1
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
2
|
Terzo C, Gembillo G, Cernaro V, Longhitano E, Calabrese V, Casuscelli C, Peritore L, Santoro D. Investigational new drugs for the treatment of chronic renal failure: an overview of the literature. Expert Opin Investig Drugs 2024; 33:319-334. [PMID: 38429874 DOI: 10.1080/13543784.2024.2326624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/29/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is widespread throughout the world, with a high social and health impact. It is considered a 'silent killer' for its sudden onset without symptoms in the early stages of the disease. The main goal of nephrologists is to slow the progression of kidney disease and treat the associated symptoms with a range of new medications. AREAS COVERED The aim of this systematic review is to analyze the new investigational drugs for the treatment of chronic renal failure. Data were obtained from the available scientific literature and from the ClinicalTrials.gov website. EXPERT OPINION Among the drugs currently being researched, SGLT2 inhibitors appear to be the most promising drugs for the treatment of CKD, has they have slower progression of CKD and protection of cardiorenal function. An important role in the future of CKD treatment is played by autologous cell-therapy, which appears to be a new frontier in the treatment of CKD. Other therapeutic strategies are currently being investigated and have been shown to slow the progression of CKD. However, further studies are needed to determine whether these approaches may offer benefits in slowing the progression of CKD in the near future.
Collapse
Affiliation(s)
- Chiara Terzo
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Guido Gembillo
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Valeria Cernaro
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Elisa Longhitano
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Vincenzo Calabrese
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Chiara Casuscelli
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Luigi Peritore
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| |
Collapse
|
3
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Li X, Xu B, Wu J, Pu Y, Wan S, Zeng Y, Wang M, Luo L, Zhang F, Jiang Z, Xu Y. Maresin 1 Alleviates Diabetic Kidney Disease via LGR6-Mediated cAMP-SOD2-ROS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7177889. [PMID: 35498124 PMCID: PMC9042615 DOI: 10.1155/2022/7177889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic hyperglycemia-induced inflammation is recognized as the most important pathophysiological process in diabetic kidney disease (DKD). As maresin 1 (MaR1) is an extensive anti-inflammatory lipid mediator, the present study investigated the protective role of MaR1 in the pathogenesis of DKD and its clinical relevance. METHODS Serum MaR1 concentrations were analyzed in 104 subjects with normal glucose tolerant, type 2 diabetes (T2DM), or DKD. Streptozotocin (STZ) together with high fat diet was used to induce male C57BL/6 J mice into diabetic mice which were treated with MaR1. Human renal tubule epithelial cells (HK-2 cells) were treated by high glucose for glucotoxicity cell model and transfected with LGR6 siRNA for knockdown with MaR1 added,and detected oxidative stress and inflammatory related factors. RESULTS Serum MaR1 concentrations were significant decreased in T2DM with or without kidney disease compared with normal participant and were lowest in patients with DKD. Serum MaR1 concentrations were negatively correlated with hemoglobin A1c (HbA1c), duration of diabetes, urinary albumin to creatinine ratio (UACR), neutrophil, and neutrophil-lymphocyte ratio and were positively correlated with high-density lipoprotein-cholesterol (HDL-C) and estimated glomerular filtration rate (eGFR). In mouse model, MaR1 injection alleviated hyperglycemia, UACR and the pathological progression of DKD. Interestingly, the renal expression of LGR6 was down-regulated in DKD and high glucose treated HK-2 cells but up-regulated by MaR1 treatment. Mechanistically, MaR1 alleviated inflammation via LGR6-mediated cAMP-SOD2 antioxidant pathway in DKD mice and high glucose treated HK-2 cells. CONCLUSIONS Our study demonstrates that decreased serum MaR1 levels were correlated with the development of DKD. MaR1 could alleviate DKD and glucotoxicity-induced inflammation via LGR6-mediated cAMP-SOD2 antioxidant pathway. Thus, our present findings identify MaR1 as a predictor and a potential therapeutic target for DKD.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Butuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Yueli Pu
- Department of Endocrinology and Metabolism, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengrong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Mei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Lifang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Fanjie Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan 646000, China
| |
Collapse
|
5
|
Ahmad AA, Draves SO, Rosca M. Mitochondria in Diabetic Kidney Disease. Cells 2021; 10:cells10112945. [PMID: 34831168 PMCID: PMC8616075 DOI: 10.3390/cells10112945] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in the USA. The pathogenesis of DKD is multifactorial and involves activation of multiple signaling pathways with merging outcomes including thickening of the basement membrane, podocyte loss, mesangial expansion, tubular atrophy, and interstitial inflammation and fibrosis. The glomerulo-tubular balance and tubule-glomerular feedback support an increased glomerular filtration and tubular reabsorption, with the latter relying heavily on ATP and increasing the energy demand. There is evidence that alterations in mitochondrial bioenergetics in kidney cells lead to these pathologic changes and contribute to the progression of DKD towards ESRD. This review will focus on the dialogue between alterations in bioenergetics in glomerular and tubular cells and its role in the development of DKD. Alterations in energy substrate selection, electron transport chain, ATP generation, oxidative stress, redox status, protein posttranslational modifications, mitochondrial dynamics, and quality control will be discussed. Understanding the role of bioenergetics in the progression of diabetic DKD may provide novel therapeutic approaches to delay its progression to ESRD.
Collapse
|
6
|
Yang L, Liao M. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi J Biol Sci 2021; 28:5555-5560. [PMID: 34588865 PMCID: PMC8459075 DOI: 10.1016/j.sjbs.2020.11.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
There is only limited literature studies on the activities of inflammation and matrix accumulation in the renal tissues of rats induced with diabetes through Streptozotocin. The present the investigation involves the examination of the protective actions of Myrcene (MYN), a monoterpene on the oxidative stress, inflammation, and matrix accumulation. For this purpose an experimental setup was created which involves injecting MYN 50 mg/kg for about 45 days in the STZ diabetic rats. Modifications in the enzymes, collagens, growth factor B1 and Kappa factor P65 were identified and tracked. The levels of the inflammatory markers like TF-α1, ICAM-1, VCAM-1, MCP-1 were tracked and noted. The current experimental results showed an alteration in the glucose metabolism and enhanced condition. Also an increased level of TGF-β-1 and Nuclear factor-kB expression was seen in the renal tissues. MYN was found to reduce glucose oxidative stress and exhibit an anti-inflammatory effect via inhibiting NF-kB signalling. The conclusion of the current study reveals that MYN regulates the inflammatory activities and matrix accumulation by inhibiting the activities of inflammatory cytokine, pro-inflammatory signalling.
Collapse
Affiliation(s)
- Lihong Yang
- School of nursing, ChiFeng University, Chifeng, Inner Mongolia 024000, China
| | - Min Liao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
7
|
Li J, Zhang Y, Zhang J, Dong R, Guo J, Zhang Q. Oxidative Stress and Its Related Factors in Latent Autoimmune Diabetes in Adults. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5676363. [PMID: 34557548 PMCID: PMC8455198 DOI: 10.1155/2021/5676363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
AIMS Few research was reported to explore oxidative stress in individuals with latent autoimmune diabetes in adults (LADA). Therefore, our goal is to study oxidative stress and related factors in LADA patients. METHODS In this study, 250 Chinese inpatients were diagnosed with LADA (n = 110) and type 2 diabetes mellitus (n = 140) and 140 healthy volunteers were recruited. Moreover, individuals with LADA were followed for 6 months to evaluate whether short-term glycemic control during hospitalization can improve oxidative stress. Clinical and laboratory measurements of height, weight, blood pressure, glycosylated hemoglobin (HbA1c), blood lipids, 8-isoprostaglandin F2α (8-iso-PGF2α), and superoxide dismutase (SOD) were performed. Stepwise multiple regression analyses were used to assess factors that related to oxidative stress in individuals with LADA. RESULTS Compared with patients with type 2 diabetes, individuals with LADA have better oxidative stress and worse oxidative stress than healthy volunteers. After multiple regression analyses, systolic blood pressure, HbA1c, duration of diabetes, and diabetic retinopathy were associated with 8-iso-PGF2α and HbA1c. Diabetic retinopathy and diabetic ketosis were associated with SOD in individuals with LADA. Our results also revealed that, after 6 months of follow-up, oxidative stress was improved to some extent in persons with LADA. CONCLUSIONS Our results show that compared with type 2 diabetes, LADA means less oxidative stress, and compared with healthy volunteers, it means more oxidative stress. Systolic blood pressure, HbA1c, duration of diabetes, diabetic retinopathy, and ketosis were associated with oxidative stress in individuals with LADA. Furthermore, short-term glycemic control can improve oxidative stress to some extent in individuals with LADA.
Collapse
Affiliation(s)
- Jinjin Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingyun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Rongna Dong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Juanjuan Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiumei Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
8
|
Emeka PM, Rasool ST, Morsy MA, Islam MIH, Chohan MS. Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:321-331. [PMID: 34187949 PMCID: PMC8255119 DOI: 10.4196/kjpp.2021.25.4.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.
Collapse
Affiliation(s)
- Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sahibzada T Rasool
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Mohamed I Hairul Islam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad S Chohan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
9
|
Qian L, Ren S, Xu Z, Zheng Y, Wu L, Yang Y, Wang Y, Li J, Yan S, Fang Z. Qian Yang Yu Yin Granule Improves Renal Injury of Hypertension by Regulating Metabolic Reprogramming Mediated by HIF-1α/PKM2 Positive Feedback Loop. Front Pharmacol 2021; 12:667433. [PMID: 34168560 PMCID: PMC8218631 DOI: 10.3389/fphar.2021.667433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Protection against hypoxia injury is an important therapeutic strategy for treating hypertensive nephropathy. In this study, the effects of Qian Yang Yu Yin granule (QYYY) on spontaneously hypertensive rats fed with high salt diet and HEK293T cells exposed to hypoxia were investigated. After eight weeks' treatment of QYYY, blood pressure, serum creatinine, serum cystatin C, blood urea nitrogen, urinary β2-microglobulin, urinary N-acetyl-β-glucosaminidase, and urinary microalbumin were assessed. The changes of hypoxia-inducible factor-1α (HIF-1α), pyruvate kinase M2 (PKM2), glucose transport 1 (GLUT1), lactate dehydrogenase A (LDH-A), connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), ATP, lactate, pyruvate, and pathology were also assessed in vivo. HEK293T cells pre-treated with QYYY and/or HIF-1α over expressing cells were cultured in a three gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 h and then the expressions of HIF-1α, PKM2, GLUT1, LDH-A, CTGF, TGF-β1, ATP, lactate, and pyruvate were detected. Our results showed that QYYY promoted the indicators of renal inflammation and fibrosis mediated by HIF-1α/PKM2 positive feedback loop in vivo and vitro. Our findings indicated that QYYY treated hypertensive nephropathy by regulating metabolic reprogramming mediated by HIF-1α/PKM2 positive feedback loop.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shihai Yan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuyuan Fang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, Spandidos DA, Kyriakopoulos AM, Zoumpourlis V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). MEDICINE INTERNATIONAL 2021; 1:3. [PMID: 36699147 PMCID: PMC9855276 DOI: 10.3892/mi.2021.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.
Collapse
Affiliation(s)
- Stella Baliou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Ioannis Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
11
|
Rosas-Martínez L, Rodríguez-Muñoz R, Namorado-Tonix MDC, Missirlis F, Del Valle-Mondragón L, Sánchez-Mendoza A, Reyes-Sánchez JL, Cervantes-Pérez LG. Hyperglycemic levels in early stage of diabetic nephropathy affect differentially renal expression of claudins-2 and -5 by oxidative stress. Life Sci 2021; 268:119003. [PMID: 33417957 DOI: 10.1016/j.lfs.2020.119003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
AIMS This study attempts to elicit whether the level of hyperglycemia in an early stage of diabetic nephropathy changes the renal expression of claudins-2 and -5 and to determine the involvement of glucose-induced oxidative stress. MAIN METHODS Streptozotocin-induced type-1 and type-2 diabetic (DM1, DM2)-rat models were used. At 14-week old, the rats were placed in metabolic cages to evaluate proteinuria, creatinine clearance, and electrolyte excretion. Proximal tubules and glomeruli were isolated and analyzed by Western blot and immunofluorescence. Renal oxidative stress and metalloproteinase activities were evaluated. KEY FINDINGS We found that claudin-5 expression in glomeruli and claudin-2 expression in proximal tubules were significantly reduced in DM1 versus DM2 model, paralleling with higher proteinuria and loss of sodium and potassium reabsorption, increased malondialdehyde levels, but lower antioxidant capacity in both models. Enzymatic activity of MMP-2 and-9 was increased in both diabetic groups versus control being higher in DM1 than DM2, suggesting higher claudin's degradation. SIGNIFICANCE The level of hyperglycemia determines the time-dependent progression to diabetic nephropathy; hyperglycemia-induced oxidative stress parallels an increase in metalloproteinases (MMPs) activities consequently affecting the integrity of claudin-2 and -5 in glomerulus and proximal tubule. Our results suggest that chronic high-glycemia levels in early stages of diabetic nephropathy decrease expression of claudins-2 and -5, increase oxidative stress, and induce MMP-activity faster than chronic middle-glycemia levels.
Collapse
Affiliation(s)
- Lorena Rosas-Martínez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Seccion XVI, Tlalpan, 14080 Mexico City, Mexico; Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-IPN, Instituto Politecnico Nacional, 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Mexico City, Mexico.
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-IPN, Instituto Politecnico Nacional, 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Mexico City, Mexico.
| | - María Del Carmen Namorado-Tonix
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-IPN, Instituto Politecnico Nacional, 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-IPN, Instituto Politecnico Nacional, 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Mexico City, Mexico.
| | - Leonardo Del Valle-Mondragón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Seccion XVI, Tlalpan, 14080 Mexico City, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Seccion XVI, Tlalpan, 14080 Mexico City, Mexico
| | - José L Reyes-Sánchez
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-IPN, Instituto Politecnico Nacional, 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Mexico City, Mexico.
| | - Luz Graciela Cervantes-Pérez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Seccion XVI, Tlalpan, 14080 Mexico City, Mexico.
| |
Collapse
|
12
|
Lv T, Lu Y, Liu Y, Feng H, Li C, Sheng W, Cui Z, Zhu S, Gu X, Yang Z, Wan Q. General Control of Amino Acid Synthesis 5-Like 1-Mediated Acetylation of Manganese Superoxide Dismutase Regulates Oxidative Stress in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6691226. [PMID: 33680286 PMCID: PMC7906818 DOI: 10.1155/2021/6691226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is the major cause of end-stage renal disease (ESRD). In the past few decades, there has been a large amount of evidence to highlight the pivotal role of oxidative stress in the development and progression of DKD. However, the detailed molecular mechanisms are not fully elucidated. A new sight has been established that the mitochondrial acetyltransferase GCN5L1 participates in cellular redox homeostasis maintenance in DKD. Firstly, we found that the expression of GCN5L1 is significantly elevated both in human and mouse kidney tissues with DKD and in hyperglycemic renal tubular epithelial cells (TECs), while deletion of GCN5L1 could effectively ameliorate oxidative stress-induced renal injury in DKD. Furthermore, deletion of GCN5L1 could reduce MnSOD acetylation on lysine 68 and activate its activity, thereby scavenging excessive ROS and relieving oxidative stress-induced renal inflammation and fibrosis. In general, GCN5L1-mediated acetylation of MnSOD exacerbated oxidative stress-induced renal injury, suggesting that GCN5L1 might be a potential intervention target in DKD.
Collapse
Affiliation(s)
- Tingting Lv
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yao Lu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hong Feng
- Cancer Centre, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Sheng
- Cancer Centre, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhengguo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Suwei Zhu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xia Gu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhe Yang
- Cancer Centre, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
13
|
Zhang X, Li L. The Significance of 8-oxoGsn in Aging-Related Diseases. Aging Dis 2020; 11:1329-1338. [PMID: 33014540 PMCID: PMC7505272 DOI: 10.14336/ad.2019.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
Aging is a common risk factor for the occurrence and development of many diseases, such as Parkinson’s disease, Alzheimer’s disease, diabetes, hypertension, atherosclerosis and coronary heart disease, and cancer, among others, and is a key problem threatening the health and life expectancy of the elderly. Oxidative damage is an important mechanism involved in aging. The latest discovery pertaining to oxidative damage is that 8-oxoGsn (8-oxo-7,8-dihydroguanosine), an oxidative damage product of RNA, can represent the level of oxidative stress. The significance of RNA oxidative damage to aging has not been fully explained, but the relationship between the accumulation of 8-oxoGsn, a marker of RNA oxidative damage, and the occurrence of diseases has been confirmed in many aging-related diseases. Studying the aging mechanism, monitoring the aging level of the body and exploring the corresponding countermeasures are of great significance for achieving healthy aging and promoting public health and social development. This article reviews the progress of research on 8-oxoGsn in aging-related diseases.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
14
|
Yang R, Li Y, Mehmood S, Yan C, Huang Y, Cai J, Ji J, Pan W, Zhang W, Chen Y. Polysaccharides from Armillariella tabescens mycelia ameliorate renal damage in type 2 diabetic mice. Int J Biol Macromol 2020; 162:1682-1691. [PMID: 32758603 DOI: 10.1016/j.ijbiomac.2020.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease (DKD), accompanied by chronic low-grade inflammation, is one of the most common complications of diabetes. Armillariella tabescens has potent anti-inflammatory and immunomodulatory properties. The purpose of the present study was to investigate the effects of polysaccharides from Armillariella tabescens mycelia (AT) on the kidney in type 2 diabetic mice and explore the underlying mechanism. The mice were randomized into 4 groups: normal control (NC), diabetic control (DC), DC + 200 mg/kg AT (LAT), and DC + 400 mg/kg AT (HAT). The results showed that compared with the NC group, the levels of fasting blood glucose, renal function-related indices, and serum pro-inflammatory mediators including lipopolysaccharide (LPS), interleukin (IL)-1β, and IL-18 were elevated; the renal morphopathological alterations, oxidative stress, and nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome-mediated inflammation and renal fibrosis were aggravated; the intestinal microbiota dysbiosis and colonic inflammation and barrier dysfunction were deteriorated in the DC group. After supplementation with AT, the aforementioned indices were ameliorated in the AT treatment groups, especially in the HAT group. In conclusion, these results demonstrated that modulating the intestinal microbiota and inflammatory reaction was implicated in the effects of AT against DKD in mice.
Collapse
Affiliation(s)
- Rui Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yangdan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shomaila Mehmood
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Chenchen Yan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jingjing Cai
- Pharmacy Department, Anhui Medical College, Hefei 230601, Anhui, China
| | - Junqiu Ji
- Hefei Lifeon Pharmaceutical Co., Ltd., Hefei 230601, Anhui, China
| | - Wenjuan Pan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenna Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Modern Biomanufacturing of Anhui Province, Hefei 230601, Anhui, China; Anhui Key Laboratory of Ecological Engineering and Biotechnology, Hefei 230601, Anhui, China.
| |
Collapse
|
15
|
mcIRBP-19 of Bitter Melon Peptide Effectively Regulates Diabetes Mellitus (DM) Patients' Blood Sugar Levels. Nutrients 2020; 12:nu12051252. [PMID: 32354072 PMCID: PMC7281988 DOI: 10.3390/nu12051252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to test the effectiveness of a particular bitter melon peptide (BMP), with a specific sequence of 19 amino acids (mcIRBP-19), in regulating diabetic patients' blood glucose. In order to test the product with the specially processed BMP, a total of 142 diabetic patients were solicited as study subjects, of which 64 were assigned to an experiment group and 78 to a control group. Biochemical data were compared with a paired t-test to verify the significance of changes over different time periods. The clinical results showed that BMP started to improve the subjects' glycated hemoglobin (HbA1c) levels at the end of the second month (T2), with mean values being significantly lowered from 7.8 ± 1.4% (T0) to 7.5 ± 1.4% (T2) (p = 0.004). The values reduced continuously, eventually reaching 7.4 ± 1.1% (p = 0.000) at the end of the experiment (T3). HbA1c levels for the control group were 7.5 ± 1.2% in T0 and 7.5 ± 1.1% (T3), and not significantly different (p = 0.852) over the same period. This study provides clinical evidence that helps to verify the effectiveness of the new BMP product in regulating diabetic patients' blood sugar levels.
Collapse
|
16
|
Álvarez-Cilleros D, López-Oliva ME, Martín MÁ, Ramos S. Cocoa ameliorates renal injury in Zucker diabetic fatty rats by preventing oxidative stress, apoptosis and inactivation of autophagy. Food Funct 2020; 10:7926-7939. [PMID: 31773121 DOI: 10.1039/c9fo01806a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Redox balance, autophagy and apoptosis are main processes involved in the development of diabetic nephropathy. Epidemiological and animal studies suggest that cocoa might reduce the risk of diabetic complications. However, the molecular mechanisms responsible for these potential preventive activities and whether cocoa exerts beneficial effects on dysregulated signalling pathways involved in cellular antioxidant defence, autophagy and apoptosis in the diabetic kidney remain largely unknown. Therefore, this work investigated the effect of a cocoa-rich diet on the mentioned processes in the renal cortex of Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were fed either a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet (10-20 weeks-of-life). ZDF rats fed with cocoa decreased body weight and glucose and insulin levels, and improved renal function. Cocoa intake further prevented the enhanced renal cortical oxidative stress in diabetic rats by regulating the antioxidant defence system and close-related proteins to cytoprotection and cell response; thus, cocoa diminished oxidative markers (reactive oxygen species and carbonyl groups) and NADPH-oxidase-4 levels, and restored key enzymatic antioxidant activities (superoxide dismutase and catalase), nuclear-erythroid-2-related factor-2, and ERK-MAPK levels, as well as sirtuin-1/5'-AMP-activated-protein kinase signalling. Moreover, in ZDF rats cocoa-rich diet contributed to alleviation of the renal cortical injury through autophagy activation (p62 upregulation, and downregulation of beclin-1 and LC3), and inhibition of apoptosis (Bcl-xL stimulation and suppression of Bax and caspases-9 and -3). These findings provide the first in vivo evidence on the molecular mechanisms of cocoa to circumvent renal cortical damage that involve improvement of antioxidant competences, stimulation of autophagy and suppression of apoptosis in ZDF rats.
Collapse
Affiliation(s)
- David Álvarez-Cilleros
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Dong L, Wang H, Ding T, Li W, Zhang G. Effects of TiO
2
nanoparticles on the life‐table parameters, antioxidant indices, and swimming speed of the freshwater rotifer
Brachionus calyciflorus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:230-239. [DOI: 10.1002/jez.2343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Li‐Li Dong
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Heng‐Xing Wang
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Tao Ding
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Wei Li
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company Limited Shenzhen Guangdong P. R. China
| |
Collapse
|
18
|
Protective Effect of Hydroxysafflor Yellow A on Nephropathy by Attenuating Oxidative Stress and Inhibiting Apoptosis in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7805393. [PMID: 32256962 PMCID: PMC7091558 DOI: 10.1155/2020/7805393] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus, and its prevalence has been increasing all over the world, which is also the leading cause of end-stage renal failure. Hydroxysafflor yellow A (HSYA) is the main active chemical component of Carthamus tinctorius L., and it is commonly used in patients with cardiovascular and cerebrovascular diseases in China. The aim of this study was to investigate the renal protective effects and molecular mechanisms of HSYA on high-fat diet (HFD) and streptozotocin- (STZ-) induced DN in rats. The DN rats were treated with HSYA for eight weeks. We assessed creatinine (CR), urea nitrogen (UN), glomerular volume, podocyte number, renal inflammation, oxidative stress, and cells apoptosis markers after HSYA treatment. The number of apoptotic cells was measured by the TUNEL assay, and apoptosis-related proteins BAX, caspase-3, and BCL-2 in the renal tissue were analyzed by western blot. The treatment with HSYA significantly decreased fasting blood glucose, CR, UN, and blood lipid profile, including triglyceride and total and low-density lipoprotein cholesterol, even though it did not change the rats' body weights. The western blot results indicated that HSYA reversed the upregulation of BAX and caspase-3 and significantly increased BCL-2 in renal tissue. Moreover, the levels of TNF-α and the inflammatory products, including free fatty acids (FFA) and lactic dehydrogenase (LDH) in the HSYA group, were significantly decreased. For the oxidative stress marker, the superoxide dismutase (SOD) markedly increased in the HSYA treatment group, while the malondialdehyde (MDA) in the serum and kidney tissue evidently decreased. In conclusion, HSYA treatment preserved kidney function in diabetic nephropathy in the HFD- and STZ-induced rats. The potential mechanism of renal protective effect of HSYA might be through inhibiting oxidative stress, reducing inflammatory reaction, and attenuating renal cell apoptosis. Our studies present a promising use for Hydroxysafflor yellow A in the treatment of type 2 diabetes mellitus.
Collapse
|
19
|
Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR, Venkatachalam MA, Alexandrov T, Eberlin LS, Sharma K. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics 2020; 16:11. [PMID: 31925564 PMCID: PMC7301343 DOI: 10.1007/s11306-020-1637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. OBJECTIVES In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. METHODS DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). RESULTS Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z's in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. CONCLUSION Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.
Collapse
Affiliation(s)
- Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
20
|
Wang L, Chang JH, Buckley AF, Spurney RF. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int 2020; 95:321-332. [PMID: 30665571 DOI: 10.1016/j.kint.2018.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations in TRPC6 cause familial focal segmental glomerulosclerosis, and TRPC6 is upregulated in glomerular diseases including diabetic kidney disease. We studied the effect of systemic TRPC6 knockout in the Akita model of type 1 diabetes. Knockout of TRPC6 inhibited albuminuria in Akita mice at 12 and 16 weeks of age, but this difference disappeared by 20 weeks. Knockout of TRPC6 also reduced tubular injury in Akita mice; however, mesangial expansion was significantly increased. Hyperglycemia and blood pressure were similar between TRPC6 knockout and wild-type Akita mice, but knockout mice were more insulin resistant. In cultured podocytes, knockout of TRPC6 inhibited expression of the calcium/calcineurin responsive gene insulin receptor substrate 2 and decreased insulin responsiveness. Insulin resistance is reported to promote diabetic kidney disease independent of blood glucose levels. While the mechanisms are not fully understood, insulin activates both Akt2 and ERK, which inhibits apoptosis signal regulated kinase 1 (ASK1)-p38-induced apoptosis. In cultured podocytes, hyperglycemia stimulated p38 signaling and induced apoptosis, which was reduced by insulin and ASK1 inhibition and enhanced by Akt or ERK inhibition. Glomerular p38 signaling was increased in TRPC6 knockout Akita mice and was associated with enhanced expression of the p38 gene target cyclooxygenase 2. These data suggest that knockout of TRPC6 in Akita mice promotes insulin resistance and exacerbates glomerular disease independent of hyperglycemia.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Jae-Hyung Chang
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA; Durham VA Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
21
|
Huang WJ, Liu WJ, Xiao YH, Zheng HJ, Xiao Y, Jia Q, Jiang HX, Zhu ZB, Xia CH, Han XT, Sun RX, Nan H, Feng ZD, Wang SD, Zhao JX. Tripterygium and its extracts for diabetic nephropathy: Efficacy and pharmacological mechanisms. Biomed Pharmacother 2020; 121:109599. [DOI: 10.1016/j.biopha.2019.109599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
|
22
|
Sex Differences in Glutathione Peroxidase Activity and Central Obesity in Patients with Type 2 Diabetes at High Risk of Cardio-Renal Disease. Antioxidants (Basel) 2019; 8:antiox8120629. [PMID: 31817851 PMCID: PMC6943424 DOI: 10.3390/antiox8120629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Women with type 2 diabetes (T2DM) have an increased susceptibility of developing cardio-renal disease compared to men, the reasons and the mechanisms of this vulnerability are unclear. Since oxidative stress plays a key role in the development of cardio-renal disease, we investigated the relationship between sex, plasma antioxidants status (glutathione peroxidase (GPx-3 activity), vitamin E and selenium), and adiposity in patients with T2DM at high risk of cardio-renal disease. Women compared to men had higher GPx-3 activity (p = 0.02), bio-impedance (p ≤ 0.0001), and an increase in waist circumference in relation to recommended cut off-points (p = 0.0001). Waist circumference and BMI were negatively correlated with GPx-3 activity (p ≤ 0.05 and p ≤ 0.01, respectively) and selenium concentration (p ≤ 0.01 and p ≤ 0.02, respectively). In multiple regression analysis, waist circumference and sex were independent predictors of GPx-3 activity (p ≤ 0.05 and p ≤ 0.05, respectively). The data suggest that increased central fat deposits are associated with reduced plasma antioxidants which could contribute to the future risk of cardio-renal disease. The increased GPx-3 activity in women could represent a preserved response to the disproportionate increase in visceral fat. Future studies should be aimed at evaluating if the modulation of GPx-3 activity reduces cardio-renal risk in men and women with T2DM.
Collapse
|
23
|
Wang M, Hu J, Yan L, Yang Y, He M, Wu M, Li Q, Gong W, Yang Y, Wang Y, Handy DE, Lu B, Hao C, Wang Q, Li Y, Hu R, Stanton RC, Zhang Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33:6296-6310. [PMID: 30785802 DOI: 10.1096/fj.201801921r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress contributes substantially to podocyte injury, which plays an important role in the development of diabetic kidney disease. The mechanism of hyperglycemia-induced oxidative stress in podocytes is not fully understood. Glucose-6-phosphate dehydrogenase (G6PD) is critical in maintaining NADPH, which is an important cofactor for the antioxidant system. Here, we hypothesized that high glucose induced ubiquitination and degradation of G6PD, which injured podocytes by reactive oxygen species (ROS) accumulation. We found that G6PD protein expression was decreased in kidneys of both diabetic patients and diabetic rodents. G6PD activity was also reduced in diabetic mice. Overexpressing G6PD reversed redox imbalance and podocyte apoptosis induced by high glucose and palmitate. Inhibition of G6PD with small interfering RNA induced podocyte apoptosis. In kidneys of G6PD-deficient mice, podocyte apoptosis was significantly increased. Interestingly, high glucose had no effect on G6PD mRNA expression. Decreased G6PD protein expression was mediated by the ubiquitin proteasome pathway. We found that the von Hippel-Lindau (VHL) protein, an E3 ubiquitin ligase subunit, directly bound to G6PD and degraded G6PD through ubiquitylating G6PD on K366 and K403. In summary, our data suggest that high glucose induces ubiquitination of G6PD by VHL E3 ubiquitin ligase, which leads to ROS accumulation and podocyte injury.-Wang, M., Hu, J., Yan, L., Yang, Y., He, M., Wu, M., Li, Q., Gong, W., Yang, Y., Wang, Y., Handy, D. E., Lu, B., Hao, C., Wang, Q., Li, Y., Hu, R., Stanton, R. C., Zhang, Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes.
Collapse
Affiliation(s)
- Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Linling Yan
- Department of Endocrinology, The First People's Hospital of Taicang, Suzhou, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Li
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bin Lu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronggui Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Tsabang N, Djeufack LWT, Yedjou CG, Tchounwou PB. Importance of food plants in the prevention and treatment of diabetes in Cameroon. BIOACTIVE COMPOUNDS IN HEALTH AND DISEASE 2019; 2:11-26. [PMID: 32864583 PMCID: PMC7451804 DOI: 10.31989/bchd.v2i2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diabetes is a metabolic pathology that affects the human body's capacity to adequately produce and use insulin. Type 1 (insulin-dependent) diabetes accounts for 5-10 % of diabetic patients. In Type 2 diabetes the insulin produced by the pancreatic islets is not properly used by cells due to insulin resistance. Gestational diabetes sometimes occurs in pregnant women and affects about 18 % of all pregnancies.Diabetes is one of the most important multifactorial metabolic chronic diseases with fatal complications. According to the International Diabetes Federation's estimations in 2015, 415 million people had diabetes and there will be an increase to 642 million people by 2040. Although many ethnopharmacological surveys have been carried out in several parts of the world, no ethnomedical and ethnopharmacological surveys have been done to identify plants used for the prevention and treatment of diabetes. OBJECTIVE This study aimed to collect and document information on food plants' remedies consumed for the prevention and treatment of diabetes in Cameroon. METHODS Ethnomedical and ethnopharmacological thorough preparations were conducted with 1131 interviewees from 58 tribes, following a random distribution. Diabetic patients recorded among this sample signed the informed consent and allowed us to evaluate the effectiveness of 10 identified food plants usually used for self-medication. They were divided into two groups: Group 1 comprised of 42 diabetic patients who regularly consume certain of these food plants, and Group 2 included 58 patients who were town-dwellers and did not regularly eat these identified food plants. RESULTS It was recorded that the onset of diabetes in patients were at about 70 years and 45 years for Group 1 and Group 2 respectively. Hence, a relationship was demonstrated between the onset of diabetes and the consumption of food plants. They contributed to the prevention and/or the delay in clinical manifestations. CONCLUSION Further investigations and/or clinical trials involving a large number of both type 1 and type 2 diabetics are needed to describe the therapeutic action of many food plants against diabetes. However, this study provides scientific support for the use of herbal medicines in the management of diabetes.
Collapse
Affiliation(s)
- Nole Tsabang
- Independent Consultant (Ex researcher of the Institute of Medical Researches and Medicinal Plants Studies (IMPM), Visiting lecturer at the University of Yaoundé I, Faculty of Medicine of Biomedical Science, at the University of Dschang, Faculty of Animal Biology and at the High Institute of Environmental Science, Yaounde-Cameroon
| | | | - Clément G Yedjou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, USA
| | - Paul B Tchounwou
- Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, Mississippi, USA
| |
Collapse
|
25
|
Sun M, Bu W, Li Y, Zhu J, Zhao J, Zhang P, Gu L, Zhang W, Fang Z. Danzhi Jiangtang Capsule ameliorates kidney injury via inhibition of the JAK-STAT signaling pathway and increased antioxidant capacity in STZ-induced diabetic nephropathy rats. Biosci Trends 2018; 12:595-604. [PMID: 30606979 DOI: 10.5582/bst.2018.01255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Danzhi Jiangtang Capsule (DJC), a traditional Chinese medicinal formula, has been used clinically in treating diabetes and diabetic nephropathy (DN). We previously demonstrated that DJC is capable of improving renal function in patients and rats with DN, but the mechanisms underlying these therapeutic benefits of DJC are not quite clear yet. In this study, STZ-induced diabetic rats were orally administered DJC for 8 weeks. Fasting blood glucose, renal function indicators in the serum, renal index, and the expression of proteins related to JAK-STAT signaling pathway were evaluated at the end of the experiment. The kidneys were sliced for pathological histology. Antioxidant status was assessed by measuring SOD, LPO and MDA in serum. The expression levels of COX2, iNOS, SOCS and the phosphorylation status of JAK2, STAT1, and STAT3 in renal tissues were evaluated by Western blot analyses. IL-6, TNF-α, and MCP-1 expression levels in renal tissues were determined using double-antibody sandwich ELISA. Diabetic renal dysfunction and its associated pathologies were ameliorated by DJC treatment. DJC significantly reversed the high expression of COX2 and iNOS in renal tissues. Furthermore, DJC inhibited the JAK2-STAT1/STAT3-SOCS3 signaling pathway, resulting in decreased concentrations of IL-6, TNF-α, and MCP-1. Moreover, the oxidant status in the kidney was substantially ameliorated by DJC treatment. In conclusion, the ability of DJC to ameliorate diabetic renal dysfunction and the associated pathologies of this disease might be due to its antioxidant capacity and suppression of the JAK2-STAT1/STAT3 cascade.
Collapse
Affiliation(s)
- Min Sun
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Wenjie Bu
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Yan Li
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Jianliang Zhu
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Jindong Zhao
- Department of Endocrinology, the First Affiliated Hospital of Anhui University of TCM
| | - Pingping Zhang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Lingling Gu
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Wenna Zhang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University
| | - Zhaohui Fang
- Department of Endocrinology, the First Affiliated Hospital of Anhui University of TCM
| |
Collapse
|
26
|
Nambirajan G, Karunanidhi K, Ganesan A, Rajendran R, Kandasamy R, Elangovan A, Thilagar S. Evaluation of antidiabetic activity of bud and flower of Avaram Senna (Cassia auriculata L.) In high fat diet and streptozotocin induced diabetic rats. Biomed Pharmacother 2018; 108:1495-1506. [DOI: 10.1016/j.biopha.2018.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
|
27
|
Neves KB, Montezano AC, Alves-Lopes R, Bruder-Nascimento T, Costa RM, Costa RS, Touyz RM, Tostes RC. Upregulation of Nrf2 and Decreased Redox Signaling Contribute to Renoprotective Effects of Chemerin Receptor Blockade in Diabetic Mice. Int J Mol Sci 2018; 19:E2454. [PMID: 30126255 PMCID: PMC6121242 DOI: 10.3390/ijms19082454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Chemerin, acting through its receptor ChemR23, is an adipokine associated with inflammatory response, glucose and lipid metabolism and vascular function. Although this adipokine has been associated with the development and progression of kidney disease, it is not clear whether the chemerin/ChemR23 system plays a role in renal function in the context of diabetes. Therefore, we sought to determine whether ChemR23 receptor blockade prevents the development and/or progression of diabetic nephropathy and questioned the role of oxidative stress and Nrf2 in this process. Renal redox state and function were assessed in non-diabetic lean db/m and diabetic obese db/db mice treated with vehicle or CCX832 (ChemR23 antagonist). Renal reactive oxygen species (ROS) production, which was increased in diabetic mice, was attenuated by CCX832. This was associated with an increase in Nox 4 expression. Augmented protein oxidation in db/db mice was not observed when mice were treated with CCX832. CCX832 also abrogated impaired Nrf2 nuclear activity and associated downregulation in antioxidants expression in kidneys from db/db mice. Our in vivo findings highlight the role of the redox signaling and Nrf2 system as renoprotective players during chemerin receptor blockade in diabetic mice. The chemerin/ChemR23 system may be an important target to limit renal dysfunction associated with obesity-related diabetes.
Collapse
Affiliation(s)
- Karla Bianca Neves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-093, Brazil.
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto Cesar Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rheure Alves-Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Thiago Bruder-Nascimento
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
| | - Rafael Menezes Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
| | - Roberto S Costa
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14040-900, Brazil.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
| |
Collapse
|
28
|
Álvarez-Cilleros D, Martín MÁ, Goya L, Ramos S. (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Van Krieken R, Marway M, Parthasarathy P, Mehta N, Ingram AJ, Gao B, Krepinsky JC. Inhibition of SREBP With Fatostatin Does Not Attenuate Early Diabetic Nephropathy in Male Mice. Endocrinology 2018; 159:1479-1495. [PMID: 29420703 DOI: 10.1210/en.2018-00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Sterol regulatory element binding protein (SREBP) is an important potential mediator of kidney fibrosis and is known to be upregulated in diabetic nephropathy. We evaluated the effectiveness of SREBP inhibition as treatment of diabetic nephropathy. Type 1 diabetes was induced in uninephrectomized male CD1 mice with streptozotocin. The mice were treated with the SREBP inhibitor fatostatin for 12 weeks. At the endpoint, kidney function and pathologic findings were assessed. Fatostatin inhibited the increase of both isoforms of SREBP (types 1 and 2) in diabetic kidneys. Treatment attenuated basement membrane thickening but did not improve hyperfiltration, albuminuria, or kidney fibrosis in diabetic mice. The treatment of nondiabetic mice with fatostatin led to hyperfiltration and increased the glomerular volume to levels seen in diabetic mice. This was associated with increased renal inflammation and a trend toward increased renal fibrosis. Both in vivo and in cultured renal proximal tubular epithelial cells, fatostatin increased the expression of the proinflammatory cytokine monocyte chemoattractant protein-1. Thus, SREBP inhibition with fatostatin not only is ineffective in preventing diabetic nephropathy but also leads to kidney injury in nondiabetic mice. Further research on the efficacy of other SREBP inhibitors and the specific roles of SREBP-1 and SREBP-2 in the treatment and pathogenesis of diabetic nephropathy is needed.
Collapse
Affiliation(s)
| | - Mandeep Marway
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | | | - Neel Mehta
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Alistar J Ingram
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Lv D, Zhou Q, Xia Y, You X, Zhao Z, Li Y, Zou H. The Association Between Oxidative Stress Alleviation via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement. Kidney Blood Press Res 2018; 43:191-205. [DOI: 10.1159/000487501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
|
31
|
Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol Appl Pharmacol 2017; 339:97-109. [PMID: 29229234 DOI: 10.1016/j.taap.2017.11.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Hyperglycemia induces the formation of advanced glycation end products (AGEs) and their receptors (RAGEs), which alter several intracellular signaling mechanisms leading to the onset and progression of diabetic nephropathy. The present study focused on, i) modulatory effects of trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) on structural changes, AGE (NƐ-carboxymethyl-lysine), RAGE, oxidative stress and DNA damage, and apoptosis, and ii) localization of fibrotic changes, AGE, RAGE, 8-oxo-dG and 4-hydroxynonenal (4-HNE) in diabetic rat kidneys. Resveratrol (5mg/kg; po, administered during last 45days of 90-day-long hyperglycemic period) administration to streptozotocin-induced type 1 diabetic male Wistar rats reduced renal hypertrophy and structural changes (tubular atrophy, mesangial expansion or shrinkage, diffuse glomerulonephritis, and fibrosis), AGE accumulation, oxidative stress and DNA damage (8-oxo-dG), 4-HNE, caspase-3, and cleaved-caspase-3, but not the RAGE expression. The AGE accumulated in the mesangium, vascular endothelium, and proximal convoluted tubules and less intensely in distal convoluted tubules of diabetic rat kidneys. The RAGE expression increased in the convoluted tubules and collecting ducts of diabetic rat kidneys, but not in the mesangium. Diabetes increased the expression of 8-oxo-dG in nuclei and cytoplasm of renal cells, and 4-HNE in glomeruli, convoluted tubules, the loops of Henle and collecting ducts. Hyperglycemia-induced AGE-RAGE axis and oxidative stress in turn induced apoptosis in diabetic kidneys. Resveratrol mitigated all diabetic effects except the RAGE expression. In conclusion, Resveratrol significantly alleviates diabetes-induced glycation, oxidative damage, and apoptosis to inhibit the progression of diabetic nephropathy. Resveratrol supplementation may be useful to hinder the onset and progression of diabetic kidney diseases.
Collapse
Affiliation(s)
- Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
32
|
Saleh MA, De Miguel C, Stevens DI, Carmines PK, Pollock DM, Pollock JS. Free radical scavenging decreases endothelin-1 excretion and glomerular albumin permeability during type 1 diabetes. Physiol Rep 2017; 4:4/24/e13055. [PMID: 28039404 PMCID: PMC5210388 DOI: 10.14814/phy2.13055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022] Open
Abstract
Increased renal endothelin-1 (ET-1) production and an ETA receptor-dependent increase in glomerular albumin permeability (Palb) accompany type 1 diabetes mellitus (T1D). We hypothesized that T1D-induced oxidative stress contributes to renal ET-1 production and glomerular Palb Male rats with streptozotocin-induced T1D were provided free access to drinking water without additives (T1D rats) or containing the free radical scavenger tempol (1 mmol/L; T1D+Tempol). After 3 weeks, T1D+Tempol rats displayed lower urinary excretion of thiobarbituric acid reactive substances and glomerular superoxide production (dihydroethidium staining) compared to T1D rats. Urinary ET-1 excretion and inner medullary (but not cortical or outer medullary) prepro-ET-1 mRNA expression were lower in the T1D+Tempol group than in the T1D group. Palb, measured as the change in volume of isolated glomeruli upon exposure to oncotic gradients of albumin, was significantly lower in the T1D+Tempol group than in the T1D group. Tempol treatment did not alter protein excretion or creatinine clearance. These data support the postulate that oxidative stress contributes to glomerular Palb and renal ET-1 production during the early phase of type 1 diabetes.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Medical College of Georgia, Augusta University, Augusta, Georgia.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Carmen De Miguel
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David I Stevens
- Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Pamela K Carmines
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - David M Pollock
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jennifer S Pollock
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama .,Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
33
|
Zhou X, Bai C, Sun X, Gong X, Yang Y, Chen C, Shan G, Yao Q. Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways in vivo and in vitro. Ren Fail 2017; 39:423-431. [PMID: 28335679 PMCID: PMC6014507 DOI: 10.1080/0886022x.2017.1305409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Puerarin (PR) is an isoflavonoid isolated from the root of the plant Pueraria lobata and has been widely used in traditional Chinese herbal medicine for the treatment of various diseases. Oxidative stress and epithelial cell apoptosis play important roles in the renal fibrotic process. The present study aimed to determine whether or not PR inhibits renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis. In vivo, unilateral ureteral obstruction (UUO) induced renal fibrosis, and epithelial cell apoptosis. A total of 24 mice were randomly assigned to four experimental groups: sham, UUO alone, UUO +50 mg/kg PR, and UUO +100 mg/kg PR. In vitro, 200 μM hydrogen peroxide (H2O2) induced epithelial cell apoptosis. The experiments were dived into four groups: control, H2O2 alone, H2O2+50 μM PR, and H2O2+100 μM PR. Tubular injury was measured in the renal cortex of the mice through periodic acid-Schiff (PAS) staining, and the extracellular matrix (ECM) was measured through Sirius red (SR), immunohistochemistry (IHC) staining, and Western blot. Renal epithelial cell apoptosis was measured through terminal deoxynucleotidyl transferase-mediated dUTP Nick-End labeling (TUNEL), flow cytometry (FCM), and Hoechst assays. The protein expression of NOX4, caspase3, ERK, P38, and JNK was assessed through Western blot. PAS staining showed that PR decreased renal tubular injury in UUO mice. SR and IHC staining demonstrated that PR decreased the accumulation of ECM. PR treatment significantly inhibited epithelial cell apoptosis according to the results of TUNEL, FCM, Hoechst, and Western blot. Furthermore, NOX4 increased in UUO mice and decreased with PR treatment. H2O2-derived oxidative stress activated epithelial apoptosis and mitogen-activated protein kinases (MAPK), and PR treatment significantly reversed it. These results suggest that PR treatment ameliorates renal fibrosis by inhibiting oxidative stress induced-epithelial cell apoptosis through MAPK signaling.
Collapse
Affiliation(s)
- Xiangjun Zhou
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Chen Bai
- b Department of General Surgery , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Xinbo Sun
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Xiaoxin Gong
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Yong Yang
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Congbo Chen
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Guang Shan
- c Department of Urology , Renmin Hospital of Wuhan University , Hubei , China
| | - Qisheng Yao
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| |
Collapse
|
34
|
Bin Feng, Meng R, Bin Huang, Bi Y, Shen S, Zhu D. Silymarin protects against renal injury through normalization of lipid metabolism and mitochondrial biogenesis in high fat-fed mice. Free Radic Biol Med 2017. [PMID: 28625483 DOI: 10.1016/j.freeradbiomed.2017.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Obesity is associated with an increased risk of chronic kidney diseases and the conventional treatment with renin-angiotensin-aldosterone system (RAAS) inhibitors is not enough to prevent renal injury and prolong the progression of disease. Recently, silymarin has shown protective effects on renal tissue injury, but the underlying mechanisms remain elusive. The goal of this study was to investigate the potential capacity of silymarin to prevent renal injury during obesity induced by high fat diet (HFD) in mice. In vivo, male C57BL/6 mice received HFD (60% of total calories) for 12 weeks, randomized and treated orally with vehicle saline or silymarin (30mg/kg body weight/d) for 4 weeks. In vitro, human proximal tubular epithelial cells (HK2) were exposed to 300μM palmitic acid (PA) for 36h followed by silymarin administration at different concentrations. The administration of silymarin significantly ameliorated HFD induced glucose metabolic disorders, oxidative stress and pathological alterations in the kidney. Silymarin significantly mitigated renal lipid accumulation, fatty acid β-oxidation and mitochondrial biogenesis in HFD mice and PA treated HK2 cells. Furthermore, silymarin partly restored mitochondrial membrane potential of HK2 cells after PA exposure. In conclusion, silymarin can improve oxidative stress and preserve mitochondrial dysfunction in the kidney, potentially via preventing accumulation of renal lipids and fatty acid β-oxidation.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Cell Line
- Diet, High-Fat/adverse effects
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Humans
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Lipid Metabolism/drug effects
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mitochondria/drug effects
- Mitochondria/metabolism
- Obesity/diet therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Palmitic Acid/antagonists & inhibitors
- Palmitic Acid/pharmacology
- Protective Agents/pharmacology
- Renal Insufficiency, Chronic/diet therapy
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Silymarin/pharmacology
Collapse
Affiliation(s)
- Bin Feng
- Department of Endocrinology, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Ran Meng
- Department of Endocrinology, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Bin Huang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Shanmei Shen
- Department of Endocrinology, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
35
|
Kwon G, Uddin MJ, Lee G, Jiang S, Cho A, Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, Cha DR, Ha H. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 2017; 8:74217-74232. [PMID: 29088780 PMCID: PMC5650335 DOI: 10.18632/oncotarget.18540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are increasingly recognized as a key factor in inflammation and extracellular matrix accumulation in diabetic kidney disease. APX-115 (3-phenyl-1-(pyridin-2-yl)-4-propyl-1-5-hydroxypyrazol HCl) is a novel orally active pan-Nox inhibitor. The objective of this study was to compare the protective effect of APX-115 with a renin-angiotensin system inhibitor (losartan), the standard treatment against kidney injury in diabetic patients, on streptozotocin (STZ)-induced diabetic kidney injury. Diabetes was induced by intraperitoneal injection of STZ at 50 mg/kg/day for 5 days in C57BL/6J mice. APX-115 (60 mg/kg/day) or losartan (1.5 mg/kg/day) was administered orally to diabetic mice for 12 weeks. APX-115 effectively prevented kidney injury such as albuminuria, glomerular hypertrophy, tubular injury, podocyte injury, fibrosis, and inflammation as well as oxidative stress in diabetic mice, similar to losartan. In addition, both APX-115 and losartan treatment effectively inhibited mitochondrial and peroxisomal dysfunction associated with lipid accumulation. Our data suggest that APX-115, a pan-Nox inhibitor, may become a novel therapeutic agent against diabetic kidney disease by maintaining peroxisomal and mitochondrial fitness.
Collapse
Affiliation(s)
- Guideock Kwon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Songling Jiang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ahreum Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jung Hwa Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sae Rom Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | | | | | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
36
|
Mehde AA, Yusof F, Mehdi WA, Raus RA, Farhan LO, Zainulabdeen JA, Zainal Abidin ZA, Ghazali H, Abd Rahman A. Serum E3 SUMO-protein ligase NSE2 level and peroxynitrite related to oxidative stress in nephrolithiasis patients. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Effect of Tongxinluo on Podocyte Apoptosis via Inhibition of Oxidative Stress and P38 Pathway in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5957423. [PMID: 27672400 PMCID: PMC5031883 DOI: 10.1155/2016/5957423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3.
Collapse
|
38
|
Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2968462. [PMID: 27698952 PMCID: PMC5028863 DOI: 10.1155/2016/2968462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/14/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), extracted from green tea, has been shown to have antioxidative activity. In the present study, we evaluated the effect of EGCG on the kidney function in db/db mice and also tried to investigate the underlying mechanism of the renoprotective effects of EGCG in both animals and cells. EGCG treatment could decrease the level of urinary protein, 8-iso-PGF2a, and Ang II. Moreover, EGCG could also change the level of several parameters associated with oxidative stress. In addition, the protein expression levels of AT-1R, p22-phox, p47-phox, p-ERK1/2, p-p38 MAPK, TGF-β1, and α-SMA in diabetic db/db mice were upregulated, and all of these symptoms were downregulated with the treatment of EGCG at 50 and 100 mg/kg/d. Furthermore, the pathological changes were ameliorated in db/db mice after EGCG treatment. HK-2 cell-based experiments indicated that EGCG could inhibit the expression of MAPK pathways, which is the downstream effector of Ang II mediated oxidative stress. All these results indicated that EGCG treatment could ameliorate changes of renal pathology and delay the progression of DKD by suppressing hyperglycemia-induced oxidative stress in diabetic db/db mice.
Collapse
|
39
|
Hye Khan MA, Hwang SH, Sharma A, Corbett JA, Hammock BD, Imig JD. A dual COX-2/sEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. Prostaglandins Other Lipid Mediat 2016; 125:40-7. [PMID: 27432695 PMCID: PMC5035206 DOI: 10.1016/j.prostaglandins.2016.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase (COX) and soluble epoxide hydrolase (sEH) inhibitors have therapeutic potential. The present study investigated efficacy of a novel dual acting COX-2/sEH inhibitor, PTUPB in type 2 diabetic Zucker Diabetic Fatty (ZDF) rats. Male ZDF rats were treated with vehicle or PTUPB (10mg/kg/d, i.p.) for 8 weeks. At the end of the 8-week experimental period, ZDF rats were diabetic (fasting blood glucose, 287±45mg/dL) compared to Zucker Diabetic Lean rats (ZDL, 99±6mg/dL), and PTUPB treatment improved glycemic status in ZDF rats (146±6mg/dL). Kidney injury was evident in ZDF compared to ZDL rats with elevated albuminurea (44±4 vs 4±2mg/d) and nephrinurea (496±127 vs 16±4μg/d). Marked renal fibrosis, tubular cast formation and glomerular injury were also present in ZDF compared to ZDL rats. In ZDF rats, PTUPB treatment reduced kidney injury parameters by 30-80% compared to vehicle. The ZDF rats also demonstrated increased inflammation and oxidative stress with elevated levels of urinary monocyte chemoattractant protein-1 excretion (862±300 vs 319±75ng/d), renal macrophage infiltration (53±2 vs 37±4/mm(2)) and kidney malondialdehyde/protein ratio (10±1 vs 5±1μmol/mg). PTUPB treatment decreased these inflammatory and oxidative stress markers in the kidney of ZDF rats by 25-57%. These data demonstrate protective actions of a novel dual acting COX-2/sEH inhibitor on the metabolic abnormalities and kidney function in ZDF rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Amit Sharma
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - John D Imig
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
40
|
Dietary flaxseed oil and fish oil ameliorates renal oxidative stress, protein glycation, and inflammation in streptozotocin-nicotinamide-induced diabetic rats. J Physiol Biochem 2016; 72:327-36. [PMID: 27048415 DOI: 10.1007/s13105-016-0482-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/17/2016] [Indexed: 01/17/2023]
Abstract
Protective and prophylactic effects of omega-3 fatty acids on oxidative stress and inflammation are well known. We assessed beneficial effects of flaxseed oil and fish oil on streptozotocin (65 mg/kg; i.p.)-nicotinamide (110 mg/kg; i.p.) induced diabetic rats by studying renal expression of antioxidant and inflammatory genes. Diabetic rats given 10 % flaxseed oil or 10 % fish oil diet for 35 days showed significant decrease in renal lipid peroxidation. Flaxseed oil diet resulted in up-regulation of renal superoxide dismutase-1 (SOD-1) (activity and expression) and glutathione peroxidase-1 (GPx-1) expression. Furthermore, both diets up-regulated catalase (CAT) (activity and expression) and down-regulated heme oxygenase-1 (HO-1) expression. Both diets were able to limit the renal advanced glycation end products (AGEs) formation and reduced receptor of AGE (RAGE) protein expression significantly. Expressions of interleukin-6 (IL-6) and NF-κB p65 subunit were down-regulated significantly by flaxseed oil or fish oil diet. The histological tubular injuries were also lowered by both diets. These results suggest that dietary ω-3 fatty acids may slow the progression of diabetic nephropathy (DN) associated with oxidative stress, glycation, and inflammation in the kidney.
Collapse
|
41
|
Atorvastatin up-regulates the expression and activity of renal Cytochrome P450 3A2 in diabetic rats. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Nasri H, Rafieian-Kopaei M. Diabetes mellitus and renal failure: Prevention and management. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2015; 20:1112-20. [PMID: 26941817 PMCID: PMC4755100 DOI: 10.4103/1735-1995.172845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/14/2015] [Accepted: 11/20/2015] [Indexed: 01/10/2023]
Abstract
Nowadays, diabetes mellitus (DM) and hypertension are considered as the most common causes of end-stage renal disease (ESRD). In this paper, other than presenting the role of DM in ESRD, glucose metabolism and the management of hyperglycemia in these patients are reviewed. Although in several large studies there was no significant relationship found between tight glycemic control and the survival of ESRD patients, it is recommended that glycemic control be considered as the main therapeutic goal in the treatment of these patients to prevent damage to other organs. Glycemic control is perfect when fasting blood sugar is less than 140 mg/dL, 1-h postprandial blood glucose is less than 200 mg/dL, and glycosylated hemoglobin (HbA1c) is 6-7 in patients with type 1 diabetes and 7-8 in patients with type 2 diabetes. Administration of metformin should be avoided in chronic renal failure (CRF) because of lactic acidosis, the potentially fatal complication of metformin, but glipizide and repaglinide seem to be good choices.
Collapse
Affiliation(s)
- Hamid Nasri
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
43
|
Li M, Luan F, Zhao Y, Hao H, Zhou Y, Han W, Fu X. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Exp Biol Med (Maywood) 2015; 241:1-13. [PMID: 26361988 DOI: 10.1177/1535370215597194] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Fuxin Luan
- Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yong Zhou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| |
Collapse
|
44
|
Branched-chain amino acids attenuate early kidney injury in diabetic rats. Biochem Biophys Res Commun 2015; 466:240-6. [PMID: 26362188 DOI: 10.1016/j.bbrc.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is the most severe diabetic microvascular complication. The pathogenesis of diabetic nephropathy is complex, and oxidative stress plays an important role in the development of diabetic nephropathy. Elevated reactive oxygen species (ROS) levels activate various signaling pathways and influence the activities of transforming growth factor-β (TGF-β) and matrix metalloproteinase-9 (MMP-9), which contributes to glomerular hypertrophy. Branched-chain amino acids (BCAAs) are widely used in clinical treatment, and BCAAs can reduce the oxidative stress associated with the diabetic pancreas and some liver diseases. Thus, the aim of the present study was to determine whether BCAAs could attenuate oxidative stress in the kidneys of streptozotocin (STZ)-induced diabetic rats to prevent early diabetic kidney injury. Male Wistar rats were fed for two weeks with a normal chow diet or a high-fat diet in which 40% of calories were derived from fat. After this two-week period, the mice fed normal chow were injected with vehicle, while the high-fat diet group was injected intraperitoneally (i.p.) with 40 mg/kg STZ. The STZ-treated group was randomly divided into four subgroups that were treated with different doses of BCAAs or vehicle for two months by oral gavage. Plasma glucose, plasma creatinine, urinary protein and JNK, TGF-β, and MMP-9 mRNA and protein expression levels were measured in the rats. The ROS levels and proteinuria in the STZ-induced diabetic rats were significantly higher than those in the control groups. Moreover, early kidney injury occurred in the STZ-induced diabetic rats. However, BCAAs treatment decreased ROS levels, proteinuria and kidney injury. Moreover, JNK, TGF-β and MMP-9 mRNA and protein levels were significantly increased in the diabetic rats when compared with the control rats, and BCAAs treatment reversed these changes. Our results suggest that BCAAs counter oxidative stress in the kidneys of diabetic rats and alleviate diabetic kidney injury via the JNK/TGF-β/MMP-9 pathway.
Collapse
|
45
|
Johnson SA, Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy. Am J Physiol Renal Physiol 2015; 309:F807-20. [PMID: 26336162 DOI: 10.1152/ajprenal.00266.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of both type 1 and type 2 diabetes mellitus. The disease is now the most common cause of end-stage kidney disease (ESKD) in developed countries, and both the incidence and prevalence of diabetes mellitus is increasing worldwide. Current treatments are directed at controlling hyperglycemia and hypertension, as well as blockade of the renin angiotensin system with angiotensin-converting enzyme inhibitors (ACEIs), and angiotensin receptor blockers. Despite these therapies, DN progresses to ESKD in many patients. As a result, much interest is focused on developing new therapies. It has been over two decades since ACEIs were shown to have beneficial effects in DN independent of their blood pressure-lowering actions. Since that time, our understanding of disease mechanisms in DN has evolved. In this review, we summarize major cell signaling pathways implicated in the pathogenesis of diabetic kidney disease, as well as emerging treatment strategies. The goal is to identify promising targets that might be translated into therapies for the treatment of patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Stacy A Johnson
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| |
Collapse
|
46
|
An ZM, Dong XG, Guo Y, Zhou JL, Qin T. Effects and clinical significance of pentoxifylline on the oxidative stress of rats with diabetic nephropathy. ACTA ACUST UNITED AC 2015; 35:356-361. [PMID: 26072073 DOI: 10.1007/s11596-015-1437-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 02/03/2015] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a common and serious clinical complication of diabetes and presently there are no effective ways to prevent its occurrence and progression. Recent studies show that pentoxifylline (PTX) can improve renal hemodynamics, reduce urinary protein excretion, and alleviate or delay renal failure in DN patients. In this study, we focused on the anti-oxidative stress effect of PTX on alleviating renal damages of DN using rat models. DN rats were established with injection of streptozotocin. Blood glucose, urinary protein excretion, serum cystatin C, renal biopsy, superoxide dismutase (SOD) and malondialdehyde (MDA) in serum and renal homogenate and renal nitrotyrosine levels were analyzed before and 12 weeks after the treatment of PTX. Before treatment, all the DN rats had elevated blood glucose, increased urinary protein excretion and elevated serum cystatin C. Morphologically, DN rats exhibited renal tissue damages, including swelling and fusions of foot processes of podocytes under electron microscope. Masson staining revealed blue collagen deposition in glomeruli and renal interstitium. With treatment of PTX, symptoms and renal pathological changes of DN rats were alleviated. Furthermore, the MDA levels were increased and the SOD levels were decreased in the serum and kidneys of DN rats, and these changes were reversed by PTX. The expression of nitrotyrosine was up-regulated in DN rat model and down-regulated by PTX, indicating that PTX was able to inhibit oxidative reactions in DN rats. PTX could alleviate renal damage in DN, which may be attributable to its anti-oxidative stress activity.
Collapse
Affiliation(s)
- Zeng-Mei An
- Department of Endocrinology, Shanghai Second People's Hospital, Shanghai, 200011, China.
| | - Xing-Gang Dong
- Department of Endocrinology, Shanghai Second People's Hospital, Shanghai, 200011, China
| | - Yuan Guo
- Department of Endocrinology, Shanghai Second People's Hospital, Shanghai, 200011, China
| | - Jia-Liang Zhou
- Laboratory Animal Science Center, Fudan University, Shanghai, 200032, China
| | - Tao Qin
- Laboratory Animal Science Center, Fudan University, Shanghai, 200032, China
| |
Collapse
|
47
|
Klen J, Goričar K, Janež A, Dolžan V. Common polymorphisms in antioxidant genes are associated with diabetic nephropathy in Type 2 diabetes patients. Per Med 2015; 12:187-198. [PMID: 29771645 DOI: 10.2217/pme.14.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM To investigate if antioxidative genes' polymorphisms influence the risk for Type 2 diabetes (T2D) complications. MATERIALS & METHODS In total, 181 T2D patients were genotyped for SOD2, CAT, GPX1, GSTP1, GSTM1*0, GSTT1*0, GCLC and GCLM. RESULTS After adjustment for duration of T2D, CAT rs1001179 and GSTP1 rs1138272 showed strongest association with risk for end-stage kidney failure (p = 0.005 and p = 0.049, respectively). In patients without end-stage kidney failure CAT rs1001179 influenced urea levels (p = 0.003), while GSTP1 rs1695 and GSTP1 haplotypes influenced the risk of moderately increased albuminuria (p = 0.024 and p = 0.014, respectively). CONCLUSION Common CAT and GSTP1 polymorphisms could be used to identify T2D patients at an increased risk for developing end-stage kidney failure.
Collapse
Affiliation(s)
- Jasna Klen
- General Hospital Trbovlje, Rudarska cesta 9, 1420 Trbovlje, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes & Metabolic Diseases, University Medical Center Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
48
|
Molina-Jijón E, Rodríguez-Muñoz R, Namorado MDC, Bautista-García P, Medina-Campos ON, Pedraza-Chaverri J, Reyes JL. All- trans retinoic acid prevents oxidative stress-induced loss of renal tight junction proteins in type-1 diabetic model. J Nutr Biochem 2015; 26:441-54. [DOI: 10.1016/j.jnutbio.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
|
49
|
Qi W, Niu J, Qin Q, Qiao Z, Gu Y. Glycated albumin triggers fibrosis and apoptosis via an NADPH oxidase/Nox4-MAPK pathway-dependent mechanism in renal proximal tubular cells. Mol Cell Endocrinol 2015; 405:74-83. [PMID: 25681565 DOI: 10.1016/j.mce.2015.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/13/2023]
Abstract
Glycated albumin (GA), an Amadori product used as a marker of hyperglycemia and the early-stage glycation products compared to AGEs, might further promote kidney lesions in diabetic nephropathy (DN). However, the mechanisms how GA cause proximal tubular cells damage remain poorly understood. In this study, we investigated the effects of GA on fibrosis and apoptosis of renal proximal tubular cells (NRK-52E) in vitro experiments. Our results showed that GA promoted α-SMA, fibronectin (FN) and TGF-β expressions in NRK-52E cells. GA also increased cell apoptosis and stimulated the expressions of pro-caspase 3/cleaved-caspase 3. GA overloading enhanced the phosphorylation of MAPK pathway. GA-induced α-SMA, FN, TGF-β and caspase 3 expressions were completely suppressed by the NADPH oxidase inhibitor apocynin (Apo), the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the latent antioxidant Astragaloside IV (AS-IV). Real-time PCR showed that GA increased Nox1, Nox2 and Nox4 mRNA expressions, especially the Nox4 expression. Furthermore, Nox4 siRNA blocked GA-induced tubular damages and the MAPK pathway activation. These results demonstrate that GA increases the permissiveness of proximal tubular cells to fibrosis and apoptosis in vitro by triggering a pathway that involves NADPH oxidase/Nox4-MAPK signaling pathway. This event may represent a key cellular effect in increasing the susceptibility of tubular cells to fibrosis and apoptosis when the tubules cope with a high GA load. This effect is instrumental to renal damage and disease progression in patients with DN.
Collapse
Affiliation(s)
- Weiwei Qi
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jianying Niu
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qiaojing Qin
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhongdong Qiao
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yong Gu
- Nephrology Department, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China; Nephrology Department, Huashan Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
50
|
Gorin Y, Wauquier F. Upstream regulators and downstream effectors of NADPH oxidases as novel therapeutic targets for diabetic kidney disease. Mol Cells 2015; 38:285-96. [PMID: 25824546 PMCID: PMC4400302 DOI: 10.14348/molcells.2015.0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas,
USA
| | - Fabien Wauquier
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas,
USA
| |
Collapse
|