1
|
Thomson EA, Lee S, Xu H, Moeller H, Sands J, Lal RA, Annes JP, Poon AS. Intermittent Low-Magnitude Pressure Applied Across Macroencapsulation Devices Enables Physiological Insulin Delivery Dynamics. Diabetes 2025; 74:873-884. [PMID: 40029687 PMCID: PMC12097455 DOI: 10.2337/db24-0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cadaveric islet and stem cell-derived transplantation hold promise as treatments for type 1 diabetes. To tackle the issue of immunocompatibility, numerous cellular macroencapsulation techniques that use diffusion to transport insulin across an immunoisolating barrier have been developed. However, despite several devices progressing to human clinical trials, none have successfully attained physiological glucose control or insulin independence. Based on empirical evidence, macroencapsulation methods with multilayered, high islet surface density are incompatible with on-demand insulin delivery and physiological glucose regulation when solely reliant on diffusion. An additional driving force is essential to overcome the distance limit of diffusion. In this study, we present both theoretical evidence and experimental validation that applying pressure, at levels comparable to physiological diastolic blood pressure, significantly enhances insulin flux across immunoisolation membranes, increasing it by nearly three orders of magnitude. This significant enhancement in transport rate allows for precise, subminute regulation of both bolus and basal insulin delivery. By incorporating this technique with a pump-based extravascular system, we demonstrate the ability to rapidly reduce glucose levels in diabetic rodent models, replicating the timescale and therapeutic effect of subcutaneous insulin injection or infusion. This advance provides a potential path toward achieving insulin independence with islet macroencapsulation. ARTICLE HIGHLIGHTS Numerous islet macroencapsulation techniques use diffusion to transport insulin across an immunoisolating barrier. Despite some devices reaching clinical trials, none have achieved physiological glucose control or insulin independence. Empirical evidence shows that high-density islet macroencapsulation methods cannot achieve on-demand insulin delivery and glucose regulation with diffusion alone. An additional driving force is needed. Appling a subminute pressure at physiological levels can achieve on-demand insulin delivery from macroencapsulated islets and glucose regulation. Incorporating pressure-based enhancements in macroencapsulation systems could lead to successful clinical outcomes.
Collapse
Affiliation(s)
- Ella A. Thomson
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Sooyeon Lee
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Haixia Xu
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | | | - Joanna Sands
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Rayhan A. Lal
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford, CA
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA
| | - Justin P. Annes
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford, CA
- Safran ChEM-H, Stanford University, Stanford, CA
| | - Ada S.Y. Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
2
|
Pal S, Rakshit T, Saha S, Jinagal D. Glucose-Responsive Materials for Smart Insulin Delivery: From Protein-Based to Protein-Free Design. ACS MATERIALS AU 2025; 5:239-252. [PMID: 40093833 PMCID: PMC11907299 DOI: 10.1021/acsmaterialsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/19/2025]
Abstract
Over the last four decades, glucose-responsive materials have emerged as promising candidates for developing smart insulin delivery systems, offering an alternative approach to treating diabetes. These materials replicate the pancreas's natural "closed loop" insulin secretion function by detecting changes in blood glucose levels and releasing insulin accordingly. This perspective highlights the evolution of glucose-responsive materials from protein-based materials, such as glucose oxidase (GOx), and glucose-binding proteins, such as concanavalin A (ConA), to protein-free materials, including phenylboronic acid (PBA) and their applications in smart insulin delivery. We first describe protein-based glucose-responsive systems that depend on different macromolecules, including enzymes and proteins, that interact directly with glucose to promote insulin release. However, these systems encounter significant stability, scalability, and immunogenicity challenges. In contrast, protein-free systems include hydrogels, nanogels/microgels, and microneedle patches, offering long-term stability and storability. In this direction, we discuss the design principles, mechanisms of glucose/pH sensitivity, and the disintegration of both protein-based and protein-free systems into different glucose environments. Finally, we outline the key challenges, potential solutions, and prospects for developing smart insulin delivery systems.
Collapse
Affiliation(s)
- Suchetan Pal
- Department
of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| | - Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Greater
Noida, 201314, UP India
| | - Sunita Saha
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| | - Dharmesh Jinagal
- Department
of Chemistry, Indian Institute of Technology-Bhilai, Durg, 491002, CG India
| |
Collapse
|
3
|
de Bont DFA, Mohammed SG, de Vries RHW, Paulino da Silva Filho O, Vaithilingam V, Jetten MJ, Engelse MA, de Koning EJP, van Apeldoorn AA. Supporting islet function in a PVDF membrane based macroencapsulation delivery device by solvent non-solvent casting using PVP. PLoS One 2025; 20:e0298114. [PMID: 40073008 PMCID: PMC11902058 DOI: 10.1371/journal.pone.0298114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/08/2024] [Indexed: 03/14/2025] Open
Abstract
Type 1 diabetic (T1D) patients are life-long dependent on insulin therapy to keep their blood glucose levels under control. An alternative cell-based therapy for exogenous insulin injections is clinical islet transplantation (CIT). Currently the widespread application of CIT is limited, due to risks associated with the life-long use of immunosuppressive drugs to prevent rejection of donor cells. An immunoprotective macroencapsulation device can protect allogeneic islet cells against the host immune system and allow exploring extrahepatic transplantation sites. We report on the characterization and creation of porous polyvinylidene fluoride (PVDF) membrane-based devices intended for islet and beta-cell transplantation. We hypothesize that by incorporating polyvinyl-pyrrolidone (PVP) into a PVDF solution the permeability of PVDF membranes for insulin and glucose can be improved by solvent-non solvent casting to create submicrometer porous films. We show that the use of water-soluble PVP, can significantly increase glucose diffusion through these membranes while still having the ability to block immune cells from migrating through these membranes. Human donor islets loaded into devices made from these thin PVDF/PVP membranes showed a 92 ± 4% viability after 8 days similar to their free-floating counterparts. The glucose responsiveness of human donor islets encapsulated inside PVDF/PVP membrane-based devices was significantly improved compared to islets seeded in devices made from PVDF membranes without PVP, with a stimulation index of 3.2 for PVDF/PVP devices and 1.3 for PVDF-alone devices at day 8. Our data show that by addition of PVP as pore forming agent during membrane fabrication at a specific ratio the diffusion characteristics can be tuned such that human islet function in these closed macrodevices, can be kept at the same level as non-encapsulated islets, while the membrane can still serve as a protective barrier preventing the entry of primary human macrophages and damaging beta cells.
Collapse
Affiliation(s)
- Denise F. A. de Bont
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Sami G. Mohammed
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Rick H. W. de Vries
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Omar Paulino da Silva Filho
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vijayaganapathy Vaithilingam
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marlon J. Jetten
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J. P. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - Aart A. van Apeldoorn
- Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Tran HT, Rodprasert W, Padeta I, Oontawee S, Purbantoro SD, Thongsit A, Siriarchavatana P, Srisuwatanasagul S, Egusa H, Osathanon T, Sawangmake C. Establishment of subcutaneous transplantation platform for delivering induced pluripotent stem cell-derived insulin-producing cells. PLoS One 2025; 20:e0318204. [PMID: 39883721 PMCID: PMC11781742 DOI: 10.1371/journal.pone.0318204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study. With a multi-step induction protocol, the functional and matured IPCs were generated by 13 days with a long-term survival capability. Further double encapsulation of mGF-iPSC-derived IPCs (mGF-iPSC-IPCs) could preserve the insulin secretion capacity and the transplantation potential of the generated IPCs. To address the potential on IPC transplantation, a 2-step subcutaneous transplantation procedure was established, comprising 1) vascularized subcutaneous pocket formation and 2) encapsulated IPC bead transplantation. The in vivo testing confirmed the safety and efficiency of the platform along with less inflammatory response which may help minimize tissue reaction and graft rejection. Further preliminary in vivo testing on subcutaneous IPC-bead transplantation in an induced type I diabetic mouse model showed beneficial trends on blood glucose control and survival rate sustainability of diabetic mice. Taken together, an established mGF-iPSC-IPC generation protocol in this study will be the potential backbone for developing the iPSC-derived IPC production employing human and animal cell resources. As well as the potential further development of IPC transplantation platform for diabetes treatment in human and veterinary practices using an established subcutaneous encapsulated IPC-bead transplantation platform presented in this study.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Second Century Fund (C2F) Chulalongkorn University for Doctoral Scholarship, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate Program of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Irma Padeta
- Second Century Fund (C2F) Chulalongkorn University for Doctoral Scholarship, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate Program of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Saranyou Oontawee
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Steven dwi Purbantoro
- Second Century Fund (C2F) Chulalongkorn University for Doctoral Scholarship, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate Program of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Anatcha Thongsit
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Parkpoom Siriarchavatana
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Medicine, Western University, Kanchanaburi, Thailand
| | - Sayamon Srisuwatanasagul
- Faculty of Veterinary Science, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Thanaphum Osathanon
- Faculty of Dentistry, Dental Stem Cell Biology Research Unit and Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, Center of Excellence in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Department of Pharmacology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
de Jongh D, Lapré S, Özcan B, Zietse R, Bunnik EM, Massey EK. Clinical Translation and Implementation of a Bioartificial Pancreas Therapy: A Qualitative Study Exploring the Perspectives of People With Type 1 Diabetes. Transplant Direct 2024; 10:e1711. [PMID: 39328250 PMCID: PMC11427030 DOI: 10.1097/txd.0000000000001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background The development of a hybrid beta-cell replacement approach, referred to as a personalized, transplantable bioartificial pancreas (BAP), holds promise to treat type 1 diabetes (T1D). This interview study aimed to explore patients' expectations, needs, concerns, and considerations when considering to undergo a BAP transplantation. Research Design and Methods Semistructured interviews were conducted with 24 participants diagnosed with T1D. Data collection stopped once data saturation was reached. Audio recordings of the interviews were transcribed verbatim. The interviews were independently analyzed by 2 researchers. A qualitative content analysis using an inductive approach was used. Results Three main themes emerged as follow: (1) hoped-for benefits, (2) concerns and decision-making considerations, and (3) procedural aspects. First, the participants expected benefits across medical, psychological, and social domains. Over these 3 domains, 9 subthemes were identified, including improved clinical outcomes, a cure for diabetes, more headspace, emotional relief, a shift in responsibility, protection of privacy, improved flexibility in daily life, less visible diseases, and improved relationships with others. Second, concerns and considerations about undergoing a BAP transplant comprised adverse events, the functionality of the BAP, the surgery procedure, the biological materials used, the transplant location, and the intrusiveness associated with follow-up care. Finally, procedural considerations included equitable access, patient prioritization, and trust and control. Conclusions Incorporating insights from this study into the clinical development and implementation of the BAP is crucial to ensure alignment of the product and procedures with the needs and expectations of people with T1D.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Silke Lapré
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Emma K Massey
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Emerson AE, Sugamura Y, Mazboudi J, Abdallah TM, Seaton CD, Ghasemi A, Kodibagkar VD, Weaver JD. pO 2 reporter composite hydrogel macroencapsulation devices for magnetic resonance imaging oxygen quantification. J Biomed Mater Res A 2024; 112:1506-1517. [PMID: 38488241 PMCID: PMC11239328 DOI: 10.1002/jbm.a.37707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 07/12/2024]
Abstract
Hydrogel cell encapsulation devices are a common approach to reduce the need for chronic systemic immunosuppression in allogeneic cell product transplantation. Macroencapsulation approaches are an appealing strategy, as they maximize graft retrievability and cell dosage within a single device; however, macroencapsulation devices face oxygen transport challenges as geometries increase from preclinical to clinical scales. Device design guided by computational approaches can facilitate graft oxygen availability to encapsulated cells in vivo but is limited without accurate measurement of oxygen levels within the transplant site and graft. In this study, we engineer pO2 reporter composite hydrogels (PORCH) to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the proton Imaging of siloxanes to map tissue oxygenation levels (PISTOL) magnetic resonance imaging approach. We engineer two methods of incorporating siloxane oximetry reporters within hydrogel devices, an emulsion and microbead-based approach, and evaluate PORCH cytotoxicity on co-encapsulated cells and accuracy in quantifying oxygen tension in vitro. We find that both emulsion and microbead PORCH approaches enable accurate in situ oxygen quantification using PISTOL magnetic resonance oximetry, and that the emulsion-based PORCH approach results in higher spatial resolution.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Yuka Sugamura
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jad Mazboudi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Tuhfah M Abdallah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Charmayne D Seaton
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Whitewolf J, Highley CB. Conformal encapsulation of mammalian stem cells using modified hyaluronic acid. J Mater Chem B 2024; 12:7122-7134. [PMID: 38946474 PMCID: PMC11268093 DOI: 10.1039/d4tb00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Micro- and nanoencapsulation of cells has been studied as a strategy to protect cells from environmental stress and promote survival during delivery. Hydrogels used in encapsulation can be modified to influence cell behaviors and direct assembly in their surroundings. Here, we report a system that conformally encapsulated stem cells using hyaluronic acid (HA). We successfully modified HA with lipid, thiol, and maleimide pendant groups to facilitate a hydrogel system in which HA was deposited onto cell plasma membranes and subsequently crosslinked through thiol-maleimide click chemistry. We demonstrated conformal encapsulation of both neural stem cells (NSCs) and mesenchymal stromal cells (MSCs), with viability of both cell types greater than 90% after encapsulation. Additional material could be added to the conformal hydrogel through alternating addition of thiol-modified and maleimide-modified HA in a layering process. After encapsulation, we tracked egress and viability of the cells over days and observed differential responses of cell types to conformal hydrogels both according to cell type and the amount of material deposited on the cell surfaces. Through the design of the conformal hydrogels, we showed that multicellular assembly could be created in suspension and that encapsulated cells could be immobilized on surfaces. In conjunction with photolithography, conformal hydrogels enabled rapid assembly of encapsulated cells on hydrogel substrates with resolution at the scale of 100 μm.
Collapse
Affiliation(s)
- Jack Whitewolf
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| | - Christopher B Highley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
9
|
Thomson EA, Lee S, Xu H, Moeller H, Sands J, Lal RA, Annes JP, Poon ASY. Enhancing Therapeutic Insulin Transport from Macroencapsulated Islets Using Sub-Minute Pressure at Physiological Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.570688. [PMID: 38168181 PMCID: PMC10760036 DOI: 10.1101/2023.12.11.570688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cadaveric islet and stem cell-derived transplantations hold promise as treatments for type 1 diabetes. To tackle the issue of immunocompatibility, numerous cellular macroencapsulation techniques have been developed that utilize diffusion to transport insulin across an immunoisolating barrier. However, despite several devices progressing to human clinical trials, none have successfully managed to attain physiologic glucose control or insulin independence. Based on empirical evidence, macroencapsulation methods with multilayered, high islet surface density are incompatible with homeostatic, on-demand insulin delivery and physiologic glucose regulation, when reliant solely on diffusion. An additional driving force is essential to overcome the distance limit of diffusion. In this study, we present both theoretical proof and experimental validation that applying pressure at levels comparable to physiological diastolic blood pressure significantly enhances insulin flux across immunoisolation membranes-increasing it by nearly three orders of magnitude. This significant enhancement in transport rate allows for precise, sub-minute regulation of both bolus and basal insulin delivery. By incorporating this technique with a pump-based extravascular system, we demonstrate the ability to rapidly reduce glucose levels in diabetic rodent models, effectively replicating the timescale and therapeutic effect of subcutaneous insulin injection or infusion. This advance provides a potential path towards achieving insulin independence with islet macroencapsulation. One Sentence Summary Towards improved glucose control, applying sub-minute pressure at physiological levels enhances therapeutic insulin transport from macroencapsulated islets.
Collapse
|
10
|
Goyal P, Malviya R. Stem Cell Therapy for the Management of Type 1 Diabetes: Advances and Perspectives. Endocr Metab Immune Disord Drug Targets 2024; 24:549-561. [PMID: 37861029 DOI: 10.2174/0118715303256582230919093535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Due to insulin resistance and excessive blood sugar levels, type 1 diabetes mellitus (T1DM) is characterized by pancreatic cell loss. This condition affects young people at a higher rate than any other chronic autoimmune disease. Regardless of the method, exogenous insulin cannot substitute for insulin produced by a healthy pancreas. An emerging area of medicine is pancreatic and islet transplantation for type 1 diabetics to restore normal blood sugar regulation. However, there are still obstacles standing in the way of the widespread use of these therapies, including very low availability of pancreatic and islets supplied from human organ donors, challenging transplantation conditions, high expenses, and a lack of easily accessible methods. Efforts to improve Type 1 Diabetes treatment have been conducted in response to the disease's increasing prevalence. Type 1 diabetes may one day be treated with stem cell treatment. Stem cell therapy has proven to be an effective treatment for type 1 diabetes. Recent progress in stem cell-based diabetes treatment is summarised, and the authors show how to isolate insulin-producing cells (IPCs) from a variety of progenitor cells.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Sepyani S, Momenzadeh S, Safabakhsh S, Nedaeinia R, Salehi R. Therapeutic approaches for Type 1 Diabetes: Promising cell-based approaches to achieve ultimate success. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:23-33. [PMID: 37977308 DOI: 10.1016/j.slasd.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Type 1 Diabetes mellitus (T1DM) is a chronic metabolic disorder characterized by pancreatic β-cells destruction. Despite substantial advances in T1DM treatment, lifelong exogenous insulin administration is the mainstay of treatments, and constant control of glucose levels is still a challenge. Endogenous insulin production by replacing insulin-producing cells is an alternative, but the lack of suitable donors is accounted as one of the main obstacles to its widespread application. The research and trials overview demonstrates that endogenous production of insulin has started to go beyond the deceased-derived to stem cells-derived insulin-producing cells. Several protocols have been developed over the past couple of years for generating insulin-producing cells (IPCs) from various stem cell types and reprogramming fully differentiated cells. A straightforward and quick method for achieving this goal is to investigate and apply the β-cell specific transcription factors as a direct strategy for IPCs generation. In this review, we emphasize the significance of transcription factors in IPCs development from different non-beta cell sources, and pertinent research underlies the marked progress in the methods for generating insulin-producing cells and application for Type 1 Diabetes treatment.
Collapse
Affiliation(s)
- Sahar Sepyani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Momenzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, United States
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
de Jongh D, Thom RL, Cronin AJ, Bunnik EM, Massey EK. Clinical Translation of Bio-Artificial Pancreas Therapies: Ethical, Legal and Psychosocial Interdisciplinary Considerations and Key Recommendations. Transpl Int 2023; 36:11705. [PMID: 37789914 PMCID: PMC10543913 DOI: 10.3389/ti.2023.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
The field of regenerative medicine offers potential therapies for Type 1 Diabetes, whereby metabolically active cellular components are combined with synthetic medical devices. These therapies are sometimes referred to as "bioartificial pancreases." For these emerging and rapidly developing therapies to be clinically translated to patients, researchers must overcome not just scientific hurdles, but also navigate complex legal, ethical and psychosocial issues. In this article, we first provide an introductory overview of the key legal, ethical and psychosocial considerations identified in the existing literature and identify areas where research is currently lacking. We then highlight two principal areas of concern in which these discrete disciplines significantly overlap: 1) individual autonomy and 2) access and equality. Using the example of beta-cell provenance, we demonstrate how, by harnessing an interdisciplinary approach we can address these key areas of concern. Moreover, we provide practical recommendations to researchers, clinicians, and policymakers which will help to facilitate the clinical translation of this cutting-edge technology for Type 1 Diabetes patients. Finally, we emphasize the importance of exploring patient perspectives to ensure their responsible and acceptable translation from bench to body.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rebecca L. Thom
- Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
- King’s College, London, United Kingdom
| | - Antonia J. Cronin
- Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
- King’s College, London, United Kingdom
| | - Eline M. Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Emma K. Massey
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Viability and Functionality of Neonatal Porcine Islet-like Cell Clusters Bioprinted in Alginate-Based Bioinks. Biomedicines 2022; 10:biomedicines10061420. [PMID: 35740440 PMCID: PMC9220255 DOI: 10.3390/biomedicines10061420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The transplantation of pancreatic islets can prevent severe long-term complications in diabetes mellitus type 1 patients. With respect to a shortage of donor organs, the transplantation of xenogeneic islets is highly attractive. To avoid rejection, islets can be encapsulated in immuno-protective hydrogel-macrocapsules, whereby 3D bioprinted structures with macropores allow for a high surface-to-volume ratio and reduced diffusion distances. In the present study, we applied 3D bioprinting to encapsulate the potentially clinically applicable neonatal porcine islet-like cell clusters (NICC) in alginate-methylcellulose. The material was additionally supplemented with bovine serum albumin or the human blood plasma derivatives platelet lysate and fresh frozen plasma. NICC were analysed for viability, proliferation, the presence of hormones, and the release of insulin in reaction to glucose stimulation. Bioprinted NICC are homogeneously distributed, remain morphologically intact, and show a comparable viability and proliferation to control NICC. The number of insulin-positive cells is comparable between the groups and over time. The amount of insulin release increases over time and is released in response to glucose stimulation over 4 weeks. In summary, we show the successful bioprinting of NICC and could demonstrate functionality over the long-term in vitro. Supplementation resulted in a trend for higher viability, but no additional benefit on functionality was observed.
Collapse
|
17
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|
19
|
Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021; 6:460-471. [PMID: 32995673 PMCID: PMC7490764 DOI: 10.1016/j.bioactmat.2020.08.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bioprinting is a rapidly developing technology for the precise design and manufacture of tissues in various biological systems or organs. Coaxial extrusion bioprinting, an emergent branch, has demonstrated a strong potential to enhance bioprinting's engineering versatility. Coaxial bioprinting assists in the fabrication of complex tissue constructs, by enabling concentric deposition of biomaterials. The fabricated tissue constructs started with simple, tubular vasculature but have been substantially developed to integrate complex cell composition and self-assembly, ECM patterning, controlled release, and multi-material gradient profiles. This review article begins with a brief overview of coaxial printing history, followed by an introduction of crucial engineering components. Afterward, we review the recent progress and untapped potential in each specific organ or biological system, and demonstrate how coaxial bioprinting facilitates the creation of tissue constructs. Ultimately, we conclude that this growing technology will contribute significantly to capabilities in the fields of in vitro modeling, pharmaceutical development, and clinical regenerative medicine.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Bailey McFarland
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Keetch Mecham
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Nathan Harward
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
20
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Ghoneim MA, Refaie AF, Elbassiouny BL, Gabr MM, Zakaria MM. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Progress and Challenges. Stem Cell Rev Rep 2020; 16:1156-1172. [PMID: 32880857 PMCID: PMC7667138 DOI: 10.1007/s12015-020-10036-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.
Collapse
|
22
|
Yang SY, Yang KC, Sumi S. Prevascularization-free Primary Subcutaneous Transplantation of Xenogeneic Islets Coencapsulated With Hepatocyte Growth Factor. Transplant Direct 2020; 6:e620. [PMID: 33134496 PMCID: PMC7587419 DOI: 10.1097/txd.0000000000001078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
Subcutaneous pouch is a potential site for islet transplantation. However, insufficient oxygen supply remains challenging. Pretreatment of neovascularization using basic fibroblast growth factor can solve this, but it needs 2× operations. We developed a device that contains rat islets in chitosan gel packed in a bag made of highly biocompatible ethylene vinyl alcohol copolymer porous membrane. This study investigated whether coencapsulation of hepatocyte growth factor (HGF) with islets in the device enables novel method of prevascularization-free primary subcutaneous transplantation. METHODS In vitro experiments examined slow release of HGF from the chitosan gel and islet-protection effect of HGF against hypoxia. In the latter, rat islets with/without HGF (200 ng/mL) was cultured in 1% oxygen. In in vivo experiment, fabricated device with/without HGF (10 μg/device) containing rat islets was primarily transplanted to streptozotocin-induced diabetic mice subcutaneously. RESULTS In vitro experiments showed sustained release of HGF for 28 d and alleviating effect of HGF on cell death and glucose-responsive insulin release after hypoxic culture. Islet + HGF mice, but not islet-alone mice, showed decreased nonfasting blood glucose and regained body weight after transplantation. In intraperitoneal glucose tolerance test, islet + HGF mice exhibited decreased fasting blood glucose (200 ± 55 mg/dL) and good blood glucose disappearance rate (K value) (0.817 ± 0.101) comparing to normal mice (123 ± 28 mg/dL and 1.074 ± 0.374, respectively). However, in islet-alone mice, fasting blood glucose was high (365 ± 172 mg/dL) and K value was indeterminable. Serum insulin in islet + HGF mice (1.58 ± 0.94 μg/L) was close to normal mice (1.66 ± 0.55 μg/L), whereas those in islet-alone mice (0.279 ± 0.076 μg/L) and diabetic mice (0.165 ± 0.079 μg/L) were low. Immunohistochemical examination showed intact insulin- and glucagon-positive islets in retrieved devices with HGF, but no intact islet was found in the device without HGF. CONCLUSIONS HGF could enhance islet survival in hypoxia and enhance in vivo function of encapsulated islets after primary subcutaneous transplantation.
Collapse
Affiliation(s)
- Sin-Yu Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kai-Chiang Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Mohammadi MR, Dehkordi-Vakil F, Ricks-Oddie J, Mansfield R, Kashimiri H, Daniels M, Zhao W, Lakey JR. Preferences of Type 1 Diabetic Patients on Devices for Islet Transplantation. Cell Transplant 2020; 29:963689720952343. [PMID: 33023311 PMCID: PMC7784499 DOI: 10.1177/0963689720952343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transplantation of pancreatic islets within a biomaterial device is currently
under investigation in clinical trials for the treatment of patients with type 1
diabetes (T1D). Patients’ preferences on such implants could guide the designs
of next-generation implantable devices; however, such information is not
currently available. We surveyed the preferences of 482 patients with T1D on the
size, shape, visibility, and transplantation site of islet containing implants.
More than 83% of participants were willing to receive autologous stem cells, and
there was no significant association between implant fabricated by one’s own
stem cell with gender (χ2 (1, n = 468) = 0.28; P = 0.6) or
with age (χ2 (4, n = 468) = 2.92; P = 0.6).
Preferred location for islet transplantation within devices was under the skin
(52.7%). 48.3% preferred microscopic disks, and 32.3% preferred a thin device
(like a credit card). Moreover, 58.4% preferred the implant to be as small as
possible, 25.4% did not care about visibility, and 16.2% preferred their
implants not to be visible. Among female participants, 81% cared about the
implant visibility, whereas this number was 64% for male respondents
(χ2 test (1, n = 468) = 16.34; P <
0.0001). 22% of those younger than 50 years of age and 30% of those older than
50 did not care about the visibility of implant (χ2 test (4, n = 468) = 23.69; P <
0.0001). These results suggest that subcutaneous sites and micron-sized devices
are preferred choices among patients with T1D who participated in our
survey.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Materials Science and Engineering, 8788University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA
| | - Farideh Dehkordi-Vakil
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Joni Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Robert Mansfield
- 369679Juvenile Diabetes Research Foundation Orange County Chapter, Irvine, CA, USA
| | | | - Mark Daniels
- CHOC Children's Endocrine & Diabetes Center, Orange, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Pharmaceutical Sciences, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biological Chemistry, 8788University of California, Irvine, Irvine, CA, USA
| | - Jonathan Rt Lakey
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Surgery and Biomedical Engineering, 8788University of California Irvine, Orange, CA, USA
| |
Collapse
|
24
|
Watanabe T, Okitsu T, Ozawa F, Nagata S, Matsunari H, Nagashima H, Nagaya M, Teramae H, Takeuchi S. Millimeter-thick xenoislet-laden fibers as retrievable transplants mitigate foreign body reactions for long-term glycemic control in diabetic mice. Biomaterials 2020; 255:120162. [PMID: 32562943 DOI: 10.1016/j.biomaterials.2020.120162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Transplantation technologies of pancreatic islets as well as stem cell-derived pancreatic beta cells encapsulated in hydrogel for the induction of immunoprotection could advance to treat type 1 diabetes mellitus, if the hydrogel transplants acquire retrievability through mitigating foreign body reactions after transplantation. Here, we demonstrate that the diameter of the fiber-shaped hydrogel transplants determines both in vivo cellular deposition onto themselves and their retrievability. Specifically, we found that the in vivo cellular deposition is significantly mitigated when the diameter is 1.0 mm and larger, and that 1.0 mm-thick xenoislet-laden fiber-shaped hydrogel transplants can be retrieved after being placed in the intraperitoneal cavities of immunocompetent diabetic mice for more than 100 days, during which period the hydrogel transplants can normalize the blood glucose concentrations of the mice. These findings could provide an innovative concept of a transplant that would promote the clinical application of stem cell-derived functional cells through improving their in vivo efficacy and safety.
Collapse
Affiliation(s)
- Takaichi Watanabe
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Teru Okitsu
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Fumisato Ozawa
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shogo Nagata
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan; Laboratory of Developmental Engineering, Meiji University, Kawasaki, 214-8571, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan
| | - Hiroki Teramae
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Affiliation(s)
- Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
26
|
Sawangmake C, Rodprasert W, Osathanon T, Pavasant P. Integrative protocols for an in vitro generation of pancreatic progenitors from human dental pulp stem cells. Biochem Biophys Res Commun 2020; 530:222-229. [PMID: 32828290 DOI: 10.1016/j.bbrc.2020.06.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 01/17/2023]
Abstract
Efficiency of the induction protocol is crucial for the generation of insulin-producing cells (IPCs) from human dental pulp stem cells (hDPSCs). Here, we established the integrative induction protocol by merging genetic manipulation technique with our previous published 3-step induction protocol aiming to enhance the pancreatic progenitor commitment and production yield. We found that the overexpression of PDX1 following with 3-step induction protocol were able to generate the 3-dimensional (3D) colony structure of pancreatic progenitors (PPs) with the beneficial trends of pancreatic endoderm commitment and production yield, while other protocols using the prolong maintenance of PDX1-overexpressed hDPSCs and the PDX1 overexpression after definitive endoderm induction were unable to generate and sustain the 3D structure of the colonies. Further Notch signaling manipulation by DAPT treatment showed lesser degree of positive effects on progenitor commitment and production yield. Although the generated PPs from the integrative protocol expressed pancreatic mRNA markers along with pro-insulin and insulin proteins, they still contained the defective glucose-responsive C-peptide secretion. Only basal secreted C-peptide level was observed. In summary, the integrative induction protocol potentially enhanced the PP generation with high colony production yield and could serve as an efficient platform for further hDPSC-derived IPC production and maturation.
Collapse
Affiliation(s)
- Chenphop Sawangmake
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Veterinary Clinical Stem Cell and Bioengineering Research Unit, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Watchareewan Rodprasert
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Thanaphum Osathanon
- Department of Anatomy, Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Prasit Pavasant
- Department of Anatomy, Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
27
|
A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat Biomed Eng 2020; 4:814-826. [PMID: 32231313 PMCID: PMC8051527 DOI: 10.1038/s41551-020-0538-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising of a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes under 0.8 µm prevented their infiltration by immune cells. A synthetic polymer coating prevented fibrosis and was necessary for the long-term function of the device. For over 130 days the device supported human cells engineered to secrete erythropoietin in immunocompetent mice as well as transgenic human cells carrying an inducible gene circuit for the on-demand secretion of erythropoietin. Pancreatic islets from rats encapsulated in the device and implanted in diabetic mice restored normoglycaemia in the mice for over 75 days. The biocompatible device provides a retrievable solution for the transplantation of engineered cells in the absence of immunosuppression.
Collapse
|
28
|
Wiggins SC, Abuid NJ, Gattás-Asfura KM, Kar S, Stabler CL. Nanotechnology Approaches to Modulate Immune Responses to Cell-based Therapies for Type 1 Diabetes. J Diabetes Sci Technol 2020; 14:212-225. [PMID: 32116026 PMCID: PMC7196865 DOI: 10.1177/1932296819871947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising curative treatment option for type 1 diabetes (T1D) as it can provide physiological blood glucose control. The widespread utilization of islet transplantation is limited due to systemic immunosuppression requirements, persisting graft immunodestruction, and poor islet engraftment. Traditional macro- and micropolymeric encapsulation strategies can alleviate the need for antirejection immunosuppression, yet the increased graft volume and diffusional distances imparted by these coatings can be detrimental to graft viability and glucose control. Additionally, systemic administration of pro-engraftment and antirejection therapeutics leaves patients vulnerable to adverse off-target side effects. Nanoscale engineering techniques can be used to immunocamouflage islets, modulate the transplant microenvironment, and provide localized pro-engraftment cues. In this review, we discuss the applications of nanotechnology to advance the clinical potential of islet transplantation, with a focus on cell surface engineering, bioactive functionalization, and use of nanoparticles in T1D cell-based treatments.
Collapse
Affiliation(s)
- Sydney C. Wiggins
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicholas J. Abuid
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kerim M. Gattás-Asfura
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Saumadritaa Kar
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Safley SA, Graham ML, Weegman BP, Einstein SA, Barber GF, Janecek JJ, Mutch LA, Singh A, Ramachandran S, Garwood M, Sambanis A, Papas KK, Hering BJ, Weber CJ. Noninvasive Fluorine-19 Magnetic Resonance Relaxometry Measurement of the Partial Pressure of Oxygen in Acellular Perfluorochemical-loaded Alginate Microcapsules Implanted in the Peritoneal Cavity of Nonhuman Primates. Transplantation 2020; 104:259-269. [PMID: 31385927 PMCID: PMC6994361 DOI: 10.1097/tp.0000000000002896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We have utilized a noninvasive technique for measuring the partial pressure of oxygen (pO2) in alginate microcapsules implanted intraperitoneally in healthy nonhuman primates (NHPs). Average pO2 is important for determining if a transplant site and capsules with certain passive diffusion characteristics can support the islet viability, metabolic activity, and dose necessary to reverse diabetes. METHODS Perfluoro-15-crown-5-ether alginate capsules were infused intraperitoneally into 3 healthy NHPs. Peritoneal pO2 levels were measured on days 0 and 7 using fluorine-19 magnetic resonance relaxometry and a fiber-optic probe. Fluorine-19 MRI was used to determine the locations of capsules within the peritoneal space on days 0 and 7. Gross and histologic evaluations of the capsules were used to assess their biocompatibility postmortem. RESULTS At day 0 immediately after infusion of capsules equilibrated to room air, capsules were concentrated near the infusion site, and the pO2 measurement using magnetic resonance relaxometry was 147 ± 9 mm Hg. On day 7 after capsules were dispersed throughout the peritoneal cavity, the pO2 level was 61 ± 11 mm Hg. Measurements using the fiber-optic oxygen sensor were 132 ± 7.5 mm Hg (day 0) and 89 ± 6.1 mm Hg (day 7). Perfluoro-15-crown-5-ether capsules retrieved on day 7 were intact and free-floating without host cell attachment, although the numbers of peritoneal CD20 B cells, CD4 and CD8 T cells, and CD14 macrophages increased consistent with a mild foreign body reaction. CONCLUSIONS The peritoneal pO2 of normal NHPs is relatively low and we predict would decrease further when encapsulated islets are transplanted intraperitoneally.
Collapse
Affiliation(s)
| | - Melanie L. Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, St. Paul, MN
| | - Bradley P. Weegman
- Sylvatica Biotech, Inc., Charleston, SC
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Samuel A. Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Jody J. Janecek
- Preclinical Research Center, Department of Surgery, University of Minnesota, St. Paul, MN
| | - Lucas A. Mutch
- Preclinical Research Center, Department of Surgery, University of Minnesota, St. Paul, MN
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | | | | | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Type 1 diabetes impacts 1.3 million people in the USA with a total direct lifetime medical cost of $133.7 billion. Management requires a mix of daily exogenous insulin administration and frequent glucose monitoring. Decision-making by the individual can be burdensome. RECENT FINDINGS Beta-cell replacement, which involves devices protecting cells from autoimmunity and allo-rejection, aims at restoring physiological glucose regulation and improving clinical outcomes in patients. Given the significant burden of T1D in the healthcare systems, cost-effectiveness analyses can drive innovation and policymaking in the area. This review presents the health economics analyses performed for donor-derived islet transplantation and the possible outcomes of stem cell-derived beta cells. Long-term cost-effectiveness of islet transplantation depends on the engraftment of these transplants, and the expenses and thresholds assumed by healthcare systems in different countries. Early health technology assessment analyses for stem cell-derived beta-cell replacement suggest manufacturing optimization is necessary to reduce upfront costs.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Albert J Hwa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Stan N Finkelstein
- Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Gabbay
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Lorza-Gil E, Gerst F, Oquendo MB, Deschl U, Häring HU, Beilmann M, Ullrich S. Glucose, adrenaline and palmitate antagonistically regulate insulin and glucagon secretion in human pseudoislets. Sci Rep 2019; 9:10261. [PMID: 31311971 PMCID: PMC6635387 DOI: 10.1038/s41598-019-46545-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 11/09/2022] Open
Abstract
Isolated human islets do not always meet the quality standards required for transplant survival and reliable functional in vitro studies. The formation of pseudoislets, i.e. the reaggregation of a defined number of islet cells after dissociation, improves insulin secretion. We present a simple method of pseudoislet formation from human islet cells and assess the transcriptome and function of isolated human islets and pseudoislets from the same organ donors. Following pseudoislet formation, insulin content/DNA and mRNA/RPS13 resembled that of islets. In pseudoislets, glucose-stimulated insulin secretion (GSIS) was significantly higher (8–13-fold) than in islets (2–4-fold). GSIS of pseudoislets was partly inhibited by the glucagon-like peptide-1 receptor (GLP-1R) antagonist exendin-9. The stimulatory effects of palmitate and forskolin at 12 mM glucose were also significantly higher in pseudoislets than in islets. Further analysis of pseudoislets revealed that regulation of secretion and insulin and glucagon content was maintained over a longer culture period (6–14 d). While adrenaline inhibited GSIS, adrenaline together with palmitate stimulated glucagon secretion 2-fold at low glucose, an effect suppressed by high glucose. Transcriptome analysis revealed that, unlike islets, pseudoislets were deprived of exocrine and endothelial cells. In conclusion, pseudoislet formation restores functional integrity of human islet cells and allows long-term in vitro testing.
Collapse
Affiliation(s)
- Estela Lorza-Gil
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany.,University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Tübingen, Germany
| | - Felicia Gerst
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany.,University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Tübingen, Germany
| | - Morgana Barroso Oquendo
- University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Tübingen, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety, Biberach, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany.,University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Tübingen, Germany
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety, Biberach, Germany
| | - Susanne Ullrich
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany. .,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany. .,University Hospital Tübingen, Internal Medicine IV, Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Tübingen, Germany.
| |
Collapse
|
32
|
Coronel MM, Liang JP, Li Y, Stabler CL. Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials 2019; 210:1-11. [PMID: 31029812 PMCID: PMC6527135 DOI: 10.1016/j.biomaterials.2019.04.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Tissue-engineered devices have the potential to significantly improve human health. A major impediment to the success of clinically scaled transplants, however, is insufficient oxygen transport, which leads to extensive cell death and dysfunction. To provide in situ supplementation of oxygen within a cellular implant, we developed a hydrolytically reactive oxygen generating material in the form of polydimethylsiloxane (PDMS) encapsulated solid calcium peroxide, termed OxySite. Herein, we demonstrate, for the first time, the successful implementation of this in situ oxygen-generating biomaterial to support elevated cellular function and efficacy of macroencapsulation devices for the treatment of type 1 diabetes. Under extreme hypoxic conditions, devices supplemented with OxySite exhibited substantially elevated beta cell and islet viability and function. Furthermore, the inclusion of OxySite within implanted macrodevices resulted in the significant improvement of graft efficacy and insulin production in a diabetic rodent model. Translating to human islets at elevated loading densities further validated the advantages of this material. This simple biomaterial-based approach for delivering a localized and controllable oxygen supply provides a broad and impactful platform for improving the therapeutic efficacy of cell-based approaches.
Collapse
Affiliation(s)
- M M Coronel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - J-P Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Y Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
33
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
34
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
35
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW New treatment strategies are needed for patients with type 1 diabetes (T1D). Closed loop insulin delivery and beta-cell replacement therapy are promising new strategies. This review aims to give an insight in the most relevant literature on this topic and to compare the two radically different treatment modalities. RECENT FINDINGS Multiple clinical studies have been performed with closed loop insulin delivery devices and have shown an improvement in overall glycemic control and time spent in hypoglycemia. Beta-cell transplantation has been shown to normalize or greatly improve glycemic control in T1D, but the donor organ shortage and the necessity to use immunosuppressive agents are major drawbacks. Donor organ shortage may be solved by the utilization of stem cell-derived beta cells, which has shown great promise in animal models and are now tested in clinical studies. Immunosuppression may be avoided by encapsulation. Closed loop insulin delivery devices are promising treatment strategies and are likely to be used in clinical practice in the short term. But this approach will always suffer from delays in glucose measurement and insulin action preventing it from normalizing glycemic control. In the long term, stem cell-derived beta cell transplantation may be able to achieve this, but wide implementation in clinical practice is still far away.
Collapse
Affiliation(s)
- Michiel F. Nijhoff
- Department of Medicine, Division of Nephrology and Transplantation, Division of Endocrinology and Metabolism, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Eelco J. P. de Koning
- Department of Medicine, Division of Nephrology and Transplantation, Division of Endocrinology and Metabolism, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|