia increases frequency of EMAST. MSH3 dysfunction is a potential contributory pathway toward neoplasia in UC that could be targeted by therapeutic intervention.
Collapse
|
25
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Ranjbar R, Esfahani AT, Nazemalhosseini-Mojarad E, Olfatifar M, Aghdaei HA, Mohammadpour S. EMAST frequency in colorectal cancer: a meta-analysis and literature review. Biomark Med 2020; 14:1021-1030. [PMID: 32940074 DOI: 10.2217/bmm-2020-0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/21/2020] [Indexed: 01/07/2023] Open
Abstract
Aim: The prognostic and predictive value of Elevated Microsatellite Alterations at Selected Tetranucleotide (EMAST) has been reported in colorectal cancer (CRC). The prevalence of EMAST in CRC varied across the literature. We conducted a meta-analysis to determine the prevalence of EMAST in CRC. Materials & methods: Three international databases including PubMed, ISI and Scopus were searched to identify related articles that described the frequency of EMAST. Results: Analysis was performed on 16 eligible studies including 4922 patients. The overall EMAST prevalence among CRCs patients was 33% (95% CI: 23-43%, I2 = 98%). Conclusion: This study indicated that approximately a third of the CRC patients are diagnosed with EMAST, hereupon EMAST as a prognostic and predictive biomarker should be more studied clinically.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir T Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid A Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
The Human DNA Mismatch Repair Protein MSH3 Contains Nuclear Localization and Export Signals That Enable Nuclear-Cytosolic Shuttling in Response to Inflammation. Mol Cell Biol 2020; 40:MCB.00029-20. [PMID: 32284349 DOI: 10.1128/mcb.00029-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Inactivation of DNA mismatch repair propels colorectal cancer (CRC) tumorigenesis. CRCs exhibiting elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) show reduced nuclear MutS homolog 3 (MSH3) expression with surrounding inflammation and portend poor patient outcomes. MSH3 reversibly exits from the nucleus to the cytosol in response to the proinflammatory cytokine interleukin-6 (IL-6), suggesting that MSH3 may be a shuttling protein. In this study, we manipulated three putative nuclear localization (NLS1 to -3) and two potential nuclear export signals (NES1 and -2) within MSH3. We found that both NLS1 and NLS2 possess nuclear import function, with NLS1 responsible for nuclear localization within full-length MSH3. We also found that NES1 and NES2 work synergistically to maximize nuclear export, with both being required for IL-6-induced MSH3 export. We examined a 27-bp deletion (Δ27bp) within the polymorphic exon 1 that occurs frequently in human CRC cells and neighbors NLS1. With oxidative stress, MSH3 with this deletion (Δ27bp MSH3) localizes to the cytoplasm, suggesting that NLS1 function in Δ27bp MSH3 is compromised. Overall, MSH3's shuttling in response to inflammation enables accumulation in the cytoplasm; reduced nuclear MSH3 increases EMAST and DNA damage. We suggest that polymorphic sequences adjacent to NLS1 may enhance cytosolic retention, which has clinical implications for inflammation-associated neoplastic processes.
Collapse
|
28
|
Instability of Non-Standard Microsatellites in Relation to Prognosis in Metastatic Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21103532. [PMID: 32429465 PMCID: PMC7279028 DOI: 10.3390/ijms21103532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Very few data are reported in the literature on the association between elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and prognosis in advanced colorectal cancer. Moreover, there is no information available in relation to the response to antiangiogenic treatment. We analyzed EMAST and vascular endothelial growth factor-B (VEGF-B) microsatellite status, together with standard microsatellite instability (MSI), in relation to prognosis in 141 patients with metastatic colorectal cancer (mCRC) treated with chemotherapy (CT) alone (n = 51) or chemotherapy with bevacizumab (B) (CT + B; n = 90). High MSI (MSI-H) was detected in 3% of patients and was associated with progression-free survival (PFS; p = 0.005) and overall survival (OS; p < 0.0001). A total of 8% of cases showed EMAST instability, which was associated with worse PFS (p = 0.0006) and OS (p < 0.0001) in patients treated with CT + B. A total of 24.2% of patients showed VEGF-B instability associated with poorer outcome in (p = 0.005) in the CT arm. In conclusion, our analysis indicated that EMAST instability is associated with worse prognosis, particularly evident in patients receiving CT + B.
Collapse
|
29
|
Carethers JM. High predictability for identifying Lynch syndrome via microsatellite instability testing or immunohistochemistry in all Lynch-associated tumor types. Transl Cancer Res 2020; 8:S559-S563. [PMID: 32266124 PMCID: PMC7138208 DOI: 10.21037/tcr.2019.08.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
30
|
Venta PJ, Nguyen AK, Senut MC, Poulos WG, Prukudom S, Cibelli JB. A 13-plex of tetra- and penta-STRs to identify zebrafish. Sci Rep 2020; 10:3851. [PMID: 32123258 PMCID: PMC7052278 DOI: 10.1038/s41598-020-60842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
The zebrafish species Danio rerio has become one of the major vertebrate model organisms used in biomedical research. However, there are aspects of the model that need to be improved. One of these is the ability to identify individual fish and fish lines by DNA profiling. Although many dinucleotide short tandem repeat (diSTR) markers are available for this and similar purposes, they have certain disadvantages such as an excessive polymerase slippage ("stutter") that causes difficulties in automated genotyping and cross-laboratory comparisons. Here we report on the development of a 13-plex of tetranucleotide and pentanucleotide STRs (tetraSTRs and pentaSTRs, respectively) that have low stutter. The system uses an inexpensive universal primer labelling system, which can easily be converted to a direct labeling system if desired. This 13-plex was examined in three zebrafish lines (NHGRI-1, kca33Tg, and kca66Tg, originally obtained from ZIRC). The average observed heterozygosity (Ho) and expected heterozygosity (He) in these highly inbred lines were 0.291 and 0.359, respectively, which is very similar to what has been found with diSTRs. The probability of identity (PI) for all fish tested was 2.1 × 10-5 and the PI for siblings (PIsib) was 6.4 × 10-3, as calculated by the Genalex package. Ninety percent of the fish tested were correctly identified with their respective strains. It is also demonstrated that this panel can be used to confirm doubled-haploid cell lines. This multiplex should find multiple uses for improving the accuracy and reproducibility of studies using the zebrafish model.
Collapse
Affiliation(s)
- Patrick J Venta
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA. .,Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| | - Anthony K Nguyen
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA
| | - Marie-Claude Senut
- Biomilab LLC, Lansing, MI, 48910, USA.,Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - William G Poulos
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - Sukumal Prukudom
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Jose B Cibelli
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA. .,Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
31
|
Abstract
The prevalence of genetic predisposition to cancer is greater than initially appreciated, yet most affected individuals remain undiagnosed. Deleterious germline variants in cancer predisposition genes are implicated in 1 in 10 cases of advanced cancer. Next-generation sequencing technologies have made germline and tumor DNA sequencing more accessible and less expensive. Expanded access to clinical genetic testing will improve identification of individuals with genetic predisposition to cancer and provide opportunities to effectively reduce morbidity through precision cancer therapies and surveillance. Cross-disciplinary clinical education in genomic medicine is needed to translate advances in genomic medicine into improved health outcomes.
Collapse
Affiliation(s)
- Elena M. Stoffel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - John M. Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
32
|
Raeker MÖ, Pierre-Charles J, Carethers JM. Tetranucleotide Microsatellite Mutational Behavior Assessed in Real Time: Implications for Future Microsatellite Panels. Cell Mol Gastroenterol Hepatol 2020; 9:689-704. [PMID: 31982570 PMCID: PMC7163322 DOI: 10.1016/j.jcmgh.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Fifty percent of colorectal cancers show elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and are associated with inflammation, metastasis, and poor patient outcome. EMAST results from interleukin 6-induced nuclear-to-cytosolic displacement of the DNA mismatch repair protein Mutated S Homolog 3, allowing frameshifts of dinucleotide and tetranucleotide but not mononucleotide microsatellites. Unlike mononucleotide frameshifts that universally shorten in length, we previously observed expansion and contraction frameshifts at tetranucleotide sequences. Here, we developed cell models to assess tetranucleotide frameshifts in real time. METHODS We constructed plasmids containing native (AAAG)18 and altered-length ([AAAG]15 and [AAAG]12) human D9S242 locus that placed enhanced green fluorescent protein +1 bp/-1 bp out-of-frame for protein translation and stably transfected into DNA mismatch repair-deficient cells for clonal selection. We used flow cytometry to detect enhanced green fluorescent protein-positive cells to measure mutational behavior. RESULTS Frameshift mutation rates were 31.6 to 71.1 × 10-4 mutations/cell/generation and correlated with microsatellite length (r2 = 0.986, P = .0375). Longer repeats showed modestly higher deletion over insertion rates, with both equivalent for shorter repeats. Accumulation of more deletion frameshifts contributed to a distinct mutational bias for each length (overall: 77.8% deletions vs 22.2% insertions), likely owing to continual deletional mutation of insertions. Approximately 78.9% of observed frameshifts were 1 AAAG repeat, 16.1% were 2 repeats, and 5.1% were 3 or more repeats, consistent with a slipped strand mispairing mutation model. CONCLUSIONS Tetranucleotide frameshifts show a deletion bias and undergo more than 1 deletion event via intermediates, with insertions converted into deletions. Tetranucleotide markers added to traditional microsatellite instability panels will be able to determine both EMAST and classic microsatellite instability, but needs to be assessed by multiple markers to account for mutational behavior and intermediates.
Collapse
Affiliation(s)
- Maide Ö Raeker
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jovan Pierre-Charles
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Carethers
- Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
33
|
Bienfait L, Doukoure B, Verset L, Demetter P. Comparaison du « deficit mismatch repair » des cancers colorectaux entre des cohortes africaines et européennes. Ann Pathol 2020; 40:12-18. [DOI: 10.1016/j.annpat.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
|
34
|
Promising Colorectal Cancer Biomarkers for Precision Prevention and Therapy. Cancers (Basel) 2019; 11:cancers11121932. [PMID: 31817090 PMCID: PMC6966638 DOI: 10.3390/cancers11121932] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) has been ranked as the third most prevalent cancer worldwide. Indeed, it represents 10.2% of all cancer cases. It is also the second most common cause of cancer mortality, and accounted for about 9.2% of all cancer deaths in 2018. Early detection together with a correct diagnosis and staging remains the most effective clinical strategy in terms of disease recovery. Thanks to advances in diagnostic techniques, and improvements of surgical adjuvant and palliative therapies, the mortality rate of CRC has decreased by more than 20% in the last decade. Cancer biomarkers for the early detection of CRC, its management, treatment and follow-up have contributed to the decrease in CRC mortality. Herein, we provide an overview of molecular biomarkers from tumor tissues and liquid biopsies that are approved for use in the CRC clinical setting for early detection, follow-up, and precision therapy, and of biomarkers that have not yet been officially validated and are, nowadays, under investigation.
Collapse
|
35
|
Reynolds IS, O'Connell E, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Furney SJ, Burke JP. Mucinous adenocarcinoma of the colon and rectum: A genomic analysis. J Surg Oncol 2019; 120:1427-1435. [PMID: 31729037 DOI: 10.1002/jso.25764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Mucinous adenocarcinoma is a distinct subtype of colorectal cancer (CRC) with a worse prognosis when compared with non-mucinous adenocarcinoma. The aim of this study was to compare somatic mutations and copy number alteration (CNA) between mucinous and non-mucinous CRC. METHODS Data from The Cancer Genome Atlas-colon adenocarcinoma and rectum adenocarcinoma projects were utilized. Mucinous and non-mucinous CRC were compared with regard to microsatellite status, overall mutation rate, the most frequently mutated genes, mutations in genes coding for mismatch repair (MMR) proteins and genes coding for mucin glycoproteins. CNA analysis and pathway analysis was undertaken. RESULTS Mucinous CRC was more likely to be microsatellite instability-high (MSI-H) and hypermutated. When corrected for microsatellite status the single-nucleotide variation and insertion-deletion rate was similar between the two cohorts. Mucinous adenocarcinoma was more likely to have mutations in genes coding for MMR proteins and mucin glycoproteins. Pathway analysis revealed further differences between the two histological subtypes in the cell cycle, RTK-RAS, transforming growth factor-β, and TP53 pathways. CONCLUSIONS Mucinous CRC has some distinct genomic aberrations when compared with non-mucinous adenocarcinoma, many of which are driven by the increased frequency of MSI-H tumors. These genomic aberrations may play an important part in the difference seen in response to treatment and prognosis in mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emer O'Connell
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J Furney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Genomic Oncology Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
36
|
Kuan TC, Chang SC, Lin JK, Lin TC, Yang SH, Jiang JK, Chen WS, Wang HS, Lan YT, Lin CC, Lin HH, Huang SC. Prognosticators of Long-Term Outcomes of TNM Stage II Colorectal Cancer: Molecular Patterns or Clinicopathological Features. World J Surg 2019; 43:3207-3215. [PMID: 31515570 DOI: 10.1007/s00268-019-05158-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with stage II colorectal cancer (CRC) have a higher risk of recurrence when they have certain risk factors, including clinical and pathological patterns. However, as the prognostic role of molecular patterns for stage II disease is still unclear, this study aimed to investigate it. METHODS A total of 509 patients with stage II CRC were enrolled, and all clinical, pathological, and molecular data were collected. Molecular patterns included microsatellite instability (MSI); elevated microsatellite alterations at selected tetranucleotides (EMAST) status; and expression of RAS/RAF genes, genes of the APC pathway, and other gene mutations. The endpoints were oncological outcomes, including overall survival (OS), cancer-specific survival (CSS), disease-free survival (DFS), local recurrence (LR), and distant recurrence (DR). Cox regression analysis was used. RESULTS Numerous molecular patterns influenced the oncological outcomes on univariate analysis, but no variable reached significance in LR. On multivariate analysis, a mucinous component (MC) > 50% (P < 0.01) was significant for OS and CSS. Lymphovascular invasion (LVI; P< 0.01), MC > 50% (P < 0.01), and EMAST-H (P = 0.02) significantly influenced DFS, whereas LVI (P < 0.01), MC > 50% (P < 0.01), and TP53 mutation (P = 0.02) were significant for DR. CONCLUSIONS In this study, MSI, EMAST, and RAS/RAF alterations did not influence the oncological outcomes. Overall, LVI and MC were two significant prognostic factors for DFS and DR. Thus, the histopathology, rather than the genes, plays a major role in the prognosis of patients with stage II CRC.
Collapse
Affiliation(s)
- Tai-Chuan Kuan
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ching Chang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan. .,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jen-Kou Lin
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Chen Lin
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,National Yang-Ming University Hospital, Yilan, Taiwan
| | - Jeng-Kae Jiang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huann-Sheng Wang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Hsin Lin
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Chieh Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veteran General Hospital, No. 201, Sec. 2., Shipai Rd., Beitou District, Taipei, 11217, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
37
|
Abstract
Fecal (or stool) DNA examination is a noninvasive strategy recommended by several medical professional societies for colorectal cancer (CRC) screening in average-risk individuals. Fecal DNA tests assay stool for human DNA shed principally from the colon. Colonic lesions such as adenomatous and serrated polyps and cancers exfoliate cells containing neoplastically altered DNA that may be detected by sensitive assays that target specific genetic and epigenetic biomarkers to discriminate neoplastic lesions from non-neoplastic tissue. Cross-sectional validation studies confirmed initial case-control studies' assessment of performance of an optimized multitarget stool DNA (mt-sDNA) test, leading to approval by the US Food and Drug Administration in 2014. Compared to colonoscopy, mt-sDNA showed sensitivity of 92% for detection of CRC, much higher than the 74% sensitivity of another recommended noninvasive strategy, fecal immunochemical testing (FIT). Detections of advanced adenomas and sessile serrated polyps were higher with mt-sDNA than FIT (42% versus 24% and 42% versus 5%, respectively), but overall specificity for all lesions was lower (87% versus 95%). The mt-sDNA test increases patient life-years gained in CRC screening simulations, but its cost relative to other screening strategies needs to be reduced by 80-90% or its sensitivity for polyp detection enhanced to be cost effective. Noninvasive CRC screening strategies such as fecal DNA, however, have the potential to significantly increase national screening rates due to their noninvasive nature and convenience for patients.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
38
|
Abstract
After introduction of the Bethesda microsatellite test panel demonstration of microsatellite instability (MSI) and/or loss of mismatch repair proteins (MMRD) was primarily used as a marker for cancer predisposition of Lynch syndrome (LS, previous: HNPCC). Nowadays MSI/MMRD has become an important biomarker to predict therapy response to checkpoint immunotherapies. MSI can be determined either by polymerase chain reaction (PCR)-based technologies with or without specification of fragment sizes or next generation sequencing (NGS) methods. Depending on the individual tumor entities, these test methods are used differently. Currently, MSI/MMRD is a tumor biomarker which covers a broad spectrum of indications in tumor pathology, especially in colorectal, endometrial and gastric cancer. In advanced carcinomas, MSI is an established predictor of therapy response to checkpoint-directed immunotherapies.
Collapse
|
39
|
Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit. Front Med 2019; 14:101-111. [PMID: 31368030 DOI: 10.1007/s11684-019-0698-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that somatic hypermutational status and programmed cell death-1 overexpression are potential predictive biomarkers indicating treatment benefits from immunotherapy using immune checkpoint inhibitors. However, biomarker-matched trials are still limited, and many of the genomic alterations remain difficult to target. To isolate the potential somatic hypermutational tumor from microsatellite instability low/microsatellite stability (MSI-L/MSS) cases, we employed two commercial kits to determine MSI and forensic short tandem repeat (STR) alternations in 250 gastrointestinal (GI) tumors. Three types of forensic STR alternations, namely, allelic loss, Aadd, and Anew, were identified. 62.4% (156/250) of the patients with GI exhibited STR alternation, including 100% (15/15) and 60% (141/235) of the microsatellite high instability and MSI-L/MSS cases, respectively. 30% (75/250) of the patients exhibited STR instability with more than 26.32% (26.32%-84.21%) STR alternation. The cutoff with 26.32% of the STR alternations covered all 15 MSI cases and suggested that it might be a potential threshold. Given the similar mechanism of the mutations of MSI and forensic STR, the widely used forensic identifier STR kit might provide potential usage for identifying hypermutational status in GI cancers.
Collapse
|
40
|
Carethers JM. Clinical and Genetic Factors to Inform Reducing Colorectal Cancer Disparitites in African Americans. Front Oncol 2018; 8:531. [PMID: 30524961 PMCID: PMC6256119 DOI: 10.3389/fonc.2018.00531] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent and second deadliest cancer in the U.S. with 140,250 cases and 50,630 deaths for 2018. Prevention of CRC through screening is effective. Among categorized races in the U.S., African Americans (AAs) show the highest incidence and death rates per 100,000 when compared to Non-Hispanic Whites (NHWs), American Indian/Alaskan Natives, Hispanics, and Asian/Pacific Islanders, with an overall AA:NHW ratio of 1.13 for incidence and 1.32 for mortality (2010-2014, seer.cancer.gov). The disparity for CRC incidence and worsened mortality among AAs is likely multifactorial and includes environmental (e.g., diet and intestinal microbiome composition, prevalence of obesity, use of aspirin, alcohol, and tobacco use), societal (e.g., socioeconomic status, insurance and access to care, and screening uptake and behaviors), and genetic (e.g., somatic driver mutations, race-specific variants in genes, and inflammation and immunological factors). Some of these parameters have been investigated, and interventions that address specific parameters have proven to be effective in lowering the disparity. For instance, there is strong evidence raising screening utilization rates among AAs to that of NHWs reduces CRC incidence to that of NHWs. Reducing the age to commence CRC screening in AA patients may further address incidence disparity, due to the earlier age onset of CRC. Identified genetic and epigenetic changes such as reduced MLH1 hypermethylation frequency, presence of inflammation-associated microsatellite alterations, and unique driver gene mutations (FLCN and EPHA6) among AA CRCs will afford more precise approaches toward CRC care, including the use of 5-fluorouracil and anti-PD-1.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Departments of Internal Medicine and Human Genetics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
41
|
Xu L, Peng H, Huang XX, Xia YB, Hu KF, Zhang ZM. Decreased expression of chromodomain helicase DNA-binding protein 9 is a novel independent prognostic biomarker for colorectal cancer. ACTA ACUST UNITED AC 2018; 51:e7588. [PMID: 30043858 PMCID: PMC6065814 DOI: 10.1590/1414-431x20187588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023]
Abstract
Previous studies suggested that chromodomain helicase DNA-binding proteins (CHDs), including CHD 1-8, were associated with several human diseases and cancers including lymphoma, liver cancer, colorectal cancer, stomach cancer, etc. To date, little research on CHD 9 in human cancers has been reported. In this study, we assessed the prognostic value of CHD 9 in patients with colorectal cancer (CRC). We screened for CHD 9 expression using immunohistochemical analysis in 87 surgical CRC specimens and found that the expression was upregulated in 81.5% of the cases, while 7.4% were decreased; in the remaining 11.1% of the cases, levels were not altered. Kaplan-Meier analysis showed that patients with high CHD 9 expression had better prognosis than those with low CHD 9 expression (54.5 vs 32.1%, P=0.034). Subsequently, Cox multi-factor survival regression analysis revealed that expression of CHD 9 protein was an independent predictor for CRC, with a hazard ratio of 0.503 (P=0.028). In addition, we found that CHD 9 expression was positively correlated with MSH2 (rs=0.232, P=0.036). We speculated that CHD9 might be a putative tumor suppressor gene, and could inhibit the development of CRC by participating in DNA repair processes. Our findings suggest that CHD 9 could be a novel prognostic biomarker and a therapeutic target for CRC. Further studies are needed to detect the effect of CHD 9 on cellular function and the expression of mismatch repair genes.
Collapse
Affiliation(s)
- Li Xu
- Department of General Surgery, the First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hui Peng
- Administration Office of Hospital Admission and Discharge, the First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiao-Xu Huang
- Department of General Surgery, the First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Ya-Bin Xia
- Department of General Surgery, the First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Kai-Feng Hu
- Department of General Surgery, the First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zheng-Ming Zhang
- Department of General Surgery, the First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
42
|
Koi M, Tseng-Rogenski SS, Carethers JM. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World J Gastrointest Oncol 2018; 10:1-14. [PMID: 29375743 PMCID: PMC5767788 DOI: 10.4251/wjgo.v10.i1.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023] Open
Abstract
Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1, resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation's effect upon the DNA MMR system.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - Stephanie S Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| |
Collapse
|
43
|
Matos P, Jordan P. Targeting Colon Cancers with Mutated BRAF and Microsatellite Instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:7-21. [PMID: 30623363 DOI: 10.1007/978-3-030-02771-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The subgroup of colon cancer (CRC) characterized by mutation in the BRAF gene and high mutation rate in the genomic DNA sequence, known as the microsatellite instability (MSI) phenotype, accounts for roughly 10% of the patients and derives from polyps with a serrated morphology. In this review, both features are discussed with regard to therapeutic opportunities. The most prevalent cancer-associated BRAF mutation is BRAF V600E that causes constitutive activation of the pro-proliferative MAPK pathway. Unfortunately, the available BRAF-specific inhibitors had little clinical benefit for metastatic CRC patients due to adaptive MAPK reactivation. Recent contributions for the development of new combination therapy approaches to pathway inhibition will be highlighted. In addition, we review the promising role of the recently developed immune checkpoint therapy for the treatment of this CRC subtype. The MSI phenotype of this subgroup results from an inactivated DNA mismatch repair system and leads to frameshift mutations with translation of new amino acid stretches and the generation of neo-antigens. This most likely explains the observed high degree of infiltration by tumour-associated lymphocytes. As cytotoxic lymphocytes are already part of the tumour environment, their activation by immune checkpoint therapy approaches is highly promising.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal
| | - Peter Jordan
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal. .,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal.
| |
Collapse
|
44
|
Koi M, Carethers JM. The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol 2017; 13:1633-1647. [PMID: 28829193 DOI: 10.2217/fon-2017-0145] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Basso G, Bianchi P, Malesci A, Laghi L. Hereditary or sporadic polyposis syndromes. Best Pract Res Clin Gastroenterol 2017; 31:409-417. [PMID: 28842050 DOI: 10.1016/j.bpg.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
Abstract
Polyposis syndromes are encountered in endoscopy practice, and are considered rare entities, accounting for ≤1% of colorectal cancer. Polyposis can occur within inherited syndromes or as "sporadic" cases of unknown etiology. Their proper characterization is relevant for patient management, and should nowadays drive appropriate genetic tests which have a key role in clinical practice for driving surveillance and colorectal cancer prevention, enlarged to relatives. Polyposis classification is based upon polyp number and histology, familial and personal history. This review will explore the polyposis nosology and their genetic determinants in the emerging scenario of Next Generation Sequencing which allow testing multiples genes in parallel. This capability will likely continue to increase the range of polyposis predisposing genes, contributing to define new clinical entities.
Collapse
Affiliation(s)
- Gianluca Basso
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Paolo Bianchi
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Alberto Malesci
- Department of Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy; Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Milan), Italy; Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Milan), Italy; Hereditary Cancer Genetics Clinic, Humanitas Cancer Center, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (Milan), Italy.
| |
Collapse
|