1
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Sun Z, Liu Y, Zhao Y, Xu Y. Animal Models of Type 2 Diabetes Complications: A Review. Endocr Res 2024; 49:46-58. [PMID: 37950485 DOI: 10.1080/07435800.2023.2278049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Diabetes mellitus is a multifactorial metabolic disease, of which type 2 diabetes (T2D) is one of the most common. The complications of diabetes are far more harmful than diabetes itself. Type 2 diabetes complications include diabetic nephropathy (DN), diabetic heart disease, diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR) et al. Many animal models have been developed to study the pathogenesis of T2D and discover an effective strategy to treat its consequences. In this sense, it is crucial to choose the right animal model for the corresponding diabetic complication. This paper summarizes and classifies the animal modeling approaches to T2D complications and provides a comprehensive review of their advantages and disadvantages. It is hopeful that this paper will provide theoretical support for animal trials of diabetic complications.
Collapse
Affiliation(s)
- Zhongyan Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
| | - Yadi Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Taipa, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine,Macau University of Science and Technology, Zhuhai, PR China
- Macau University of Science and Technology, Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China
| |
Collapse
|
3
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
4
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
5
|
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev 2023; 194:114727. [PMID: 36758858 PMCID: PMC10163681 DOI: 10.1016/j.addr.2023.114727] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
With the development of society and the improvement of life quality, more than 500 million people are affected by diabetes. More than 10 % of people with diabetes will suffer from diabetic wounds, and 80 % of diabetic wounds will reoccur, so the development of new diabetic wound treatments is of great importance. The development of skin microbe research technology has gradually drawn people's attention to the complex relationship between microbes and diabetic wounds. Many studies have shown that skin microbes are associated with the outcome of diabetic wounds and can even be used as one of the indicators of wound prognosis. Skin microbes have also been found to have the potential to treat diabetic wounds. The wound colonization of different bacteria can exert opposing therapeutic effects. It is necessary to fully understand the skin microbes in diabetic wounds, which can provide valuable guidance for clinical diabetic wound treatment.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - L A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
6
|
Tanwar AS, Shruptha P, Paul B, Murali TS, Brand A, Satyamoorthy K. How Can Omics Inform Diabetic Foot Ulcer Clinical Management? A Whole Genome Comparison of Four Clinical Strains of Staphylococcus aureus. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:51-61. [PMID: 36753700 DOI: 10.1089/omi.2022.0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Foot ulcers and associated infections significantly contribute to morbidity and mortality in diabetes. While diverse pathogens are found in the diabetes-related infected ulcers, Staphylococcus aureus remains one of the most virulent and widely prevalent pathogens. The high prevalence of S. aureus in chronic wound infections, especially in clinical settings, is attributed to its ability to evolve and acquire resistance against common antibiotics and to elicit an array of virulence factors. In this study, whole genome comparison of four strains of S. aureus (MUF168, MUF256, MUM270, and MUM475) isolated from diabetic foot ulcer (DFU) infections showing varying resistance patterns was carried out to study the genomic similarity, antibiotic resistance profiling, associated virulence factors, and sequence variations in drug targets. The comparative genome analysis showed strains MUM475 and MUM270 to be highly resistant, MUF256 with moderate levels of resistance, and MUF168 to be the least resistant. Strain MUF256 and MUM475 harbored more virulence factors compared with other two strains. Deleterious sequence variants were observed suggesting potential role in altering drug targets and drug efficacy. This comparative whole genome study offers new molecular insights that may potentially inform evidence-based diagnosis and treatment of DFUs in the clinic.
Collapse
Affiliation(s)
- Ankit Singh Tanwar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Bobby Paul
- Department of Bioinformatics, and Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands.,Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Lu W, Zhu G, Yuan W, Han Z, Dai H, Basiony M, Zhang L, Liu X, Hsiang T, Zhang J. Two novel aliphatic unsaturated alcohols isolated from a pathogenic fungus Fusarium proliferatum. Synth Syst Biotechnol 2021; 6:446-451. [PMID: 34901483 PMCID: PMC8639810 DOI: 10.1016/j.synbio.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Phytopathogenic fungi have attracted great attention as a promising source for new drug discovery. In the progress of our ongoing study for bioactive natural products from an in-house phytopathogenic fungi library, a pathogenic fungus, Fusarium proliferatum strain 13294 (FP13294), was selected for chemical investigation. Two novel aliphatic unsaturated alcohols named fusariumnols A and B (1 and 2), together with one previously characterized sesquiterpenoid lignoren (3) were identified. Structures of 1-3 were assigned by mass spectrometry and NMR spectroscopy. Their bioactivities were assessed against Staphylococcus epidermidis, S. aureus, and Methicillin-resistant S. aureus (MRSA). Compounds 1 and 2 exhibited weak antibacterial activity against S. epidermidis (MIC = 100 μM).
Collapse
Affiliation(s)
- Wanying Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weize Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaoxi Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huanqin Dai
- The State Key Laboratory of Mycology (SKLM), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Corresponding author.
| |
Collapse
|
8
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
9
|
Vainieri E, Ahluwalia R, Slim H, Walton D, Manu C, Taori S, Wilkins J, Huang DY, Edmonds M, Rashid H, Kavarthapu V, Vas PRJ. Outcomes after Emergency Admission with a Diabetic Foot Attack Indicate a High Rate of Healing and Limb Salvage But Increased Mortality: 18-Month Follow-up Study. Exp Clin Endocrinol Diabetes 2020; 130:165-171. [PMID: 33352595 DOI: 10.1055/a-1322-4811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM The diabetic foot attack (DFA) is perhaps the most devastating form of diabetic foot infection, presenting with rapidly progressive skin and tissue necrosis, threatening both limb and life. However, clinical outcome data in this specific group of patients are not available. METHODS Analysis of 106 consecutive patients who underwent emergency hospitalisation for DFA (TEXAS Grade 3B or 3D and Infectious Diseases Society of America (IDSA) Class 4 criteria). Outcomes evaluated were: 1) Healing 2) major amputation 3) death 4) not healed. The first outcome reached in one of these four categories over the follow-up period (18.4±3.6 months) was considered. We also estimated amputation free survival. RESULTS Overall, 57.5% (n=61) healed, 5.6% (n=6) underwent major amputation, 23.5% (n=25) died without healing and 13.2% (n=14) were alive without healing. Predictive factors associated with outcomes were: Healing (age<60, p=0.0017; no Peripheral arterial disease (PAD) p= 0.002; not on dialysis p=0.006); major amputation (CRP>100 mg/L, p=0.001; gram+ve organisms, p=0.0013; dialysis, p= 0.001), and for death (age>60, p= 0.0001; gram+ve organisms p=0.004; presence of PAD, p=0.0032; CRP, p=0.034). The major amputation free survival was 71% during the first 12 months from admission, however it had reduced to 55.4% by the end of the follow-up period. CONCLUSIONS In a unique population of hospitalised individuals with DFA, we report excellent healing and limb salvage rates using a dedicated protocol in a multidisciplinary setting. An additional novel finding was the concerning observation that such an admission was associated with high 18-month mortality, almost all of which was after discharge from hospital.
Collapse
Affiliation(s)
- Erika Vainieri
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Raju Ahluwalia
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Hani Slim
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Daina Walton
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Chris Manu
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Surabhi Taori
- King's College Hospital NHS Foundation Trust, London, United Kingdom.,School of Immunology & Microbial Sciences, Kings College, London, United Kingdom
| | - Jason Wilkins
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Dean Y Huang
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Mike Edmonds
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Hisham Rashid
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Venu Kavarthapu
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Prashanth R J Vas
- King's College Hospital NHS Foundation Trust, London, United Kingdom.,Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, United Kingdom
| |
Collapse
|
10
|
Liu C, Ponsero AJ, Armstrong DG, Lipsky BA, Hurwitz BL. The dynamic wound microbiome. BMC Med 2020; 18:358. [PMID: 33228639 PMCID: PMC7685579 DOI: 10.1186/s12916-020-01820-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. MAIN BODY Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. CONCLUSION Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of "superbugs" vital to global health.
Collapse
Affiliation(s)
- Chunan Liu
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - David G Armstrong
- Department of Surgery, Southwestern Academic Limb Salvage Alliance (SALSA), Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Benjamin A Lipsky
- Department of Medicine, University of Washington, Seattle, WA, USA.,Division of Medical Sciences, Green Templeton College, University of Oxford, Oxford, UK
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA. .,BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Sun H, Pulakat L, Anderson DW. Challenges and New Therapeutic Approaches in the Management of Chronic Wounds. Curr Drug Targets 2020; 21:1264-1275. [PMID: 32576127 DOI: 10.2174/1389450121666200623131200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are estimated to cost the US healthcare $28-$31 billion per year. Diabetic ulcers, arterial and venous ulcers, and pressure ulcers are some of the most common types of chronic wounds. The burden of chronic wounds continues to rise due to the current epidemic of obesity and diabetes and the increase in elderly adults in the population who are more vulnerable to chronic wounds than younger individuals. This patient population is also highly vulnerable to debilitating infections caused by opportunistic and multi-drug resistant pathogens. Reduced microcirculation, decreased availability of cytokines and growth factors that promote wound closure and healing, and infections by multi-drug resistant and biofilm forming microbes are some of the critical factors that contribute to the development of chronic non-healing wounds. This review discusses novel approaches to understand chronic wound pathology and methods to improve chronic wound care, particularly when chronic wounds are infected by multi-drug resistant, biofilm forming microbes.
Collapse
Affiliation(s)
- Hongmin Sun
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | - Lakshmi Pulakat
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | | |
Collapse
|
12
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
13
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
14
|
Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis 2020; 39:2235-2246. [PMID: 32683595 PMCID: PMC7669779 DOI: 10.1007/s10096-020-03984-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Foot ulcer is a common complication in diabetic subjects and infection of these wounds contributes to increased rates of morbidity and mortality. Diabetic foot infections are caused by a multitude of microbes and Staphylococcus aureus, a major nosocomial and community-associated pathogen, significantly contributes to wound infections as well. Staphylococcus aureus is also the primary pathogen commonly associated with diabetic foot osteomyelitis and can cause chronic and recurrent bone infections. The virulence capability of the pathogen and host immune factors can determine the occurrence and progression of S. aureus infection. Pathogen-related factors include complexity of bacterial structure and functional characteristics that provide metabolic and adhesive properties to overcome host immune response. Even though, virulence markers and toxins of S. aureus are broadly similar in different wound models, certain distinguishing features can be observed in diabetic foot infection. Specific clonal lineages and virulence factors such as TSST-1, leukocidins, enterotoxins, and exfoliatins play a significant role in determining wound outcomes. In this review, we describe the role of specific virulence determinants and clonal lineages of S. aureus that influence wound colonization and infection with special reference to diabetic foot infections.
Collapse
|
15
|
Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol 2019; 45:201-222. [PMID: 30786799 DOI: 10.1080/1040841x.2019.1573802] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococci are Gram-positive bacteria that are ubiquitous in the environment and able to form biofilms on a range of surfaces. They have been associated with a range of human health issues such as medical device-related infection, localized skin infection, or direct infection caused by toxin production. The extracellular material produced by these bacteria resists antibiotics and host defence mechanism which complicates the treatment process. The commonly reported Staphylococcus species are Staphylococcus aureus and S. epidermidis as they inhabit human bodies. However, the emergence of other staphylococci, such as S. haemolyticus, S. lugdunensis, S. saprophyticus, S. capitis, S. saccharolyticus, S. warneri, S. cohnii, and S. hominis, is also of concern and they have been associated with biofilm formation. This review critically assesses recent cases on the biofilm formation by S. aureus, S. epidermidis, and other staphylococci reported in health-related environments. The control of biofilm formation by staphylococci using natural compounds is specifically discussed as they represent potential anti-biofilm agents which may reduce the burden of antibiotic resistance.
Collapse
Affiliation(s)
- Yi Yi Yong
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| | - Gary A Dykes
- b School of Public Health , Curtin University , Bentley , Australia
| | - Wee Sim Choo
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| |
Collapse
|
16
|
Banerjee D, Shivapriya PM, Gautam PK, Misra K, Sahoo AK, Samanta SK. A Review on Basic Biology of Bacterial Biofilm Infections and Their Treatments by Nanotechnology-Based Approaches. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40011-018-01065-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Abstract
BACKGROUND As the population grows older, the incidence and prevalence of conditions that lead to a predisposition for poor wound healing also increase. Ultimately, this increase in nonhealing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has and will continue to be the leading pathway to the discovery of therapeutic targets, as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of nonhealing patients for whom biomarker-guided approaches may aid in healing. METHODS A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. RESULTS Currently, biomarkers are being identified using biomaterials sourced locally from human wounds and/or systemically using high-throughput "omics" modalities (genomic, proteomic, lipidomic, and metabolomic analysis). In this review, we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum, including those measured in tissue specimens, for example, β-catenin and c-myc, wound fluid, matrix metalloproteinases and interleukins, swabs, wound microbiota, and serum, for example, procalcitonin and matrix metalloproteinases. CONCLUSIONS Identification of numerous potential biomarkers using different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity and consistent implementation of these biomarkers, as well as an emphasis on efficacious follow-up therapeutics, is necessary for transition of this technology to clinically feasible point-of-care applications.
Collapse
|
18
|
Shettigar K, Jain S, Bhat DV, Acharya R, Ramachandra L, Satyamoorthy K, Murali TS. Virulence determinants in clinical Staphylococcus aureus from monomicrobial and polymicrobial infections of diabetic foot ulcers. J Med Microbiol 2016; 65:1392-1404. [DOI: 10.1099/jmm.0.000370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Kavitha Shettigar
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Spoorthi Jain
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Deepika V. Bhat
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Raviraj Acharya
- Department of Medicine, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| |
Collapse
|
19
|
Mottola C, Matias CS, Mendes JJ, Melo-Cristino J, Tavares L, Cavaco-Silva P, Oliveira M. Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections. BMC Microbiol 2016; 16:119. [PMID: 27339028 PMCID: PMC4918071 DOI: 10.1186/s12866-016-0737-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Foot infections are a major cause of morbidity in people with diabetes and the most common cause of diabetes-related hospitalization and lower extremity amputation. Staphylococcus aureus is by far the most frequent species isolated from these infections. In particular, methicillin-resistant S. aureus (MRSA) has emerged as a major clinical and epidemiological problem in hospitals. MRSA strains have the ability to be resistant to most β-lactam antibiotics, but also to a wide range of other antimicrobials, making infections difficult to manage and very costly to treat. To date, there are two fifth-generation cephalosporins generally efficacious against MRSA, ceftaroline and ceftobripole, sharing a similar spectrum. Biofilm formation is one of the most important virulence traits of S. aureus. Biofilm growth plays an important role during infection by providing defence against several antagonistic mechanisms. In this study, we analysed the antimicrobial susceptibility patterns of biofilm-producing S. aureus strains isolated from diabetic foot infections. The antibiotic minimum inhibitory concentration (MIC) was determined for ten antimicrobial compounds, along with the minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC), followed by PCR identification of genetic determinants of biofilm production and antimicrobial resistance. RESULTS Results demonstrate that very high concentrations of the most used antibiotics in treating diabetic foot infections (DFI) are required to inhibit S. aureus biofilms in vitro, which may explain why monotherapy with these agents frequently fails to eradicate biofilm infections. In fact, biofilms were resistant to antibiotics at concentrations 10-1000 times greater than the ones required to kill free-living or planktonic cells. The only antibiotics able to inhibit biofilm eradication on 50 % of isolates were ceftaroline and gentamicin. CONCLUSIONS The results suggest that the antibiotic susceptibility patterns cannot be applied to biofilm established infections. Selection of antimicrobial therapy is a critical step in DFI and should aim at overcoming biofilm disease in order to optimize the outcomes of this complex pathology.
Collapse
Affiliation(s)
- Carla Mottola
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Carina S. Matias
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - João J. Mendes
- />Departamento de Medicina Interna, Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, EPE, Lisbon, Portugal
| | - José Melo-Cristino
- />Faculdade de Medicina, Universidade de Lisboa, Instituto de Microbiologia, Lisbon, Portugal
| | - Luís Tavares
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Patrícia Cavaco-Silva
- />TechnoPhage, S.A., Lisbon, Portugal
- />Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Manuela Oliveira
- />Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| |
Collapse
|
20
|
Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review. Arch Microbiol 2015; 198:1-15. [PMID: 26377585 DOI: 10.1007/s00203-015-1148-6] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/31/2023]
Abstract
Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Subhasis Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
21
|
Mottola C, Mendes JJ, Cristino JM, Cavaco-Silva P, Tavares L, Oliveira M. Polymicrobial biofilms by diabetic foot clinical isolates. Folia Microbiol (Praha) 2015; 61:35-43. [DOI: 10.1007/s12223-015-0401-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/11/2015] [Indexed: 12/23/2022]
|
22
|
Lavigne JP, Sotto A, Dunyach-Remy C, Lipsky BA. New Molecular Techniques to Study the Skin Microbiota of Diabetic Foot Ulcers. Adv Wound Care (New Rochelle) 2015; 4:38-49. [PMID: 25566413 DOI: 10.1089/wound.2014.0532] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023] Open
Abstract
Significance: Diabetic foot ulcers (DFU) are a major and growing public health problem. They pose difficulties in clinical practice in both diagnosis and management. Bacterial interactions on the skin surface are important in the pathophysiology of DFU and may contribute to a delay in healing. Fully identifying bacteria present in these wounds is difficult with traditional culture methods. New molecular tools, however, have greatly contributed to our understanding of the role of the cutaneous microbiota in DFU. Recent Advances: Molecular technologies revealed new information concerning how bacteria are organized in DFU. This has led to the concept of "functionally equivalent pathogroups," meaning that certain bacterial species which are usually nonpathogenic (or at least incapable of maintaining a chronic infection on their own) may coaggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. The distribution of pathogens in multispecies biofilms is nonrandom. The high bacterial diversity is probably related to the development of a microbial biofilm that is irreversibly attached to the wound matrix. Critical Issues: Using molecular techniques requires a financial outlay for high-cost equipment. They are still too time-consuming to perform and reporting is too delayed for them to be used in routine practice. Finally, they do not differentiate live from dead or pathogenic from nonpathogenic microorganisms. Future Directions: Molecular tools have better documented the composition and organization of the skin flora. Further advances are required to elucidate which among the many bacteria in the DFU flora are likely to be pathogens, rather than colonizers.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- INSERM, U1047, Université Montpellier, UFR de Médecine, Nîmes Cedex, France
- Service de Microbiologie, CHU Carémeau, Nîmes Cedex, France
| | - Albert Sotto
- INSERM, U1047, Université Montpellier, UFR de Médecine, Nîmes Cedex, France
- Service des Maladies Infectieuses et Tropicales, CHU Carémeau, Nîmes Cedex, France
| | - Catherine Dunyach-Remy
- INSERM, U1047, Université Montpellier, UFR de Médecine, Nîmes Cedex, France
- Service de Microbiologie, CHU Carémeau, Nîmes Cedex, France
| | | |
Collapse
|
23
|
Zenelaj B, Bouvet C, Lipsky BA, Uçkay I. Do Diabetic Foot Infections With Methicillin-Resistant Staphylococcus aureus Differ From Those With Other Pathogens? INT J LOW EXTR WOUND 2014; 13:263-72. [DOI: 10.1177/1534734614550311] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is controversy as to whether or not diabetic foot infections (DFIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) are associated with worse outcomes than DFIs caused by other pathogens. To address this issue we performed a nonsystematic literature search of published articles in English language journals seeking studies reporting on the outcomes of DFIs related to their microbiology. We retrieved 48 articles published from 1999 to 2013 that described a total of 7771 cases of DFI. The overall proportion of DFIs with an isolate of S aureus was about 30%; just over one third of these (11% of all cases) were MRSA strains. Among the DFI cases caused by MRSA 1543 were episodes of soft tissue infections and 113 of osteomyelitis, while non-MRSA organisms caused 5761 soft tissue infections and 354 cases of osteomyelitis. Only 5 of the included articles attempted a comparison between DFI caused by MRSA and those caused by other pathogens, with no clear differences noted. The median total duration of antibiotic therapy for DFI caused by MRSA was 26 days, of which a median of 10 days was given intravenously. Only a few articles reported the proportion of patients with a recurrence, but they often did not differentiate between MRSA and non-MRSA cases. Four publications reported a worse functional or microbiological outcome in MRSA, compared to non-MRSA, cases, but the findings were variable and differences did not seem to be significant. Many trials failed to adjust for case-mix or to definitively demonstrate a relationship between microbiology and outcomes. Few of the articles specifically commented on whether the MRSA isolates were health care- or community-acquired strains. Notwithstanding the substantial limitations of the available literature, there does not appear to be a need for any special treatment for DFI caused by MRSA. The current guidelines for treating according to established international recommendations seem appropriate.
Collapse
Affiliation(s)
- Besa Zenelaj
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Cindy Bouvet
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Benjamin A. Lipsky
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- University of Oxford, Oxford, UK
| | - Ilker Uçkay
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
24
|
Conlon JM, Mechkarska M, Radosavljevic G, Attoub S, King JD, Lukic ML, McClean S. A family of antimicrobial and immunomodulatory peptides related to the frenatins from skin secretions of the Orinoco lime frog Sphaenorhynchus lacteus (Hylidae). Peptides 2014; 56:132-40. [PMID: 24704757 DOI: 10.1016/j.peptides.2014.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH2) and frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC ≤16μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC50=80±6 μM) and 2.2S (LC50=75±5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC50=167±8 μM for frenatin 2.1S and 169±7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P<0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates
| | - Gordana Radosavljevic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Samir Attoub
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates
| | - Jay D King
- Rare Species Conservatory Foundation, St. Louis, MO 63110, USA
| | - Miodrag L Lukic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Stephen McClean
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
25
|
Kosinski MA, Lipsky BA. Current medical management of diabetic foot infections. Expert Rev Anti Infect Ther 2014; 8:1293-305. [DOI: 10.1586/eri.10.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Bertesteanu S, Triaridis S, Stankovic M, Lazar V, Chifiriuc MC, Vlad M, Grigore R. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int J Pharm 2013; 463:119-26. [PMID: 24361265 DOI: 10.1016/j.ijpharm.2013.12.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022]
Abstract
Acute and chronic wounds represent a very common health problem in the entire world. The dermal wounds are colonized by aerobic and anaerobic bacterial and fungal strains, most of them belonging to the resident microbiota of the surrounding skin, oral cavity and gut, or from the external environment, forming polymicrobial communities called biofilms, which are prevalent especially in chronic wounds. A better understanding of the precise mechanisms by which microbial biofilms delay repair processes together with optimizing methods for biofilm detection and prevention may enhance opportunities for chronic wounds healing. The purpose of this minireview is to assess the role of polymicrobial biofilms in the occurrence and evolution of wound infections, as well as the current and future preventive and therapeutic strategies used for the management of polymicrobial wound infections.
Collapse
Affiliation(s)
- Serban Bertesteanu
- "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania; Otorhinolaryngology, "Carol Davila University" of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania
| | - Stefanos Triaridis
- Otolaryngology Department, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Milan Stankovic
- Otolaryngology and Ophthalmology Department, Faculty of Medicine, University of Nis, Serbia
| | - Veronica Lazar
- University of Bucharest, Faculty of Biology, Microbiology Department, Ale. Portocalelor 1-3, 60101 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Microbiology Department, Ale. Portocalelor 1-3, 60101 Bucharest, Romania.
| | - Mihaela Vlad
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Raluca Grigore
- "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania; Otorhinolaryngology, "Carol Davila University" of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania
| |
Collapse
|
27
|
Conlon JM, Mechkarska M, Prajeep M, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD. Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Peptides 2012; 37:113-9. [PMID: 22800690 DOI: 10.1016/j.peptides.2012.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022]
Abstract
A putative genome duplication event within the Silurana lineage has given rise to the tetraploid Cameroon clawed frog Silurana epitropicalis (Fischberg, Colombelli, and Picard, 1982). Peptidomic analysis of norepinephrine-stimulated skin secretions of S. epitropicalis led to identification of 10 peptides with varying degrees of growth-inhibitory activity against Escherichia coli and Staphylococcus aureus. Structural characterization identified the peptides as belonging to the magainin family (magainin-SE1), the caerulein-precursor fragment family (CPF-SE1, -SE2 and -SE3), the xenopsin-precursor fragment family (XPF-SE1, SE-2, SE-3 and -SE4), and the peptide glycine-leucine-amide family (PGLa-SE1 and -SE2). In addition, peptide phenylalanine-glutamine-amide (FLGALLGPLMNLLQ·NH(2)) was isolated from the secretions that lacked antimicrobial activity. Comparison of the multiplicity of orthologous peptides in S. epitropicalis and the diploid Silurana tropicalis indicates that extensive nonfunctionalization (deletion or silencing) of antimicrobial peptide genes has occurred after polyploidization in the Silurana lineage, as in the Xenopus lineage. CPF-SE2 (GFLGPLLKLGLKGAAKLLPQLLPSRQQ; MIC=2.5μM) and CPF-SE3 (GFLGSLLKTGLKVGSNLL·NH(2); MIC=5μM) showed potent growth-inhibitory activity against a range of clinical isolates of methicillin-resistant S. aureus (MRSA). Their utility as systemic anti-infective drugs is limited by significant hemolytic activity against human erythrocytes (LC(50)=50μM for CPF-SE2 and 220μM for CPF-SE3) but the peptides may find application as topical agents in treatment of MRSA skin infections and decolonization of MRSA carriers.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lipsky BA, Peters EJG, Senneville E, Berendt AR, Embil JM, Lavery LA, Urbančič-Rovan V, Jeffcoate WJ. Expert opinion on the management of infections in the diabetic foot. Diabetes Metab Res Rev 2012; 28 Suppl 1:163-78. [PMID: 22271739 DOI: 10.1002/dmrr.2248] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This update of the International Working Group on the Diabetic Foot incorporates some information from a related review of diabetic foot osteomyelitis (DFO) and a systematic review of the management of infection of the diabetic foot. The pathophysiology of these infections is now well understood, and there is a validated system for classifying the severity of infections based on their clinical findings. Diagnosing osteomyelitis remains difficult, but several recent publications have clarified the role of clinical, laboratory and imaging tests. Magnetic resonance imaging has emerged as the most accurate means of diagnosing bone infection, but bone biopsy for culture and histopathology remains the criterion standard. Determining the organisms responsible for a diabetic foot infection via culture of appropriately collected tissue specimens enables clinicians to make optimal antibiotic choices based on culture and sensitivity results. In addition to culture-directed antibiotic therapy, most infections require some surgical intervention, ranging from minor debridement to major resection, amputation or revascularization. Clinicians must also provide proper wound care to ensure healing of the wound. Various adjunctive therapies may benefit some patients, but the data supporting them are weak. If properly treated, most diabetic foot infections can be cured. Providers practising in developing countries, and their patients, face especially challenging situations.
Collapse
Affiliation(s)
- B A Lipsky
- VA Puget Sound Health Care System, University of Washington, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012; 25:193-213. [PMID: 22232376 PMCID: PMC3255964 DOI: 10.1128/cmr.00013-11] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms coexist in a complex milieu of bacteria, fungi, archaea, and viruses on or within the human body, often as multifaceted polymicrobial biofilm communities at mucosal sites and on abiotic surfaces. Only recently have we begun to appreciate the complicated biofilm phenotype during infection; moreover, even less is known about the interactions that occur between microorganisms during polymicrobial growth and their implications in human disease. Therefore, this review focuses on polymicrobial biofilm-mediated infections and examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases.
Collapse
Affiliation(s)
- Brian M. Peters
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Graeme A. O'May
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - J. William Costerton
- Department of Orthopedic Surgery, Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011; 2:445-59. [PMID: 21921685 DOI: 10.4161/viru.2.5.17724] [Citation(s) in RCA: 660] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing attention has been focused on understanding bacterial biofilms and this growth modality's relation to human disease. In this review we explore the genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss diseases and host immune responses, along with current therapies associated with S. aureus biofilm infections and prevention strategies.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Diabetic foot infections are a common and often serious problem, accounting for more hospital bed days than any other complication of diabetes. Despite advances in antibiotic drug therapy and surgical management, these infections continue to be a major risk factor for amputations of the lower extremity. Although a variety of wound size and depth classification systems have been adapted for use in codifying diabetic foot ulcerations, none are specific to infection. In 2003, the International Working Group on the Diabetic Foot developed guidelines for managing diabetic foot infections, including the first severity scale specific to these infections. The following year, the Infectious Diseases Society of America published their diabetic foot infection guidelines. Herein, we review some of the critical points from the Executive Summary of the Infectious Diseases Society of America document and provide a commentary following each issue to update the reader on any pertinent changes that have occurred since publication of the original document in 2004. The importance of a multidisciplinary limb salvage team, apropos of this special issue jointly published by the American Podiatric Medical Association and the Society for Vascular Surgery, cannot be overstated.
Collapse
Affiliation(s)
- Warren S Joseph
- Journal of the American Podiatric Medical Association, Bethesda, MD, USA.
| | | |
Collapse
|
32
|
Sharkey AM, Goldkind A, Yong R, Chagares W, Wrobel JS. Multiuse 10-g monofilament contamination. Diabetes Care 2010; 33:e144. [PMID: 20980423 DOI: 10.2337/dc10-1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Anne M. Sharkey
- North Chicago Veterans Affairs Medical Center, North Chicago, Illinois
| | - Adam Goldkind
- North Chicago Veterans Affairs Medical Center, North Chicago, Illinois
| | - Raymond Yong
- North Chicago Veterans Affairs Medical Center, North Chicago, Illinois
| | - William Chagares
- North Chicago Veterans Affairs Medical Center, North Chicago, Illinois
| | - James S. Wrobel
- North Chicago Veterans Affairs Medical Center, North Chicago, Illinois
- Scholl's Center for Lower Extremity Ambulatory Research (CLEAR), Rosalind Franklin University of Medicine, North Chicago, Illinois
| |
Collapse
|
33
|
Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:467-72. [PMID: 20656059 DOI: 10.1016/j.cbpc.2010.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Nine peptides with differential growth inhibitory activity against Escherichia coli and Staphylococcus aureus were isolated from norepinephrine-stimulated skin secretions of the tetraploid frog Xenopus borealis Parker, 1936 (Pipidae). Structural characterization of the peptides demonstrated that they were orthologous to magainin-2 (1 peptide), peptide glycine-leucine-amide, PGLa (2 peptides), caerulein-precursor fragments, CPF (4 peptides), and xenopsin-precursor fragments, XPF (2 peptides), previously isolated from Xenopus laevis and X. amieti. In addition, a second magainin-related peptide (G**KFLHSAGKFGKAFLGEVMIG) containing a two amino acid residue deletion compared with magainin-2 was identified that had only weak antimicrobial activity. The peptide with the greatest potential for development into a therapeutically valuable anti-infective agent was CPF-B1 (GLGSLLGKAFKIGLKTVGKMMGGAPREQ) with MIC=5 microM against E. coli, MIC=5 microM against S. aureus, and MIC=25 microM against Candida albicans, and low hemolytic activity against human erythrocytes (LC(50)>200 microM). This peptide was also the most abundant antimicrobial peptide in the skin secretions. CPF-B1 was active against clinical isolates of the nosocomial pathogens, methicillin-resistant S. aureus (MRSA) and multidrug-resistant Acinetobacter baumannii (MDRAB) with MIC values in the range 4-8 microM.
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Diabetic foot infections are a common and often serious problem, accounting for a greater number of hospital bed days than any other complication of diabetes. Despite advances in both antibiotic therapy and surgical management, these infections continue to be a major risk factor for amputations of the lower extremity. Although a number of wound size and depth classification systems have been adapted for use in codifying diabetic foot ulcerations, none are specific for infection. In 2003, the International Working Group on the Diabetic Foot developed guidelines for managing diabetic foot infections, including the first severity scale specific for these infections. The following year, the Infectious Diseases Society of America (IDSA) published their Diabetic Foot Infection Guidelines. In this article, we review some of the critical points from the Executive Summary of the IDSA document and provide a commentary following each issue to update the reader on any pertinent changes that have occurred since the publication of the original document in 2004. The importance of a multidisciplinary limb salvage team, apropos this special joint issue of the American Podiatric Medical Association and the Society for Vascular Surgery, cannot be overstated.
Collapse
|