1
|
Marques-Toledo CA, Bendati MM, Codeço CT, Teixeira MM. Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, prevention and control. Parasit Vectors 2019; 12:38. [PMID: 30651125 PMCID: PMC6335707 DOI: 10.1186/s13071-018-3280-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/27/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Dengue viruses have spread rapidly across tropical regions of the world in recent decades. Today, dengue transmission is observed in the Americas, Southeast Asia, Western Pacific, Africa and in non-endemic areas of the USA and Europe. Dengue is responsible for 16% of travel-related febrile illnesses. Although most prevalent in tropical areas, risk maps indicate that subtropical regions are suitable for transmission. Dengue-control programs in these regions should focus on minimizing virus importation, community engagement, improved vector surveillance and control. RESULTS We developed a conceptual model for the probability of local introduction and propagation of dengue, comprising disease vulnerability and receptivity, in a temperate area, considering risk factors and social media indicators. Using a rich data set from a temperate area in the south of Brazil (where there is active surveillance of mosquitoes, viruses and human cases), we used a conceptual model as a framework to build two probabilistic models to estimate the probability of initiation and propagation of local dengue transmission. The final models estimated with good accuracy the probabilities of local transmission and propagation, with three and four weeks in advance, respectively. Vulnerability indicators (number of imported cases and dengue virus circulation in mosquitoes) and a receptivity indicator (vector abundance) could be optimally integrated with tweets and temperature data to estimate probability of early local dengue transmission. CONCLUSIONS We demonstrated how vulnerability and receptivity indicators can be integrated into probabilistic models to estimate initiation and propagation of dengue transmission. The models successfully estimate disease risk in different scenarios and periods of the year. We propose a decision model with three different risk levels to assist in the planning of prevention and control measures in temperate regions at risk of dengue introduction.
Collapse
Affiliation(s)
- Cecilia A. Marques-Toledo
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Mercedes Bendati
- Vigilancia de Roedores e Vetores da Secretaria Municipal de Saude (CGVS/SMS), Porto Alegre, Brazil
| | - Claudia T. Codeço
- Programa de Computacao Cientifica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mauro M. Teixeira
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Wilder-Smith A, Chawla T, Ooi EE. Dengue: An Expanding Neglected Tropical Disease. NEGLECTED TROPICAL DISEASES - EAST ASIA 2019. [DOI: 10.1007/978-3-030-12008-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Pang T, Mak TK, Gubler DJ. Prevention and control of dengue-the light at the end of the tunnel. THE LANCET. INFECTIOUS DISEASES 2017; 17:e79-e87. [PMID: 28185870 DOI: 10.1016/s1473-3099(16)30471-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Advances in the development of new dengue control tools, including vaccines and vector control, herald a new era of desperately needed dengue prevention and control. The burden of dengue has expanded for decades, and now affects more than 120 countries. Complex, large-scale global forces have and will continue to contribute to the expansion of dengue, including population growth, unplanned urbanisation, and suboptimal mosquito control in urban centres. Although no so-called magic bullets are available, there is new optimism following the first licensure of a dengue vaccine and other promising vaccine candidates, and the development of novel vector control interventions to help control dengue and other expanding mosquito-borne diseases such as Zika virus. Implementation of effective and sustainable immunisation programmes to complement existing methods will add complexity to the health systems of affected countries, which have varying levels of robustness and maturity. Long-term high prioritisation and adequate resources are needed. The way forward is full commitment to addressing a complex disease with a set of solutions integrating vaccination and vector control methods. A whole systems approach is thus needed to integrate these various approaches and strategies for controlling dengue within the goal of universal health coverage. The ultimate objective of these interventions will be to reduce the disease burden in a sustainable and equitable manner.
Collapse
Affiliation(s)
- Tikki Pang
- Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore.
| | - Tippi K Mak
- Regional Health & Community Outreach Division, Health Promotion Board, Singapore
| | - Duane J Gubler
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
4
|
Webb CT, Ferrari M, Lindström T, Carpenter T, Dürr S, Garner G, Jewell C, Stevenson M, Ward MP, Werkman M, Backer J, Tildesley M. Ensemble modelling and structured decision-making to support Emergency Disease Management. Prev Vet Med 2017; 138:124-133. [PMID: 28237227 DOI: 10.1016/j.prevetmed.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application.
Collapse
Affiliation(s)
- Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Matthew Ferrari
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Tom Lindström
- Department of Biology, Colorado State University, Fort Collins, CO, USA; IFM, Theory and Modelling, Linköpings Universitet, Linköping, Sweden
| | - Tim Carpenter
- EpiCentre, Massey University, Palmerston North, New Zealand
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Berne, Switzerland
| | - Graeme Garner
- Animal Health Policy Branch, Department of Agriculture, Canberra, Australia
| | - Chris Jewell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Mark Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael P Ward
- Faculty of Veterinary Science, The University of Sydney, Camden, Australia
| | - Marleen Werkman
- Central Veterinary Institute part of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Jantien Backer
- Central Veterinary Institute part of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Michael Tildesley
- Warwick Infectious Disease Epidemiology Research (WIDER) Group, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK
| |
Collapse
|
5
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Paz-Soldan VA, Bauer KM, Lenhart A, Cordova Lopez JJ, Elder JP, Scott TW, McCall PJ, Kochel TJ, Morrison AC. Experiences with insecticide-treated curtains: a qualitative study in Iquitos, Peru. BMC Public Health 2016; 16:582. [PMID: 27422403 PMCID: PMC4947330 DOI: 10.1186/s12889-016-3191-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/08/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dengue is an arthropod-borne viral disease responsible for approximately 400 million infections annually; the only available method of prevention is vector control. It has been previously demonstrated that insecticide treated curtains (ITCs) can lower dengue vector infestations in and around houses. As part of a larger trial examining whether ITCs could reduce dengue transmission in Iquitos, Peru, the objective of this study was to characterize the participants' experience with the ITCs using qualitative methods. METHODS Knowledge, attitudes, and practices (KAP) surveys (at baseline, and 9 and 27 months post-ITC distribution, with n = 593, 595 and 511, respectively), focus group discussions (at 6 and 12 months post-ITC distribution, with n = 18 and 33, respectively), and 11 one-on-one interviews (at 12 months post-distribution) were conducted with 605 participants who received ITCs as part of a cluster-randomized trial. RESULTS Focus groups at 6 months post-ITC distribution revealed that individuals had observed their ITCs to function for approximately 3 months, after which they reported the ITCs were no longer working. Follow up revealed that the ITCs required re-treatment with insecticide at approximately 1 year post-distribution. Over half (55.3 %, n = 329) of participants at 9 months post-ITC distribution and over a third (34.8 %, n = 177) at 27 months post-ITC distribution reported perceiving a decrease in the number of mosquitoes in their home. The percentage of participants who would recommend ITCs to their family or friends in the future remained high throughout the study (94.3 %, n = 561 at 9 months and 94.6 %, n = 488 at 27 months post-distribution). When asked why, participants reported that ITCs were effective at reducing mosquitoes (81.6 and 37.8 %, at 9 and 27 months respectively), that they prevent dengue (5.7 and 51.2 %, at 9 and 27 months), that they are "beautiful" (5.9 and 3.1 %), as well as other reasons (6.9 and 2.5 %). CONCLUSION ITCs have substantial potential for long term dengue vector control because they are liked by users, both for their perceived effectiveness and for aesthetic reasons, and because they require little proactive behavioral effort on the part of the users. Our results highlight the importance of gathering process (as opposed to outcome) data during vector control studies, without which researchers would not have become aware that the ITCs had lost effectiveness early in the trial.
Collapse
Affiliation(s)
- Valerie A. Paz-Soldan
- />Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2200, New Orleans, LA USA
- />Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Karin M. Bauer
- />Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2200, New Orleans, LA USA
| | - Audrey Lenhart
- />Entomology Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - John P. Elder
- />Division of Health Promotion and Behavioral Sciences, Graduate School of Public Health, San Diego State University, San Diego, CA USA
| | - Thomas W. Scott
- />Department of Entomology and Nematology, University of California Davis, Davis, CA USA
- />Fogarty International Center, National Institutes of Health, Bethesda, MD USA
| | - Philip J. McCall
- />Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tadeusz J. Kochel
- />Virology Department, Naval Medical Research Center, Silver Spring, MD USA
| | - Amy C. Morrison
- />Department of Entomology and Nematology, University of California Davis, Davis, CA USA
| |
Collapse
|
7
|
|
8
|
Waman VP, Kasibhatla SM, Kale MM, Kulkarni-Kale U. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution. Arch Virol 2016; 161:2133-48. [DOI: 10.1007/s00705-016-2886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
|
9
|
Gessner BD, Wilder-Smith A. Estimating the public health importance of the CYD-tetravalent dengue vaccine: Vaccine preventable disease incidence and numbers needed to vaccinate. Vaccine 2016; 34:2397-401. [PMID: 27055020 DOI: 10.1016/j.vaccine.2016.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND To evaluate the potential public health impact of the live attenuated tetravalent Sanofi Pasteur dengue vaccine (CYD-TDV) we analyzed data from the reported clinical trials to calculate vaccine preventable disease incidence (VPDI) and number needed to vaccinate (NNV) based on the licensure indication for persons age 9 years and above. METHODS VPDI is defined as incidence in an unvaccinated population X vaccine efficacy (VE), and thus incorporates both VE and the underlying burden of disease. NNV was calculated as 100,000 divided by VPDI divided by 2-year length of study. We compared these values to data for three newer vaccines that are currently integrated into some national immunization programs in Asia and Latin America, namely pneumococcal conjugate, Haemophilus influenzae type b, and rotavirus vaccines. RESULTS In the Asian-Pacific trial, in the first 25 months after the first dose of the dengue vaccine, CYD-TDV prevented annually 2639 cases of virologically confirmed dengue for every 100,000 persons vaccinated, for an NNV of 18. In the Latin American trial, given the overall lower annual dengue incidence compared to Asia, VPDI was 1707, and NNV 28. For the Asian-Pacific and Latin American studies, the VPDIs for hospitalized virologically confirmed disease at the trials' end were 638 and 239 per 100,000 population per year, respectively, with NNVs of 75 and 201. VPDI for confirmed dengue hospitalization was higher than that for Hib vaccine against Hib meningitis or all cause severe pneumonia while lower than that for rotavirus vaccine against severe rotavirus gastroenteritis. CONCLUSIONS Our analysis found that the CYD-TDV dengue vaccine had favorable VPDI and NNV, also when compared to existing vaccines used in Latin America and Asia. VPDI and NNV varied by serotype distribution, extent of prior dengue exposure (baseline seroprevalence) and country. These findings will help policy-makers decide where and how to introduce this vaccine post-licensure.
Collapse
Affiliation(s)
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Public Health, University of Heidelberg, Germany.
| |
Collapse
|
10
|
Paz-Soldan VA, Bauer K, Morrison AC, Cordova Lopez JJ, Izumi K, Scott TW, Elder JP, Alexander N, Halsey ES, McCall PJ, Lenhart A. Factors Associated with Correct and Consistent Insecticide Treated Curtain Use in Iquitos, Peru. PLoS Negl Trop Dis 2016; 10:e0004409. [PMID: 26967157 PMCID: PMC4788147 DOI: 10.1371/journal.pntd.0004409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/05/2016] [Indexed: 01/31/2023] Open
Abstract
Dengue is an arthropod-borne virus of great public health importance, and control of its mosquito vectors is currently the only available method for prevention. Previous research has suggested that insecticide treated curtains (ITCs) can lower dengue vector infestations in houses. This observational study investigated individual and household-level socio-demographic factors associated with correct and consistent use of ITCs in Iquitos, Peru. A baseline knowledge, attitudes, and practices (KAP) survey was administered to 1,333 study participants, and ITCs were then distributed to 593 households as part of a cluster-randomized trial. Follow up KAP surveys and ITC-monitoring checklists were conducted at 9, 18, and 27 months post-ITC distribution. At 9 months post-distribution, almost 70% of ITCs were hanging properly (e.g. hanging fully extended or tied up), particularly those hung on walls compared to other locations. Proper ITC hanging dropped at 18 months to 45.7%. The odds of hanging ITCs correctly and consistently were significantly greater among those participants who were housewives, knew three or more correct symptoms of dengue and at least one correct treatment for dengue, knew a relative or close friend who had had dengue, had children sleeping under a mosquito net, or perceived a change in the amount of mosquitoes in the home. Additionally, the odds of recommending ITCs in the future were significantly greater among those who perceived a change in the amount of mosquitoes in the home (e.g. perceived the ITCs to be effective). Despite various challenges associated with the sustained effectiveness of the selected ITCs, almost half of the ITCs were still hanging at 18 months, suggesting a feasible vector control strategy for sustained community use. Dengue is an arthropod-borne virus of great public health importance. Vector control is currently the only available method for dengue prevention. This cluster-randomized trial investigated individual and household-level socio-demographic factors associated with correct and consistent use of insecticide-treated curtains (ITCs)—one promising vector control method—in Iquitos, Peru. Most people preferred to hang the ITCs in doorways and as room dividers, but also hung them as curtains on windows and on their walls. We assessed who still had their ITCs hanging or tied up at 9 months and 18 months after distribution, and found that use of the ITCs decreased over time to about half. When we explored who was more likely to be using the ITCs correctly (having them hanging in place, or tied up in place, or washed without bleach and avoiding direct sunlight), we found that those who knew more about dengue, knew someone who had dengue, had young children in their homes sleeping under an insecticide treated mosquito net, or who perceived the ITCs to work well, were more likely to be using their ITCs than others. Despite various challenges in sustained ITC effectiveness in this study, the fact that almost half of the homes still had the ITCs hanging at 18 months suggests this vector control strategy is feasible for long term community use.
Collapse
Affiliation(s)
- Valerie A. Paz-Soldan
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Karin Bauer
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Amy C. Morrison
- United States Naval Medical Research Unit No. 6 (NAMRU-6), Iquitos Laboratory, Iquitos, Peru
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Jhonny J. Cordova Lopez
- United States Naval Medical Research Unit No. 6 (NAMRU-6), Iquitos Laboratory, Iquitos, Peru
| | - Kiyohiko Izumi
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - John P. Elder
- Division of Health Promotion and Behavioral Sciences, Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Neal Alexander
- MRC Tropical Epidemiology Group and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eric S. Halsey
- Malaria Branch, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Philip J. McCall
- Department of Vector Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
11
|
Lim JK, Lee YS, Wilder-Smith A, Thiry G, Mahoney R, Yoon IK. Points for Consideration for dengue vaccine introduction – recommendations by the Dengue Vaccine Initiative. Expert Rev Vaccines 2016; 15:529-38. [DOI: 10.1586/14760584.2016.1129279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Expression of enhancing-activity-free neutralizing antibody against dengue type 1 virus in plasmid-inoculated mice. Vaccine 2015; 33:6070-7. [DOI: 10.1016/j.vaccine.2015.07.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/16/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
|
13
|
Londono-Renteria B, Troupin A, Conway MJ, Vesely D, Ledizet M, Roundy CM, Cloherty E, Jameson S, Vanlandingham D, Higgs S, Fikrig E, Colpitts TM. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. PLoS Pathog 2015; 11:e1005202. [PMID: 26491875 PMCID: PMC4619585 DOI: 10.1371/journal.ppat.1005202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Diana Vesely
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Michael Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Christopher M. Roundy
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Dana Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Tonya M. Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Han WW, Lazaro A, McCall PJ, George L, Runge-Ranzinger S, Toledo J, Velayudhan R, Horstick O. Efficacy and community effectiveness of larvivorous fish for dengue vector control. Trop Med Int Health 2015; 20:1239-1256. [PMID: 25962851 DOI: 10.1111/tmi.12538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the efficacy and community effectiveness of larvivorous fish for the control of dengue vectors and dengue transmission, when used as a single agent or in combination with other vector control methods. METHOD Comprehensive literature search of published and grey literature using PubMed, EMBASE (DMDI), Web of Science, WHOLIS, WILEY, LILACS, GIFT, Cochrane Library, ELDIS, New York Academy of Medicine Grey Literature Report and Google. All results were checked for duplicates and examined for eligibility. Methodological quality of the studies was assessed using RoBANS. RESULTS Thirteen articles were considered eligible for inclusion. Incorporating a wide range of interventions and outcome measures, three were efficacy studies and 10 assessed community effectiveness. None of the studies were randomised or cluster-randomised controlled trials. All three efficacy studies and seven community effectiveness studies investigated fish as a single agent. All efficacy studies reported elimination of Aedes larvae from treated containers, while community effectiveness studies reported reductions in immature vector stages, two of which also detected a continuous decline over 2 years. An impact on adult mosquitoes was shown in only two community effectiveness studies. Reductions in dengue cases following intervention were reported in two studies, but it was not possible to attribute this to the intervention. CONCLUSION While the use of larvivorous fish as a single agent or in combination with other control measures could lead to reductions in immature vector stages, considerable limitations in all the studies restricted any conclusions with respect to the evaluation of community effectiveness. Evidence for the community effectiveness of larvivorous fish as a single agent remains minimal and cluster-randomised controlled studies that include the assessment of impact on dengue are recommended.
Collapse
Affiliation(s)
- W W Han
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - A Lazaro
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - P J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - L George
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - S Runge-Ranzinger
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany.,Consultant in Public Health, Ludwigsburg, Germany
| | - J Toledo
- Ministry of Health, Brasilia, Brazil
| | - R Velayudhan
- Department for the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - O Horstick
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant. mBio 2015; 6:e00553-15. [PMID: 25968648 PMCID: PMC4436066 DOI: 10.1128/mbio.00553-15] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dengue virus (DENV) replication is inhibited by the prior addition of type I interferon or by RIG-I agonists that elicit RIG-I/MAVS/TBK1/IRF3-dependent protective responses. DENV infection of primary human endothelial cells (ECs) results in a rapid increase in viral titer, which suggests that DENV inhibits replication-restrictive RIG-I/interferon beta (IFN-β) induction pathways within ECs. Our findings demonstrate that DENV serotype 4 (DENV4) nonstructural (NS) proteins NS2A and NS4B inhibited RIG-I-, MDA5-, MAVS-, and TBK1/IKKε-directed IFN-β transcription (>80%) but failed to inhibit IFN-β induction directed by STING or constitutively active IRF3-5D. Expression of NS2A and NS4B dose dependently inhibited the phosphorylation of TBK1 and IRF3, which suggests that they function at the level of TBK1 complex activation. NS2A and NS4B from DENV1/2/4, as well as the West Nile virus NS4B protein, commonly inhibited TBK1 phosphorylation and IFN-β induction. A comparative analysis of NS4A proteins across DENVs demonstrated that DENV1, but not DENV2 or DENV4, NS4A proteins uniquely inhibited TBK1. These findings indicate that DENVs contain conserved (NS2A/NS4B) and DENV1-specific (NS4A) mechanisms for inhibiting RIG-I/TBK1-directed IFN responses. Collectively, our results define DENV NS proteins that restrict IRF3 and IFN responses and thereby facilitate DENV replication and virulence. Unique DENV1-specific NS4A regulation of IFN induction has the potential to be a virulence determinant that contributes to the increased severity of DENV1 infections and the immunodominance of DENV1 responses during tetravalent DENV1-4 vaccination. Our findings demonstrate that NS2A and NS4B proteins from dengue virus serotypes 1, 2, and 4 are inhibitors of RIG-I/MDA5-directed interferon beta (IFN-β) induction and that they accomplish this by blocking TBK1 activation. We determined that IFN inhibition is functionally conserved across NS4B proteins from West Nile virus and DENV1, -2, and -4 viruses. In contrast, DENV1 uniquely encodes an extra IFN regulating protein, NS4A, that inhibits TBK1-directed IFN induction. DENV1 is associated with an increase in severe patient disease, and added IFN regulation by the DENV1 NS4A protein may contribute to increased DENV1 replication, immunodominance, and virulence. The regulation of IFN induction by nonstructural (NS) proteins suggests their potential roles in enhancing viral replication and spread and as potential protein targets for viral attenuation. DENV1-specific IFN regulation needs to be considered in vaccine strategies where enhanced DENV1 replication may interfere with DENV2-4 seroconversion within coadministered tetravalent DENV1-4 vaccines.
Collapse
|
16
|
Abstract
Dengue is currently listed as a “neglected tropical disease” (NTD). But is dengue still an NTD or not? Classifying dengue as an NTD may carry advantages, but is it justified? This review considers the criteria for the definition of an NTD, the current diverse lists of NTDs by different stakeholders, and the commonalities and differences of dengue with other NTDs. We also review the current research gaps and research activities and the adequacy of funding for dengue research and development (R&D) (2003–2013). NTD definitions have been developed to a higher precision since the early 2000s, with the following main features: NTDs are characterised as a) poverty related, b) endemic to the tropics and subtropics, c) lacking public health attention, d) having poor research funding and shortcomings in R&D, e) usually associated with high morbidity but low mortality, and f) often having no specific treatment available. Dengue meets most of these criteria, but not all. Although dengue predominantly affects resource-limited countries, it does not necessarily only target the poor and marginalised in those countries. Dengue increasingly attracts public health attention, and in some affected countries it is now a high profile disease. Research funding for dengue has increased exponentially in the past two decades, in particular in the area of dengue vaccine development. However, despite advances in dengue research, dengue epidemics are increasing in frequency and magnitude, and dengue is expanding to new areas. Specific treatment and a highly effective vaccine remain elusive. Major research gaps exist in the area of integrated surveillance and vector control. Hence, although dengue differs from many of the NTDs, it still meets important criteria commonly used for NTDs. The current need for increased R&D spending, shared by dengue and other NTDs, is perhaps the key reason why dengue should continue to be considered an NTD.
Collapse
Affiliation(s)
- Olaf Horstick
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Yesim Tozan
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
- Steinhardt School of Culture, Education and Human Development and Global Institute of Public Health, New York University, New York, New York, United States of America
| | - Annelies Wilder-Smith
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Global Health and Epidemiology, Umea University, Umea, Sweden
| |
Collapse
|
17
|
Functionality of dengue virus specific memory T cell responses in individuals who were hospitalized or who had mild or subclinical dengue infection. PLoS Negl Trop Dis 2015; 9:e0003673. [PMID: 25875020 PMCID: PMC4395258 DOI: 10.1371/journal.pntd.0003673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/04/2015] [Indexed: 01/28/2023] Open
Abstract
Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. Although dengue viral infections cause severe clinical disease, the majority of individuals infected with the dengue virus (DENV) develop asymptomatic infection. The function of DENV specific memory T cells in relation to past clinical disease severity is incompletely understood. In this study, we sought to investigate the function of DENV specific memory T cell responses in a large cohort (n = 338) of individuals who were naturally infected with the DENV but developed varying severity of clinical disease. We found that T cells of individuals who were hospitalized due to dengue and those with mild/sub clinical dengue infection produced multiple cytokines when stimulated with DENV-NS3 peptides. In addition, we have also validated a novel T cell based assay, which can be used to determine the past infecting DENV serotype. We found that 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Moreover, the peptides used in this assay did not cross react with Japanese encephalitis virus. Therefore, this assay is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials.
Collapse
|
18
|
Platelet activating factor contributes to vascular leak in acute dengue infection. PLoS Negl Trop Dis 2015; 9:e0003459. [PMID: 25646838 PMCID: PMC4315531 DOI: 10.1371/journal.pntd.0003459] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/05/2014] [Indexed: 01/10/2023] Open
Abstract
Background Although plasma leakage is the hallmark of severe dengue
infections, the factors that cause increased vascular permeability have not been identified. As platelet activating factor (PAF) is associated with an increase in vascular permeability in other diseases, we set out to investigate its role in acute dengue infection. Materials and Methods PAF levels were initially assessed in 25 patients with acute dengue infection to determine if they were increased in acute dengue. For investigation of the kinetics of PAF, serial PAF values were assessed in 36 patients. The effect of dengue serum on tight junction protein ZO-1 was determined by using human endothelial cell lines (HUVECs). The effect of dengue serum on and trans-endothelial resistance (TEER) was also measured on HUVECs. Results PAF levels were significantly higher in patients with acute dengue (n = 25; p = 0.001) when compared to healthy individuals (n = 12). In further investigation of the kinetics of PAF in serial blood samples of patients (n = 36), PAF levels rose just before the onset of the critical phase. PAF levels were significantly higher in patients with evidence of vascular leak throughout the course of the illness when compared to those with milder disease. Serum from patients with dengue significantly down-regulated expression of tight junction protein, ZO-1 (p = 0.004), HUVECs. This was significantly inhibited (p = 0.004) by use of a PAF receptor (PAFR) blocker. Serum from dengue patients also significantly reduced TEER and this reduction was also significantly (p = 0.02) inhibited by prior incubation with the PAFR blocker. Conclusion Our results suggest the PAF is likely to be playing a significant role in inducing vascular leak in acute dengue infection which offers a potential target for therapeutic intervention. Although plasma leakage is the hallmark of severe dengue
infections, the factors that cause increased vascular permeability have not been identified. As platelet activating factor (PAF) is associated with an increase in vascular permeability in other diseases, we set out to investigate its role in acute dengue infection. In this study, we found that PAF was significantly increased in patients with DHF, and the PAF levels rose just before the onset of the critical phase of dengue, during which vascular leak is thought to occur. PAF in serum of dengue patients was associated with reduced expression of tight junction proteins (ZO-1) and reduction in trans-endothelial resistance (TEER) of human endothelial cells. Use of PAFR blockers significantly reduced the down regulation of ZO-1 by serum of dengue patients and also the reduction of TEER, suggesting that PAF plays a significant role in inducing vascular leak in acute dengue infections.
Collapse
|
19
|
Affiliation(s)
- Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232; Institute of Public Health, University of Heidelberg, Heidelberg, Germany; Department of Public Health and Clinical Medicine, University of Umeå, Umeå, Sweden.
| |
Collapse
|