1
|
Buckner JH. Antigen-specific immunotherapies for autoimmune disease. Nat Rev Rheumatol 2025; 21:88-97. [PMID: 39681709 DOI: 10.1038/s41584-024-01201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Antigen-specific therapies have a long history in the treatment of allergy but have not been successful in autoimmunity. However, in the past 20 years, advances in the definition of the self-antigens that promote autoimmunity and the growing understanding of the mechanisms that maintain tolerance in health but fail in autoimmunity have led to antigen-specific approaches being considered for the treatment of autoimmune diseases. The core goal of each antigen-specific treatment approach is to remove the immune response that promotes autoimmunity whilst sparing protective responses. Approaches to antigen-specific therapy range from targeted deletion of autoreactive lymphocytes to tolerization of autoreactive T cells and active inhibition of autoimmune responses. Technologies such as vaccines, nanoparticles, cell-based therapies and gene editing are being harnessed to achieve these goals. Remaining challenges include the selection of the best antigen to target, modality and timing of administration of these therapies and the disease in which the therapies are used; overcoming these challenges will be vital to move antigen-specific therapies forward. Once established, antigen-specific therapy has the potential to be applied broadly in the area of autoimmunity.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
2
|
Cao C, Fu X, Wang X. Case Report: A novel mutation in TNFAIP3 in a patient with type 1 diabetes mellitus and haploinsufficiency of A20. Front Endocrinol (Lausanne) 2023; 14:1131437. [PMID: 37324276 PMCID: PMC10266219 DOI: 10.3389/fendo.2023.1131437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Background Haploinsufficiency of A20 (HA20) is a monogenic autosomal-dominant genetic autoinflammatory disease caused by loss of function mutations in the TNFAIP3 gene. The predominant autoimmune phenotype associated with HA20 varies significantly, presenting with fever, recurrent oral and genital ulcers, skin rash, gastrointestinal and musculoskeletal symptoms, and other clinical manifestations, all of which indicate an early-onset of autoinflammatory disorder. Genetic linkage between TNFAIP3 and T1DM was reported in GWAS studies. However, only a few cases of HA20 combined with T1DM have been reported. Case description A 39-year-old man with a history of type 1 diabetes mellitus since 19 years was admitted to the Department of Endocrinology and Metabolism, First Affiliated Hospital of China Medical University. He also suffered from recurring and minor mouth ulcers since early childhood. His laboratory evaluation results revealed reduced islet function, normal lipid profile, HbA1c of 7%, elevated glutamate decarboxylase antibodies, elevated hepatic transaminases, and elevated thyroid-related antibodies with normal thyroid function. Notably, the patient was diagnosed in adolescence and never had ketoacidosis, the islets were functioning despite the long disease duration, his abnormal liver function could not be reasonably explained, and he had early onset Behcet's-like disease symptom. Hence, although he was on routine follow-up for diabetes, we communicated with him and obtained consent for genetic testing. Whole-exome sequencing revealed a novel c.1467_1468delinsAT heterozygous mutation in the gene TNFAIP3, which is located in exon 7, resulting in a stop-gained type mutation p.Q490*. With good but mild fluctuating glycemic control, the patient received intensive insulin therapy with long-acting and short-acting insulin. The liver function was improved by using ursodeoxycholic acid 0.75 mg/d during the follow-up. Conclusion We report a novel pathogenic mutation in TNFAIP3 that results in HA20 in a patient with T1DM. In addition, we analyzed the clinical feathers of such patients and summarized the cases of five patients with HA20 co-presented with T1DM. When T1DM co-occurs with autoimmune diseases or other clinical manifestations, such as oral and/or genital ulcers and chronic liver damage, the possibility of an HA20 must be considered. Early and definitive diagnosis of HA20 in such patients may inhibit the progression of late-onset autoimmune diseases, including T1DM.
Collapse
Affiliation(s)
| | | | - Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Long SA, Buckner JH. Clinical and experimental treatment of type 1 diabetes. Clin Exp Immunol 2022; 210:105-113. [PMID: 35980300 PMCID: PMC9750829 DOI: 10.1093/cei/uxac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
4
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Hocking AM, Buckner JH. Genetic basis of defects in immune tolerance underlying the development of autoimmunity. Front Immunol 2022; 13:972121. [PMID: 35979360 PMCID: PMC9376219 DOI: 10.3389/fimmu.2022.972121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic variants associated with susceptibility to autoimmune disease have provided important insight into the mechanisms responsible for the loss of immune tolerance and the subsequent development of autoantibodies, tissue damage, and onset of clinical disease. Here, we review how genetic variants shared across multiple autoimmune diseases have contributed to our understanding of global tolerance failure, focusing on variants in the human leukocyte antigen region, PTPN2 and PTPN22, and their role in antigen presentation and T and B cell homeostasis. Variants unique to a specific autoimmune disease such as those in PADI2 and PADI4 that are associated with rheumatoid arthritis are also discussed, addressing their role in disease-specific immunopathology. Current research continues to focus on determining the functional consequences of autoimmune disease-associated variants but has recently expanded to variants in the non-coding regions of the genome using novel approaches to investigate the impact of these variants on mechanisms regulating gene expression. Lastly, studying genetic risk variants in the setting of autoimmunity has clinical implications, helping predict who will develop autoimmune disease and also identifying potential therapeutic targets.
Collapse
|
6
|
Amaratunga SA, Tayeb TH, Dusatkova P, Pruhova S, Lebl J. Invaluable Role of Consanguinity in Providing Insight into Paediatric Endocrine Conditions: Lessons Learnt from Congenital Hyperinsulinism, Monogenic Diabetes, and Short Stature. Horm Res Paediatr 2022; 95:1-11. [PMID: 34847552 DOI: 10.1159/000521210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Consanguineous families have often played a role in the discovery of novel genes, especially in paediatric endocrinology. At this time, it has been estimated that over 8.5% of all children worldwide have consanguineous parents. Consanguinity is linked to demographic, cultural, and religious practises and is more common in some areas around the world than others. In children with endocrine conditions from consanguineous families, there is a greater probability that a single-gene condition with autosomal recessive inheritance is causative. From 1966 and the first description of Laron syndrome, through the discovery of the first KATP channel genes ABCC8 and KCNJ11 causing congenital hyperinsulinism (CHI) in the 1990s, to recent discoveries of mutations in YIPF5 as the first cause of monogenic diabetes due to the disruption of the endoplasmic reticulum (ER)-to-Golgi trafficking in the β-cell and increased ER stress; positive genetic findings in children from consanguinity have been important in elucidating novel genes and mechanisms of disease, thereby expanding knowledge into disease pathophysiology. The aim of this narrative review was to shed light on the lessons learned from consanguineous pedigrees with the help of 3 fundamental endocrine conditions that represent an evolving spectrum of pathophysiological complexity - from CHI, a typically single-cell condition, to monogenic diabetes which presents with uniform biochemical parameters (hyperglycaemia and glycosuria), despite varying aetiologies, up to the genetic regulation of human growth - the most complex developmental phenomenon.
Collapse
Affiliation(s)
- Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Tara Hussein Tayeb
- Department of Paediatrics, Sulaymani University, College of Medicine, Sulaymani, Iraq
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
7
|
Keindl M, Davies R, Bergum B, Brun JG, Hammenfors D, Jonsson R, Lyssenko V, Appel S. Impaired activation of STAT5 upon IL-2 stimulation in Tregs and elevated sIL-2R in Sjögren's syndrome. Arthritis Res Ther 2022; 24:101. [PMID: 35526080 PMCID: PMC9077945 DOI: 10.1186/s13075-022-02769-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/28/2022] [Indexed: 12/31/2022] Open
Abstract
Background Interleukin-2 (IL-2) and the high-affinity IL-2 receptor (IL-2R) are essential for the survival of regulatory T cells (Tregs) which are the main players in immune tolerance and prevention of autoimmune diseases. Sjögren’s syndrome (SS) is a chronic autoimmune disease predominantly affecting women and is characterised by sicca symptoms including oral and ocular dryness. The aim of this study was to investigate an association between IL-2R and Treg function in patients with SS of different severity defined by the salivary flow rate. Methods In a cross-sectional study, we determined plasma soluble IL-2R (sIL-2R) levels in women with SS (n=97) and healthy females (n=50) using ELISA. A subset of those (n=51) was screened for Treg function measured by the STAT5 signalling response to IL-2 using phospho-flow cytometry. Results We found that elevated plasma levels of sIL-2R were positively associated with the severity of SS reflected by a pathologically low salivary flow. Phospho-flow analysis revealed that patients with SS have a significantly lower frequency of pSTAT5+ Tregs upon IL-2 stimulation compared with healthy individuals, while the frequency of Tregs and pSTAT5 in conventional T cells remained unchanged. In addition, we observed more pSTAT5+ Tregs at baseline in patients with SS, which is significantly associated with seropositivity and elevated sIL-2R. Conclusions Our data indicates that Tregs have a weakened immunosuppressive function in patients with SS due to impaired IL-2/IL-2R signalling capacity. This could mediate lymphocytic infiltration into salivary glands inducing sicca symptoms. We believe that sIL-2R could act as a useful indicator for SS and disease severity. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02769-y.
Collapse
Affiliation(s)
- Magdalena Keindl
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway. .,Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Richard Davies
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brith Bergum
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Johan G Brun
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Daniel Hammenfors
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Valeriya Lyssenko
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway. .,Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
The genetics behind inflammasome regulation. Mol Immunol 2022; 145:27-42. [PMID: 35278849 DOI: 10.1016/j.molimm.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022]
Abstract
The inflammasome is a cytosolic multiproteic complex that promotes proinflammatory events through the release of the cytokines IL-1β and IL-18, and in some context by the induction of a lytic cell death called pyroptosis, in response to damage, infections, or changes in the homeostasis. Due to the powerful inflammatory effect, there are several regulatory mechanisms that are essential to modulate or limit the activation of the inflammasome. When these mechanisms fail, the deregulation of the complex leads or contributes to the development of a plethora of diseases characterized by constitutive and/or chronic inflammation, such as autoinflammatory, autoimmune, cardiovascular, neurodegenerative, and metabolic diseases, cancer, or even severe complications of infectious diseases. Either environmental or genetic factors may affect the threshold and/or the level of inflammasome activation, such as hyperglycemia, hyperuricemia, auto-antibodies, unfolded proteins and fibrils, or individual genetic variants in genes coding for inflammasome receptors or effector molecules, and also in regulators. While the genetics of inflammasome itself has been elsewhere characterized and also recently reviewed by our group, less is known about how genetic variants in regulatory molecules could affect inflammatory diseases. Therefore in this work, we selected a group of known or possible regulators of the inflammasome, and through the review of genetic association studies we tried to depict the contribution of these regulators in the development of multifactorial diseases.
Collapse
|
9
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
10
|
Pang H, Xia Y, Luo S, Huang G, Li X, Xie Z, Zhou Z. Emerging roles of rare and low-frequency genetic variants in type 1 diabetes mellitus. J Med Genet 2021; 58:289-296. [PMID: 33753534 PMCID: PMC8086251 DOI: 10.1136/jmedgenet-2020-107350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disorder and has enormous complexity and heterogeneity. Although its precise pathogenic mechanisms are obscure, this disease is widely acknowledged to be precipitated by environmental factors in individuals with genetic susceptibility. To date, the known susceptibility loci, which have mostly been identified by genome-wide association studies, can explain 80%–85% of the heritability of T1DM. Researchers believe that at least a part of its missing genetic component is caused by undetected rare and low-frequency variants. Most common variants have only small to modest effect sizes, which increases the difficulty of dissecting their functions and restricts their potential clinical application. Intriguingly, many studies have indicated that rare and low-frequency variants have larger effect sizes and play more significant roles in susceptibility to common diseases, including T1DM, than common variants do. Therefore, better recognition of rare and low-frequency variants is beneficial for revealing the genetic architecture of T1DM and for providing new and potent therapeutic targets for this disease. Here, we will discuss existing challenges as well as the great significance of this field and review current knowledge of the contributions of rare and low-frequency variants to T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Pang H, Luo S, Xiao Y, Xia Y, Li X, Huang G, Xie Z, Zhou Z. Emerging Roles of Exosomes in T1DM. Front Immunol 2020; 11:593348. [PMID: 33324409 PMCID: PMC7725901 DOI: 10.3389/fimmu.2020.593348] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex autoimmune disorder that mainly affects children and adolescents. The elevated blood glucose level of patients with T1DM results from absolute insulin deficiency and leads to hyperglycemia and the development of life-threatening diabetic complications. Although great efforts have been made to elucidate the pathogenesis of this disease, the precise underlying mechanisms are still obscure. Emerging evidence indicates that small extracellular vesicles, namely, exosomes, take part in intercellular communication and regulate interorgan crosstalk. More importantly, many findings suggest that exosomes and their cargo are associated with the development of T1DM. Therefore, a deeper understanding of exosomes is beneficial for further elucidating the pathogenic process of T1DM. Exosomes are promising biomarkers for evaluating the risk of developingty T1DM, monitoring the disease state and predicting related complications because their number and composition can reflect the status of their parent cells. Additionally, since exosomes are natural carriers of functional proteins, RNA and DNA, they can be used as therapeutic tools to deliver these molecules and drugs. In this review, we briefly introduce the current understanding of exosomes. Next, we focus on the relationship between exosomes and T1DM from three perspectives, i.e., the pathogenic role of exosomes in T1DM, exosomes as novel biomarkers of T1DM and exosomes as therapeutic tools for T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Rojas C, Campos-Mora M, Cárcamo I, Villalón N, Elhusseiny A, Contreras-Kallens P, Refisch A, Gálvez-Jirón F, Emparán I, Montoya-Riveros A, Vernal R, Pino-Lagos K. T regulatory cells-derived extracellular vesicles and their contribution to the generation of immune tolerance. J Leukoc Biol 2020; 108:813-824. [PMID: 32531824 DOI: 10.1002/jlb.3mr0420-533rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
T regulatory (Treg) cells have a major role in the maintenance of immune tolerance against self and foreign antigens through the control of harmful inflammation. Treg cells exert immunosuppressive function by several mechanisms, which can be distinguished as contact dependent or independent. Recently, the secretion of extracellular vesicles (EVs) by Treg cells has been reported as a novel suppressive mechanism capable of modulating immunity in a cell-contact independent and targeted manner, which has been identified in different pathologic scenarios. EVs are cell-derived membranous structures involved in physiologic and pathologic processes through protein, lipid, and genetic material exchange, which allow intercellular communication. In this review, we revise and discuss current knowledge on Treg cells-mediated immune tolerance giving special attention to the production and release of EVs. Multiple studies support that Treg cells-derived EVs represent a refined intercellular exchange device with the capacity of modulating immune responses, thus creating a tolerogenic microenvironment in a cell-free manner. The mechanisms proposed encompass miRNAs-induced gene silencing, the action of surface proteins and the transmission of enzymes. These observations gain relevance by the fact that Treg cells are susceptible to converting into effector T cells after exposition to inflammatory environments. Yet, in contrast to their cells of origin, EVs are unlikely to be modified under inflammatory conditions, highlighting the advantage of their use. Moreover, we speculate in the possibility that Treg cells may contribute to infectious tolerance via vesicle secretion, intervening with CD4+ T cells differentiation and/or stability.
Collapse
Affiliation(s)
- Carolina Rojas
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Las Condes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Ignacio Cárcamo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Natalia Villalón
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Ahmed Elhusseiny
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Aarón Refisch
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Felipe Gálvez-Jirón
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Ivana Emparán
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Andro Montoya-Riveros
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Las Condes, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Las Condes, Santiago, Chile
| |
Collapse
|
13
|
The COVID-19 Pandemic during the Time of the Diabetes Pandemic: Likely Fraternal Twins? Pathogens 2020; 9:pathogens9050389. [PMID: 32438687 PMCID: PMC7281197 DOI: 10.3390/pathogens9050389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
An altered immune response to pathogens has been suggested to explain increased susceptibility to infectious diseases in patients with diabetes. Recent evidence has documented several immunometabolic pathways in patients with diabetes directly related to the COVID-19 infection. This also seems to be the case for prediabetic subjects with proinflammatory insulin resistance syndrome accompanied with prothrombotic hyperinsulinemic and dysglycemic states. Patients with frank hyperglycemia, dysglycemia and/or hyperinsulinemia develop systemic immunometabolic inflammation with higher levels of circulating cytokines. This deleterious scenario has been proposed as the underlying mechanism enhancing a cytokine storm-like hyperinflammatory state in diabetics infected with severe COVID-19 triggering multi-organ failure. Compared with moderately affected COVID-19 patients, diabetes was found to be highly prevalent among severely affected patients suggesting that this non-communicable disease should be considered as a risk factor for adverse outcomes. The COVID-19 pandemic mirrors with the diabetes pandemic in many pathobiological aspects. Our interest is to emphasize the ties between the immunoinflammatory mechanisms that underlie the morbidity and lethality when COVID-19 meets diabetes. This review brings attention to two pathologies of highly complex, multifactorial, developmental and environmentally dependent manifestations of critical importance to human survival. Extreme caution should be taken with diabetics with suspected symptoms of COVID-19 infection.
Collapse
|
14
|
Kostara M, Chondrou V, Sgourou A, Douros K, Tsabouri S. HLA Polymorphisms and Food Allergy Predisposition. J Pediatr Genet 2020; 9:77-86. [PMID: 32341809 DOI: 10.1055/s-0040-1708521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Food allergy (FA) is a growing health problem that affects ∼8% of the children worldwide. Although the prevalence of FA is increasing, the underlying genetic mechanisms responsible for the onset of this immune disorder are not yet clarified. Genetic factors seem to play a leading role in the development of FA, though interaction with environmental factors cannot be excluded. The broader network of genetic loci mediating the risk of this complex disorder remains to be identified. The human leucocyte antigen (HLA) has been associated with various immune disorders, including FA. This review aims to unravel the potential associations between HLA gene functions and the manifestation and outcome of FA disorders. Exploring new aspects of FA development with the perspective to improve our understanding of the multifaceted etiology and the complex biological mechanisms involved in FA is essential.
Collapse
Affiliation(s)
- Maria Kostara
- Department of Paediatrics, Ioannina University Hospital, Ioannina, Greece
| | - Vasiliki Chondrou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Konstantinos Douros
- Allergology and Pulmonology Unit, 3rd Pediatric Department, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Tsabouri
- Department of Paediatrics, Child Health Department, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
15
|
Pang H, Luo S, Huang G, Xia Y, Xie Z, Zhou Z. Advances in Knowledge of Candidate Genes Acting at the Beta-Cell Level in the Pathogenesis of T1DM. Front Endocrinol (Lausanne) 2020; 11:119. [PMID: 32226409 PMCID: PMC7080653 DOI: 10.3389/fendo.2020.00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
T1DM (type 1 diabetes mellitus), which results from the irreversible elimination of beta-cells mediated by autoreactive T cells, is defined as an autoimmune disease. It is widely accepted that T1DM is caused by a combination of genetic and environmental factors, but the precise underlying molecular mechanisms are still unknown. To date, more than 50 genetic risk regions contributing to the pathogenesis of T1DM have been identified by GWAS (genome-wide association studies). Notably, more than 60% of the identified candidate genes are expressed in islets and beta-cells, which makes it plausible that these genes act at the beta-cell level and play a key role in the pathogenesis of T1DM. In this review, we focus on the current status of candidate genes that act at the beta-cell level by regulating the innate immune response and antiviral activity, affecting susceptibility to proapoptotic stimuli and influencing the pancreatic beta-cell phenotype.
Collapse
Affiliation(s)
- Haipeng Pang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Ying Xia
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
- *Correspondence: Zhiguo Xie
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
- Zhiguang Zhou
| |
Collapse
|
16
|
Keindl M, Fedotkina O, du Plessis E, Jain R, Bergum B, Mygind Jensen T, Laustrup Møller C, Falhammar H, Nyström T, Catrina SB, Jörneskog G, Groop L, Eliasson M, Eliasson B, Brismar K, Nilsson PM, Berg TJ, Appel S, Lyssenko V. Increased Plasma Soluble Interleukin-2 Receptor Alpha Levels in Patients With Long-Term Type 1 Diabetes With Vascular Complications Associated With IL2RA and PTPN2 Gene Polymorphisms. Front Endocrinol (Lausanne) 2020; 11:575469. [PMID: 33193091 PMCID: PMC7664831 DOI: 10.3389/fendo.2020.575469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1D) is largely considered an autoimmune disease leading to the destruction of insulin-producing pancreatic β cells. Further, patients with T1D have 3-4-fold increased risk of developing micro- and macrovascular complications. However, the contribution of immune-related factors contributing to these diabetes complications are poorly understood. Individuals with long-term T1D who do not progress to vascular complications offer a great potential to evaluate end-organ protection. The aim of the present study was to investigate the association of inflammatory protein levels with vascular complications (retinopathy, nephropathy, cardiovascular disease) in individuals with long-term T1D compared to individuals who rapidly progressed to complications. We studied a panel of inflammatory markers in plasma of patients with long-term T1D with (n = 81 and 26) and without (n = 313 and 25) vascular complications from two cross-sectional Scandinavian cohorts (PROLONG and DIALONG) using Luminex technology. A subset of PROLONG individuals (n = 61) was screened for circulating immune cells using multicolor flow cytometry. We found that elevated plasma levels of soluble interleukin-2 receptor alpha (sIL-2R) were positively associated with the complication phenotype. Risk carriers of polymorphisms in the IL2RA and PTPN2 gene region had elevated plasma levels of sIL-2R. In addition, cell surface marker analysis revealed a shift from naïve to effector T cells in T1D individuals with vascular complications as compared to those without. In contrast, no difference between the groups was observed either in IL-2R cell surface expression or in regulatory T cell population size. In conclusion, our data indicates that IL2RA and PTPN2 gene variants might increase the risk of developing vascular complications in people with T1D, by affecting sIL-2R plasma levels and potentially lowering T cell responsiveness. Thus, elevated sIL-2R plasma levels may serve as a biomarker in monitoring the risk for developing diabetic complications and thereby improve patient care.
Collapse
Affiliation(s)
- Magdalena Keindl
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Valeriya Lyssenko, ; Magdalena Keindl,
| | - Olena Fedotkina
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Elsa du Plessis
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ruchi Jain
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Brith Bergum
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Troels Mygind Jensen
- Research Unit for General Practice & Danish Ageing Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Clinical Epidemiology, Steno Diabetes Center Copenhagen (SDCC), Gentofte, Denmark
| | | | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Division of Internal Medicine, Unit for Diabetes Research, Karolinska Institute, South Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Center for Diabetes, Academica Specialist Centrum, Stockholm, Sweden
| | - Gun Jörneskog
- Karolinska Institute, Department of Clinical Sciences, Danderyd University Hospital, Division of Internal Medicine, Stockholm, Sweden
| | - Leif Groop
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mats Eliasson
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Björn Eliasson
- Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Brismar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Peter M. Nilsson
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Tore Julsrud Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Valeriya Lyssenko
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- *Correspondence: Valeriya Lyssenko, ; Magdalena Keindl,
| |
Collapse
|
17
|
Singh T, Colberg JK, Sarmiento L, Chaves P, Hansen L, Bsharat S, Cataldo LR, Dudenhöffer-Pfeifer M, Fex M, Bryder D, Holmberg D, Sitnicka E, Cilio C, Prasad RB, Artner I. Loss of MafA and MafB expression promotes islet inflammation. Sci Rep 2019; 9:9074. [PMID: 31235823 PMCID: PMC6591483 DOI: 10.1038/s41598-019-45528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA−/−MafB+/−, but not MafA−/− islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.
Collapse
Affiliation(s)
- Tania Singh
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Jesper K Colberg
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Luis Sarmiento
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Patricia Chaves
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Lisbeth Hansen
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Sara Bsharat
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Luis R Cataldo
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | | | - Malin Fex
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - David Bryder
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Dan Holmberg
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Ewa Sitnicka
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Corrado Cilio
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Rashmi B Prasad
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Isabella Artner
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden. .,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden.
| |
Collapse
|