1
|
Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines 2022; 11:biomedicines11010017. [PMID: 36672525 PMCID: PMC9856001 DOI: 10.3390/biomedicines11010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion injury is a process associated with cardiologic interventions, such as percutaneous coronary angioplasty after an acute myocardial infarction. Blood flow restoration causes a quick burst of reactive oxygen species (ROS), which generates multiple organelle damage, leading to the activation of cell death pathways. Therefore, the intervention contributes to a greater necrotic zone, thus increasing the risk of cardiovascular complications. A major cardiovascular ROS source in this setting is the activation of multiple NADPH oxidases, which could result via the occupancy of type 1 angiotensin II receptors (AT1R); hence, the renin angiotensin system (RAS) is associated with the generation of ROS during reperfusion. In addition, ROS can promote the expression of NF-κΒ, a proinflammatory transcription factor. Recent studies have described an intracellular RAS pathway that is associated with increased intramitochondrial ROS through the action of isoform NOX4 of NADPH oxidase, thereby contributing to mitochondrial dysfunction. On the other hand, the angiotensin II/ angiotensin type 2 receptor (Ang II/AT2R) axis exerts its effects by counter-modulating the action of AT1R, by activating endothelial nitric oxide synthase (eNOS) and stimulating cardioprotective pathways such as akt. The aim of this review is to discuss the possible use of AT1R blockers to hamper both the Ang II/AT1R axis and the associated ROS burst. Moreover; we suggest that AT1R antagonist drugs should act synergistically with other cardioprotective agents, such as ascorbic acid, N-acetylcysteine and deferoxamine, leading to an enhanced reduction in the reperfusion injury. This therapy is currently being tested in our laboratory and has shown promising outcomes in experimental studies.
Collapse
|
2
|
Karim MM, Sultana S, Sultana R, Rahman MT. Possible Benefits of Zinc supplement in CVD and COVID-19 Comorbidity. J Infect Public Health 2021; 14:1686-1692. [PMID: 34649043 PMCID: PMC8489295 DOI: 10.1016/j.jiph.2021.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
As far as comorbidity is concerned, cardiovascular diseases (CVD) appear to be accounted for the highest prevalence, severity, and fatality among COVID 19 patients. A wide array of causal links connecting CVD and COVID-19 baffle the overall prognosis as well as the efficacy of the given therapeutic interventions. At the centre of this puzzle lies ACE2 that works as a receptor for the SARS-CoV-2, and functional expression of which is also needed to minimize vasoconstriction otherwise would lead to high blood pressure. Furthermore, SARS-CoV-2 infection seems to reduce the functional expression of ACE2. Given these circumstances, it might be advisable to consider a treatment plan for COVID-19 patients with CVD in an approach that would neither aggravate the vasodeleterious arm of the renin-angiotensinogen-aldosterone system (RAAS) nor compromise the vasoprotective arm of RAAS but is effective to minimize or if possible, inhibit the viral replication. Given the immune modulatory role of Zn in both CVD and COVID-19 pathogenesis, zinc supplement to the selective treatment plan for CVD and COVID-19 comorbid conditions, to be decided by the clinicians depending on the cardiovascular conditions of the patients, might greatly improve the therapeutic outcome. Notably, ACE2 is a zinc metalloenzyme and zinc is also known to inhibit viral replication.
Collapse
Affiliation(s)
| | - Shahnaz Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka 1205, Bangladesh
| | - Rokaia Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka 1205, Bangladesh
| | - Mohammad Tariqur Rahman
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia,Corresponding author
| |
Collapse
|
3
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
4
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
5
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
6
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Ferrario CM, VonCannon J, Ahmad S, Wright KN, Roberts DJ, Wang H, Yamashita T, Groban L, Cheng CP, Collawn JF, Dell'Italia LJ, Varagic J. Activation of the Human Angiotensin-(1-12)-Chymase Pathway in Rats With Human Angiotensinogen Gene Transcripts. Front Cardiovasc Med 2019; 6:163. [PMID: 31803758 PMCID: PMC6872498 DOI: 10.3389/fcvm.2019.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-(1-12) [Ang-(1-12)], an alternate substrate for tissue angiotensin II (Ang II) formation, underscores the importance of alternative renin-independent pathway(s) for the generation of angiotensins. Since renin enzymatic activity is species-specific, a transgenic model of hypertension due to insertion of the human angiotensinogen (AGT) gene in Sprague Dawley rats allowed for characterizing the contribution of a non-renin dependent mechanism for Ang II actions in their blood and heart tissue. With this in mind, we investigated whether TGR(hAGT)L1623 transgenic rats express the human sequence of Ang-(1-12) before and following a 2-week oral therapy with the type I Ang II receptor (AT1-R) antagonist valsartan. Plasma and cardiac expression of angiotensins, plasma renin activity, cardiac angiotensinogen, and chymase protein and the enzymatic activities of chymase, angiotensin converting enzyme (ACE) and ACE2 were determined in TGR(hAGT)L1623 rats given vehicle or valsartan. The antihypertensive effect of valsartan after 14-day treatment was associated with reduced left ventricular wall thickness and augmented plasma concentrations of angiotensin I (Ang I) and Ang II; rat and human concentrations of angiotensinogen or Ang-(1-12) did not change. On the other hand, AT1-R blockade produced a 55% rise in left ventricular content of human Ang-(1-12) concentration and no changes in rat cardiac Ang-(1-12) levels. Mass-Spectroscopy analysis of left ventricular Ang II content confirmed a >4-fold increase in cardiac Ang II content in transgenic rats given vehicle; a tendency for decreased cardiac Ang II content following valsartan treatment did not achieve statistical significance. Cardiac chymase and ACE2 activities, significantly higher than ACE activity in TGR(hAGT)L1623 rats, were not altered by blockade of AT1-R. We conclude that this humanized model of angiotensinogen-dependent hypertension expresses the human sequence of Ang-(1-12) in plasma and cardiac tissue and responds to blockade of AT1-R with further increases in the human form of cardiac Ang-(1-12). Since rat renin has no hydrolytic activity on human angiotensinogen, the study confirms and expands knowledge of the importance of renin-independent mechanisms as a source for Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Social Science and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Drew J Roberts
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hao Wang
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Tomohisa Yamashita
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leanne Groban
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Che Ping Cheng
- Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Queiroz-Junior CM, Santos ACPM, Galvão I, Souto GR, Mesquita RA, Sá MA, Ferreira AJ. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor axis as a key player in alveolar bone remodeling. Bone 2019; 128:115041. [PMID: 31442676 DOI: 10.1016/j.bone.2019.115041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system (RAS), aside its classical hormonal properties, has been implicated in the pathogenesis of inflammatory disorders. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor (ACE2/Ang-(1-7)/MasR) axis owns anti-inflammatory properties and was recently associated with bone remodeling in osteoporosis. Thus, the aim of this study was to characterize the presence and effects of the ACE2/Ang-(1-7)/MasR axis in osteoblasts and osteoclasts in vitro and in vivo. ACE2 and MasR were detected by qPCR and western blotting in primary osteoblast and osteoclast cell cultures. Cells were incubated with different concentrations of Ang-(1-7), diminazene aceturate (DIZE - an ACE2 activator), A-779 (MasR antagonist) and/or LPS in order to evaluate osteoblast alkaline phosphatase and mineralized matrix, osteoclast differentiation and cytokine expression, and mRNA levels of osteoblasts and osteoclasts markers. An experimental model of alveolar bone resorption triggered by dysbiosis in rats was used to evaluate bone remodeling in vivo. Rats were treated with Ang-(1-7), DIZE and/or A-779 and periodontal samples were collected for immunohistochemistry, morphometric analysis, osteoblast and osteoclast count and cytokine evaluation. Human gingival samples from healthy and periodontitis patients were also evaluated for detection of ACE2 and MasR expression. Osteoblasts and osteoclasts expressed ACE2 and MasR in vitro and in vivo. LPS stimulation or alveolar bone loss induction reduced ACE2 expression. Treatment of bone cells with Ang-(1-7) or DIZE stimulated osteoblast ALP, matrix synthesis, upregulated osterix, osteocalcin and collagen type 1 transcription, reduced IL-6 expression, and decreased osteoclast differentiation, RANK and IL-1β mRNA transcripts, and IL-6 and IL-1β levels, in a MasR-dependent manner. In vivo, Ang-(1-7) and DIZE decreased alveolar bone loss through improvement of osteoblast/osteoclast ratio. A-779 reversed such phenotype. ACE2/Ang-(1-7)/MasR axis activation reduced IL-6 expression, but not IL-1β. ACE2 and MasR were also detected in human gingival samples, with higher expression in the healthy than in the inflamed tissues. These findings show that the ACE2/Ang-(1-7)/MasR is an active player in alveolar bone remodeling.
Collapse
Affiliation(s)
- Celso Martins Queiroz-Junior
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| | - Anna Clara Paiva Menezes Santos
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Izabela Galvão
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Giovanna Ribeiro Souto
- Department of Dentistry, Pontifical Chatholic University of Minas Gerais, Brazil; Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | - Marcos Augusto Sá
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Anderson José Ferreira
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
9
|
Akershoek JJ, Vlig M, Brouwer K, Talhout W, Beelen RH, Middelkoop E, Ulrich MM. The presence of tissue renin-angiotensin system components in human burn wounds and scars. BURNS OPEN 2018. [DOI: 10.1016/j.burnso.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Li T, Zhang X, Cheng HJ, Zhang Z, Ahmad S, Varagic J, Li W, Cheng CP, Ferrario CM. Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol 2018; 264:137-144. [PMID: 29685688 DOI: 10.1016/j.ijcard.2018.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Angiotensin-(1-12) [Ang-(1-12)] is a chymase-dependent source for angiotensin II (Ang II) cardiac activity. The direct contractile effects of Ang-(1-12) in normal and heart failure (HF) remain to be demonstrated. We assessed the hypothesis that Ang-(1-12) may modulate [Ca2+]i regulation and alter cardiomyocyte contractility in normal and HF rats. METHODS AND RESULTS We compared left ventricle (LV) myocyte contractile and calcium transient ([Ca2+]iT) responses to angiotensin peptides in 16 SD rats with isoproterenol-induced HF and 16 age-matched controls. In normal myocytes, versus baseline, Ang II (10-6 M) superfusion significantly increased myocyte contractility (dL/dtmax: 40%) and [Ca2+]iT (29%). Ang-(1-12) (4 × 10-6 M) caused similar increases in dL/dtmax (34%) and [Ca2+]iT (25%). Compared with normal myocytes, superfusion of Ang II and Ang-(1-12) in myocytes obtained from rats with isoproterenol-induced HF caused similar but significantly attenuated positive inotropic actions with about 42% to 50% less increases in dL/dtmax and [Ca2+]iT. Chymostatin abolished Ang-(1-12)-mediated effects in normal and HF myocytes. The presence of an inhibitory cAMP analog, Rp-cAMPS prevented Ang-(1-12)-induced inotropic effects in both normal and HF myocytes. Incubation of HF myocytes with pertussis toxin (PTX) further augmented Ang II-mediated contractility. CONCLUSIONS Ang-(1-12) stimulates cardiomyocyte contractile function and [Ca2+]iT in both normal and HF rats through a chymase mediated action. Altered inotropic responses to Ang-(1-12) and Ang II in HF myocytes are mediated through a cAMP-dependent mechanism that is coupled to both stimulatory G and inhibitory PTX-sensitive G proteins.
Collapse
Affiliation(s)
- Tiankai Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xiaowei Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States; Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong, China
| | - Heng-Jie Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Zhi Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States; Cardiovascular Department, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Sarfaraz Ahmad
- Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jasmina Varagic
- Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Weimin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Che Ping Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States.
| | - Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Silva SD, Jara ZP, Peres R, Lima LS, Scavone C, Montezano AC, Touyz RM, Casarini DE, Michelini LC. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS One 2017; 12:e0189535. [PMID: 29232407 PMCID: PMC5726656 DOI: 10.1371/journal.pone.0189535] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Exercise training reduces renin-angiotensin system (RAS) activation, decreases plasma and tissue oxidative stress and inflammation in hypertension. However, the temporal nature of these phenomena in response to exercise is unknown. We sought to determine in spontaneously hypertensive rats (SHR) and age-matched WKY controls the weekly effects of training on blood pressure (BP), plasma and left ventricle (LV) Ang II and Ang-(1–7) content (HPLC), LV oxidative stress (DHE staining), gene and protein expression (qPCR and WB) of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hypertension-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T) or maintained sedentary (S) for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8. Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II increase with amplified responses during the late phase of LV hypertrophy. Similar pattern was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with cardiomyocytes’ diameter enlargement and collagen deposition. SHR-T exhibited prompt and marked decrease in LV Ang II content (T1vs T4 in WKY-T), normalized oxidative stress (T2), augmented antioxidant defense (T4) and reduced both collagen deposition and inflammatory profile (T8), without changing cardiomyocytes’ diameter and LV hypertrophy. These changes were accompanied by decreased plasma Ang II content (T2-T4) and reduced BP (T8). SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1–7) content. Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antioxidant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.
Collapse
Affiliation(s)
- Sebastião D. Silva
- Department of Physiology & Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
- Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, Glasgow, United Kingdom
| | - Zaira P. Jara
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Roseli Peres
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Larissa S. Lima
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Cristóforo Scavone
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, Glasgow, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, Glasgow, United Kingdom
| | - Dulce E. Casarini
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lisete C. Michelini
- Department of Physiology & Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
12
|
Ahmad S, Sun X, Lin M, Varagic J, Zapata-Sudo G, Ferrario CM, Groban L, Wang H. Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 2017; 233:3330-3342. [PMID: 28888034 DOI: 10.1002/jcp.26179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
The relatively low efficacy of ACE-inhibitors in the treatment of heart failure in women after estrogen loss may be due to their inability to reach the intracellular sites at which angiotensin (Ang) II is generated and/or the existence of cell-specific mechanisms in which ACE is not the essential processing pathway for Ang II formation. We compared the metabolic pathway for Ang II formation in freshly isolated myocytes (CMs) and non-myocytes (NCMs) in cardiac membranes extracted from hearts of gonadal-intact and ovariectomized (OVX) adult WKY and SHR rats. Plasma Ang II levels were higher in WKY vs. SHR (strain effect: WKY: 62 ± 6 pg/ml vs. SHR: 42 ± 9 pg/ml; p < 0.01), independent of OVX. The enzymatic activities of chymase, ACE, and ACE2 were higher in NCMs versus CMs, irrespective of whether assays were performed in cardiac membranes from WKY or SHR or in the presence or absence of OVX. E2 depletion increased chymase activity, but not ACE activity, in both CMs and NCMs. Moreover, cardiac myocyte chymase activity associated with diastolic function in WKYs and cardiac structure in SHRs while no relevant functional and structural relationships between the classic enzymatic pathway of Ang II formation by ACE or the counter-regulatory Ang-(1-7) forming path from Ang II via ACE2 were apparent. The significance of these novel findings is that targeted cell-specific chymase rather than ACE inhibition may have a greater benefit in the management of HF in women after menopause.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xuming Sun
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Marina Lin
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gisele Zapata-Sudo
- Division of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M Ferrario
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hao Wang
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
Inhibition of the Renin-Angiotensin System Post Myocardial Infarction Prevents Inflammation-Associated Acute Cardiac Rupture. Cardiovasc Drugs Ther 2017; 31:145-156. [DOI: 10.1007/s10557-017-6717-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Ahmad S, Varagic J, VonCannon JL, Groban L, Collawn JF, Dell'Italia LJ, Ferrario CM. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochem Biophys Res Commun 2016; 478:559-64. [PMID: 27465904 DOI: 10.1016/j.bbrc.2016.07.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023]
Abstract
We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled (125)I-Ang-(1-12) or (125)I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of (125)I-Ang II formation from (125)I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to (125)I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of (125)I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0-250 μM). The rate of (125)I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower Km (64 ± 6.3 μM vs 142 ± 17 μM), higher Vmax (13.2 ± 1.3 μM/min/mg vs 1.9 ± 0.2 μM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of Vmax/Km) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of (125)I-Ang-(1-12) and (125)I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in (125)I-Ang II formation by ACE was detected using either substrate, (125)I-Ang-(1-12) or (125)I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower. Overall our findings suggest that Ang-(1-12), not Ang I, is the better substrate for Ang II formation by chymase in adult rats. In addition, this confirms our previous observation that chymase (rather than ACE) is the main hydrolyzing enzyme responsible for Ang II generation from Ang-(1-12) in the adult rat heart.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jasmina Varagic
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jessica L VonCannon
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Internal Medicine/Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Carlos M Ferrario
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Internal Medicine/Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Internal Medicine/Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Combination Treatment With Antihypertensive Agents Enhances the Effect of Qiliqiangxin on Chronic Pressure Overload-induced Cardiac Hypertrophy and Remodeling in Male Mice. J Cardiovasc Pharmacol 2016; 65:628-39. [PMID: 25806688 PMCID: PMC4461387 DOI: 10.1097/fjc.0000000000000230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. We previously showed that Qiliqiangxin (QL) capsules could ameliorate cardiac hypertrophy and remodeling in a mouse model of pressure overload. Here, we compared the effects of QL alone with those of QL combined with the following 3 types of antihypertensive drugs on cardiac remodeling and dysfunction induced by pressure overload for 4 weeks in mice: an angiotensin II type 1 receptor (AT1-R) blocker (ARB), an angiotensin-converting enzyme inhibitor (ACEI), and a β-adrenergic receptor (β-AR) blocker (BB). Adult male mice (C57B/L6) were subjected to either transverse aortic constriction or sham operation for 4 weeks, and the drugs (or saline) were orally administered through gastric tubes. Cardiac function and remodeling were evaluated through echocardiography, catheterization, histology, and analysis of hypertrophic gene expression. Cardiomyocyte apoptosis and autophagy, AT1-R and β1-AR expression, and cell proliferation–related molecules were also examined. Although pressure overload–induced cardiac remodeling and dysfunction, hypertrophic gene reprogramming, AT1-R and β1-AR expression, and ERK phosphorylation were significantly attenuated by QL alone, QL + ARB, QL + ACEI, and QL + BB, the attenuation was stronger in the combination treatment groups. Moreover, apoptosis was reduced to a larger extent by each combination treatment than by QL alone, whereas autophagy was more strongly attenuated by either QL + ARB or QL + ACEI. None of the treatments significantly upregulated ErbB2 or ErbB4 phosphorylation, and none significantly downregulated C/EBPβ expression. Therefore, the effects of QL on chronic pressure overload–induced cardiac remodeling may be significantly increased when QL is combined with an ARB, an ACEI, or a BB.
Collapse
|
16
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
17
|
Sadeghpour A, Rappolt M, Ntountaniotis D, Chatzigeorgiou P, Viras K, Megariotis G, Papadopoulos M, Siapi E, Mali G, Mavromoustakos T. Comparative study of interactions of aliskiren and AT 1 receptor antagonists with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:984-94. [DOI: 10.1016/j.bbamem.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
|
18
|
Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep 2014; 16:431. [PMID: 24760441 DOI: 10.1007/s11906-014-0431-2] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular injury, characterized by endothelial dysfunction, structural remodelling, inflammation and fibrosis, plays an important role in cardiovascular diseases. Cellular processes underlying this include altered vascular smooth muscle cell (VSMC) growth/apoptosis, fibrosis, increased contractility and vascular calcification. Associated with these events is VSMC differentiation and phenotypic switching from a contractile to a proliferative/secretory phenotype. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Among the many factors involved in vascular injury is Ang II. Ang II, previously thought to be the sole biologically active downstream peptide of the renin-angiotensin system (RAS), is converted to smaller peptides, [Ang III, Ang IV, Ang-(1-7)], that are functional and that modulate vascular tone and structure. The actions of Ang II are mediated via signalling pathways activated upon binding to AT1R and AT2R. AT1R activation induces effects through PLC-IP3-DAG, MAP kinases, tyrosine kinases, tyrosine phosphatases and RhoA/Rho kinase. Ang II elicits many of its (patho)physiological actions by stimulating reactive oxygen species (ROS) generation through activation of vascular NAD(P)H oxidase (Nox). ROS in turn influence redox-sensitive signalling molecules. Here we discuss the role of Ang II in vascular injury, focusing on molecular mechanisms and cellular processes. Implications in vascular remodelling, inflammation, calcification and atherosclerosis are highlighted.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
19
|
Ahmad S, Varagic J, Groban L, Dell'Italia LJ, Nagata S, Kon ND, Ferrario CM. Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 2014; 16:429. [PMID: 24633843 DOI: 10.1007/s11906-014-0429-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The classical view of biochemical pathways for the formation of biologically active angiotensins continues to undergo significant revision as new data uncovers the existence of important species differences between humans and rodents. The discovery of two novel substrates that, cleaved from angiotensinogen, can lead to direct tissue angiotensin II formation has the potential of radically altering our understanding of how tissues source angiotensin II production and explain the relative lack of efficacy that characterizes the use of angiotensin converting enzyme inhibitors in cardiovascular disease. This review addresses the discovery of angiotensin-(1-12) as an endogenous substrate for the production of biologically active angiotensin peptides by a non-renin dependent mechanism and the revealing role of cardiac chymase as the angiotensin II convertase in the human heart. This new information provides a renewed argument for exploring the role of chymase inhibitors in the correction of cardiac arrhythmias and left ventricular systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The extracellular matrix (ECM) is a living network of proteins that maintains the structural integrity of the myocardium and allows the transmission of electrical and mechanical forces between the myocytes for systole and diastole. During ventricular remodeling, as a result of iterations in the hemodynamic workload, collagen, the main component of the ECM, increases and occupies the areas between the myocytes and the vessels. The resultant fibrosis (reparative fibrosis) is initially a compensatory mechanism and may progress adversely influencing tissue stiffness and ventricular function. Replacement fibrosis appears at sites of previous cardiomyocyte necrosis to preserve the structural integrity of the myocardium, but with the subsequent formation of scar tissue and widespread distribution, it has adverse functional consequences. Continued accumulation of collagen impairs diastolic function and compromises systolic mechanics. Nevertheless, the development of fibrosis is a dynamic process wherein myofibroblasts, the principal cellular elements of fibrosis, are not only metabolically active and capable of the production and upregulation of cytokines but also have contractile properties. During the process of reverse remodeling with left ventricular assist device unloading, cellular, structural, and functional improvements are observed in terminal heart failure patients. With the advent of anti-fibrotic pharmacologic therapies, cellular therapy, and ventricular support devices, fibrosis has become an important therapeutic target in heart failure patients. Herein, we review the current concepts of fibrosis as a main component of ventricular remodeling in heart failure patients. Our aim is to integrate the histopathologic process of fibrosis with the neurohormonal, cytochemical, and molecular changes that lead to ventricular remodeling and its physiologic consequences in patients. The concept of fibrosis as living scar allows us to envision targeting this scar as a means of improving ventricular function in heart failure patients.
Collapse
Affiliation(s)
- Ana Maria Segura
- Department of Cardiovascular Pathology Research, Texas Heart Institute at St. Luke's Episcopal Hospital, MC 1-283, PO Box 20345, Houston, TX, 77225-0345, USA,
| | | | | |
Collapse
|
21
|
Labandeira-García JL, Garrido-Gil P, Rodriguez-Pallares J, Valenzuela R, Borrajo A, Rodríguez-Perez AI. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat 2014; 8:67. [PMID: 25071471 PMCID: PMC4086395 DOI: 10.3389/fnana.2014.00067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023] Open
Abstract
Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jose L Labandeira-García
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain ; Networking Research Center on Neurodegenerative Diseases (CIBERNED) Madrid, Spain
| |
Collapse
|
22
|
Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell'italia LJ. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 2014; 126:461-9. [PMID: 24329563 PMCID: PMC4280795 DOI: 10.1042/cs20130400] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lessons learned from the characterization of the biological roles of Ang-(1-7) [angiotensin-(1-7)] in opposing the vasoconstrictor, proliferative and prothrombotic actions of AngII (angiotensin II) created an underpinning for a more comprehensive exploration of the multiple pathways by which the RAS (renin-angiotensin system) of blood and tissues regulates homoeostasis and its altered state in disease processes. The present review summarizes the progress that has been made in the novel exploration of intermediate shorter forms of angiotensinogen through the characterization of the expression and functions of the dodecapeptide Ang-(1-12) [angiotensin-(1-12)] in the cardiac production of AngII. The studies reveal significant differences in humans compared with rodents regarding the enzymatic pathway by which Ang-(1-12) undergoes metabolism. Highlights of the research include the demonstration of chymase-directed formation of AngII from Ang-(1-12) in human left atrial myocytes and left ventricular tissue, the presence of robust expression of Ang-(1-12) and chymase in the atrial appendage of subjects with resistant atrial fibrillation, and the preliminary observation of significantly higher Ang-(1-12) expression in human left atrial appendages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Louis Joseph Dell'italia
- §Birmingham Veterans Affair Medical Center, University of Alabama Medical Center, Alabama, AL 35294, U.S.A
| |
Collapse
|
23
|
Iwaniak A, Minkiewicz P, Darewicz M. Food-Originating ACE Inhibitors, Including Antihypertensive Peptides, as Preventive Food Components in Blood Pressure Reduction. Compr Rev Food Sci Food Saf 2014; 13:114-134. [DOI: 10.1111/1541-4337.12051] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/25/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Iwaniak
- Univ. of Warmia and Mazury in Olsztyn; Faculty of Food Science, Chair of Food Biochemistry; Pl. Cieszynski 1 10-726 Olsztyn-Kortowo Poland
| | - Piotr Minkiewicz
- Univ. of Warmia and Mazury in Olsztyn; Faculty of Food Science, Chair of Food Biochemistry; Pl. Cieszynski 1 10-726 Olsztyn-Kortowo Poland
| | - Małgorzata Darewicz
- Univ. of Warmia and Mazury in Olsztyn; Faculty of Food Science, Chair of Food Biochemistry; Pl. Cieszynski 1 10-726 Olsztyn-Kortowo Poland
| |
Collapse
|
24
|
Wondergem R. Intracellular renin-angiotensin signaling: working from the inside-out in hypothalamic neurons. Focus on "Direct evidence of intracrine angiotensin II signaling in neurons". Am J Physiol Cell Physiol 2014; 306:C721-3. [PMID: 24429063 DOI: 10.1152/ajpcell.00009.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Robert Wondergem
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
25
|
Wan W, Jiang X, Li X, Zhang C, Yi X. Silencing of angiotensin‑converting enzyme by RNA interference prevents H9c2 cardiomyocytes from apoptosis induced by anoxia/reoxygenation through regulation of the intracellular renin-angiotensin system. Int J Mol Med 2013; 32:1380-6. [PMID: 24126381 DOI: 10.3892/ijmm.2013.1525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/04/2013] [Indexed: 11/06/2022] Open
Abstract
Inhibition of the angiotensin‑converting enzyme (ACE) attenuated apoptotic cardiomyocytes induced by ischemic reperfusion (I/R). However, it is difficult to evaluate the effects of inhibition of the intracellular ACE in vivo. The objective of this study was to determine whether the apoptosis in H9c2 cardiomyocytes following anoxia/reoxygenation (A/R) would be improved by the silencing of intracellular ACE by RNA interference (RNAi). H9c2 cardiomyocytes were subjected to A/R 48 h following transfection with ACE-shRNA plasmid. The results showed that the gene silencing of intracellular ACE significantly inhibited the decrease of cell viability and the increase of apoptotic H9c2 cardiomyocytes undergoing A/R. Additionally, the gene silencing of intracellular ACE significantly promoted the expression of ACE2, decreased caspase‑3 activity and Bax levels, and enhanced the expression of Bcl‑2 in H9c2 cardiomyocytes subjected to A/R. The results suggest that the gene silencing of intracellular ACE holds great potential in the treatment of cardiomyocyte apoptosis following I/R injury through the regulation of the intracellular renin‑angiotensin system, thereby regulating the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | | | | | | | | |
Collapse
|
26
|
Abstract
SIGNIFICANCE Despite recent medical advances, cardiovascular disease and heart failure (HF) continue to be major health concerns, and related mortality remains high. As a result, investigation of the mechanisms involved in the development of HF continues to be an active field of study. RECENT ADVANCES The renin-angiotensin system (RAS) and its effector molecule, angiotensin (Ang) II, affect cardiac function through both systemic and local actions, and have been shown to play a major role in cardiac remodeling and dysfunction in the failing heart. Many of the downstream effects of AngII signaling are mediated by elevated levels of reactive oxygen species (ROS) and oxidative stress, which have also been implicated in the pathology of HF. CRITICAL ISSUES Inhibitors of the RAS have proven beneficial in the treatment of patients at risk for and suffering from HF, but remain only partially effective. ROS can be generated from several different sources, and the oxidative state is normally tightly regulated in the heart. How AngII increases ROS levels and causes dysregulation of the cardiac oxidative state has been the subject of considerable interest in recent years. FUTURE DIRECTIONS A better understanding of this process and the mechanisms involved should lead to the development of more effective HF therapies and improved outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, New Jersey
| | | |
Collapse
|
27
|
Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, Valenzuela R, Villar-Cheda B, Rodríguez-Perez AI. Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson's disease. Mov Disord 2013; 28:1337-42. [PMID: 23925977 DOI: 10.1002/mds.25614] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/29/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023] Open
Abstract
Renin-angiotensin systems are known to act in many tissues, for example, the blood vessel wall or kidney, where a close interaction between angiotensin and dopamine has been demonstrated. Regulatory interactions between the dopaminergic and renin-angiotensin systems have recently been described in the substantia nigra and striatum. In animal models, dopamine depletion induces compensatory overactivation of the local renin-angiotensin system, which primes microglial responses and neuron vulnerability by activating NADPH-oxidase. Hyperactivation of the local renin-angiotensin system exacerbates the inflammatory microglial response, oxidative stress, and dopaminergic degeneration, all of which are inhibited by angiotensin receptor blockers and inhibitors of angiotensin-converting enzymes. In this review we provide evidence suggesting that the renin-angiotensin system may play an important role in dopamine's mediated neuroinflammation and oxidative stress changes in Parkinson's disease. We suggest that manipulating brain angiotensin may constitute an effective neuroprotective strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond) 2013; 124:529-41. [PMID: 23116220 DOI: 10.1042/cs20120448] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyperglycaemia up-regulates intracellular AngII (angiotensin II) production in cardiac myocytes, effects of which are blocked more effectively by renin inhibition than ARBs (angiotensin receptor blockers) or ACEis (angiotensin-converting enzyme inhibitors). In the present study, we determined whether renin inhibition is more effective at preventing diabetic cardiomyopathy than an ARB or ACEi. Diabetes was induced in adult mice for 10 weeks by STZ (streptozotocin). Diabetic mice were treated with insulin, aliskiren (a renin inhibitor), benazeprilat (an ACEi) or valsartan (an ARB) via subcutaneous mini-pumps. Significant impairment in diastolic and systolic cardiac functions was observed in diabetic mice, which was completely prevented by all three RAS (renin-angiotensin system) inhibitors. Hyperglycaemia significantly increased cardiac oxidative stress and circulating inflammatory cytokines, which were blocked by aliskiren and benazeprilat, whereas valsartan was partially effective. Diabetes increased cardiac PRR (prorenin receptor) expression and nuclear translocation of PLZF (promyelocytic zinc finger protein), which was completely prevented by aliskiren and valsartan, and partially by benazeprilat. Renin inhibition provided similar protection of cardiac function to ARBs and ACEis. Activation of PLZF by PRR represented a novel mechanism in diabetic cardiomyopathy. Differential effects of the three agents on oxidative stress, cytokines and PRR expression suggested subtle differences in their mechanisms of action.
Collapse
|
29
|
Salata C, Ferreira-Machado SC, Mencalha AL, de Andrade CBV, de Campos VMA, Mandarim-de-Lacerda CA, deAlmeida CE. Chemotherapy and radiation regimens to breast cancer treatment induce changes in mRNA levels of renin–angiotensin system related genes in cardiac tissue. J Renin Angiotensin Aldosterone Syst 2012; 14:330-6. [DOI: 10.1177/1470320312465218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Camila Salata
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
- Laboratório de Morfometria e Morfologia Cardiovascular, Instituto de Biologia, UERJ, Rio de Janeiro, Brazil
| | - Samara Cristina Ferreira-Machado
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
- Departamento de Biologia Geral – GBG, UFF, Niterói, Brazil
| | | | - Cherley Borba Vieira de Andrade
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura e Biologia Tecidual, Departamento de Histologia, UERJ, Rio de Janeiro, Brazil
| | | | | | - Carlos Eduardo deAlmeida
- Laboratório de Ciências Radiológicas, Departamento de Biofísica e Biometria, UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Abstract
The RAS (renin-angiotensin system) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, AngII (angiotensin II), is neither synthesized in nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate their function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is enhanced further by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The present review provides a synopsis of the literature on this system in different tissues.
Collapse
|
31
|
Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct 2012; 218:373-88. [PMID: 22407459 PMCID: PMC3580133 DOI: 10.1007/s00429-012-0402-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/22/2012] [Indexed: 02/07/2023]
Abstract
We have previously obtained in rodents a considerable amount of data suggesting a major role for the brain renin–angiotensin system (RAS) in dopaminergic neuron degeneration and potentially in Parkinson’s disease. However, the presence of a local RAS has not been demonstrated in the monkey or the human substantia nigra compacta (SNc). The present study demonstrates the presence of major RAS components in dopaminergic neurons, astrocytes and microglia in both the monkey and the human SNc. Angiotensin type 1 and 2 and renin–prorenin receptors were located at the surface of dopaminergic neurons and glial cells, as expected for a tissular RAS. However, angiotensinogen and receptors for angiotensin and renin–prorenin were also observed at the cytoplasm and nuclear level, which suggests the presence of an intracrine or intracellular RAS in monkey and human SNc. Although astrocytes and microglia were labeled for angiotensin and prorenin receptors in the normal SNc, most glial cells appeared less immunoreactive than the dopaminergic neurons. However, our previous studies in rodent models of PD and studies in other animal models of brain diseases suggest that the RAS activity is significantly upregulated in glial cells in pathological conditions. The present results together with our previous findings in rodents suggest a major role for the nigral RAS in the normal functioning of the dopaminergic neurons, and in the progression of the dopaminergic degeneration.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
32
|
Verdonk K, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor agonists: where should they be applied? Expert Opin Investig Drugs 2012; 21:501-13. [PMID: 22348403 DOI: 10.1517/13543784.2012.664131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Angiotensin II, the active endproduct of the renin-angiotensin system (RAS), exerts its effects via angiotensin II type 1 and type 2 (AT(1), AT(2)) receptors. AT(1) receptors mediate all well-known effects of angiotensin II, ranging from vasoconstriction to tissue remodeling. Thus, to treat cardiovascular disease, RAS blockade aims at preventing angiotensin II-AT(1) receptor interaction. Yet RAS blockade is often accompanied by rises in angiotensin II, which may exert beneficial effects via AT(2) receptors. AREAS COVERED This review summarizes our current knowledge on AT(2) receptors, describing their location, function(s), endogenous agonist(s) and intracellular signaling cascades. It discusses the beneficial effects obtained with C21, a recently developed AT(2) receptor agonist. Important questions that are addressed are do these receptors truly antagonize AT(1) receptor-mediated effects? What about their role in the diseased state and their heterodimerization with other receptors? EXPERT OPINION The general view that AT(2) receptors exclusively exert beneficial effects has been challenged, and in pathological models, their function sometimes mimics that of AT(1) receptors, for example, inducing vasoconstriction and cardiac hypertrophy. Yet given its upregulation in various pathological conditions, the AT(2) receptor remains a promising target for treatment, allowing effects beyond blood pressure-lowering, for example, in stroke, aneurysm formation, inflammation and myocardial fibrosis.
Collapse
Affiliation(s)
- Koen Verdonk
- Erasmus Medical Center, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Kumar R, Yong QC, Thomas CM, Baker KM. Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol 2011; 302:R510-7. [PMID: 22170614 DOI: 10.1152/ajpregu.00512.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies.
Collapse
Affiliation(s)
- Rajesh Kumar
- Division of Molecular Cardiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | | | |
Collapse
|
34
|
Darewicz M, Dziuba B, Minkiewicz P, Dziuba J. The Preventive Potential of Milk and Colostrum Proteins and Protein Fragments. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2011.563396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Oyamada S, Bianchi C, Takai S, Chu LM, Sellke FW. Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther 2011; 339:143-51. [PMID: 21795433 PMCID: PMC11047277 DOI: 10.1124/jpet.111.179697] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/26/2011] [Indexed: 12/20/2022] Open
Abstract
Chymase is activated after acute myocardial ischemia/reperfusion (AMI-R) and is associated with an early activation of matrix metalloproteinase-9 (MMP-9), which increases infarct size after experimental AMI, and late fibrosis. We assessed the effect of chymase inhibition on myocardial protection and early signs of fibrosis after AMI-R. Fourteen pigs underwent AMI-R and received intravenously either vehicle (V; n = 7) or chymase inhibitor (CM; n = 7). Separately, rat myocardial fibroblast was incubated with vehicle (n = 4), low-dose chymase (n = 4), high-dose chymase (n = 4), or high-dose chymase plus chymase inhibitor (n = 4). Infarct size (V, 41 ± 5; CM, 24 ± 5; P < 0.01) and serum troponin T (P = 0.03) at the end of reperfusion were significantly reduced in CM. Chymase activity in both the area at risk (AAR) (P = 0.01) and nonischemic area (P = 0.02) was significantly lower in CM. Myocardial levels of pro, cleaved, and cleaved/pro-MMP-9 in the AAR were significantly lower in CM than V (P < 0.01, < 0.01, and = 0.02, respectively), whereas phospho-endothelial nitric-oxide synthase (eNOS) (P < 0.01) and total eNOS (P = 0.03) were significantly higher in CM. Apoptotic cells (P = 0.05), neutrophils (P < 0.05), and MMP-9-colocalizing mast cells (P < 0.05) in the AAR were significantly reduced in CM. Interleukin-18 (P < 0.05) and intercellular adhesion molecule-1 (P < 0.05) mRNA levels were significantly lower in CM. In cultured cardiac fibrosis, Ki-67-positive cells were significantly higher in the high-dose chymase groups (P < 0.03). This study demonstrates that chymase inhibition plays crucial roles in myocardial protection related to MMP-9, inflammatory markers, and the eNOS pathway. It may also attenuate fibrosis induced by activated chymase after AMI-R.
Collapse
Affiliation(s)
- Shizu Oyamada
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|
36
|
Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 2011; 32:2141-50. [PMID: 21945916 DOI: 10.1016/j.peptides.2011.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT(1) and AT(2) receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
37
|
Burggren WW, Reyna KS. Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 2011; 178:13-21. [PMID: 21596160 DOI: 10.1016/j.resp.2011.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 02/07/2023]
Abstract
Embryo-environment interactions affecting cardio-respiratory development in vertebrates have been extensively studied, but an equally extensive conceptual framework for interpreting and interrelating these developmental events has lagged behind. In this review, we consider the conceptual constructs of "developmental plasticity", "critical windows", "developmental trajectory" and related concepts as they apply to both vertebrate and invertebrate development. Developmental plasticity and the related phenomenon of "heterokairy" are considered as a subset of phenotypic plasticity, and examples of cardiovascular, respiratory and metabolic plasticity illustrate the variable outcomes of embryo-environment interactions. The concept of the critical window is revealed to be overarching in cardio-respiratory development, and events originating within a critical window, potentially mitigated by "self-repair" capabilities of the embryo, are shown to result in modified developmental trajectories and, ultimately, modified adult phenotype. Finally, epigenetics, fetal programming and related phenomena are considered in the context of potentially life-long cardio-respiratory phenotypic modification resulting from embryo-environment interactions.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Cluster, Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | | |
Collapse
|
38
|
Abstract
Despite ongoing medical advances, cardiovascular disease continues to be a leading health concern. The renin-angiotensin system (RAS) plays an important role in regulating cardiovascular function, and is, therefore, the subject of extensive study. Several drugs currently used to treat hypertension and heart failure are designed to target angiotensin II synthesis and function, but thus far, none have been able to completely block the effects of RAS signaling. This review discusses current and emerging approaches towards inhibiting cardiac RAS function in order to further improve cardiovascular disease outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Medical Science Building G-609, Newark, NJ 07103 USA
| |
Collapse
|
39
|
Abstract
Hypertension is associated with vascular changes characterised by remodelling, endothelial dysfunction and hyperreactivity. Cellular processes underlying these perturbations include altered vascular smooth muscle cell growth and apoptosis, fibrosis, hypercontractility and calcification. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Many of these features occur with ageing, and the vascular phenotype in hypertension is considered a phenomenon of ‘premature vascular ageing’. Among the many factors involved in the hypertensive vascular phenotype, angiotensin II (Ang II) is especially important. Ang II, previously thought to be the sole effector of the renin–angiotensin system (RAS), is converted to smaller peptides [Ang III, Ang IV, Ang-(1-7)] that are biologically active in the vascular system. Another new component of the RAS is the (pro)renin receptor, which signals through Ang-II-independent mechanisms and might influence vascular function. Ang II mediates effects through complex signalling pathways on binding to its G-protein-coupled receptors (GPCRs) AT1R and AT2R. These receptors are regulated by the GPCR-interacting proteins ATRAP, ARAP1 and ATIP. AT1R activation induces effects through the phospholipase C pathway, mitogen-activated protein kinases, tyrosine kinases/phosphatases, RhoA/Rhokinase and NAD(P)H-oxidase-derived reactive oxygen species. Here we focus on recent developments and new research trends related to Ang II and the RAS and involvement in the hypertensive vascular phenotype.
Collapse
|
40
|
Affiliation(s)
- A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin–angiotensin system. Basic Res Cardiol 2010; 105:513-22. [DOI: 10.1007/s00395-010-0093-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/18/2010] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
|