1
|
Abstract
Background: Cell cycle is critical for a wide range of cellular processes such as proliferation, differentiation and apoptosis in dividing cells. Neurons are postmitotic cells which have withdrawn from the cell division cycle. Recent data show us that inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs) may take part in the aetiology of neurodegenerative diseases. However, the mechanisms for cell cycle reentry in neurodegenerative disease remain unclear.Methods: Electronic databases such as Pubmed, Science Direct, Directory of Open Access Journals, PLOS were searched for relevant articles.Conclusion: The present work reviews basic aspects of cell cycle mechanism, as well as the evidence showing the expression of cell cycle proteins in neurodegenerative disease. We provide a brief summary of these findings and hope to highlight the interaction between the cell cycle reentry and neurodegenerative diseases. Moreover, we outline the possible signaling pathways. However more understanding of the mechanism of cell cycle is of great importance. Because these represents an alternative target for therapeutic interventions, leading to novel treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuxin Song
- School of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenpeng Peng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Varna D, Geromichalou E, Papachristou E, Papi R, Hatzidimitriou AG, Panteris E, Psomas G, Geromichalos GD, Aslanidis P, Choli-Papadopoulou T, Angaridis PA. Biocompatible silver(I) complexes with heterocyclic thioamide ligands for selective killing of cancer cells and high antimicrobial activity - A combined in vitro and in silico study. J Inorg Biochem 2021; 228:111695. [PMID: 35007963 DOI: 10.1016/j.jinorgbio.2021.111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
A series of heteroleptic Ag(I) complexes bearing 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), i.e., [AgCl(dmp2SH)(PPh3)2] (1), [Ag(dmp2SH)(PPh3)2]NO3 (2), [Ag(dmp2SΗ)(xantphos)]NO3 (3), [Ag(μ-dmp2S)(PPh3)]2 (4), [Ag(dmp2S)(xantphos)] (5), [Ag(μ-dmp2S)(DPEphos)]2 (6) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and DPEPhos = bis[(2-diphenylphosphino)phenyl]ether) were synthesized. The complexes display systematic variation of particular structural characteristics which were proved to have a significant impact on their in vitro cytotoxicity and antimicrobial properties. A moderate-to-high potential for bacteria growth inhibition was observed for all complexes, with 2, 3 and 5 being particularly effective against Gram-(+) bacteria (IC50 = 1.6-4.5 μM). The three complexes exhibit high in vitro cytotoxicity against HeLa and MCF-7 cancer cells (IC50 = 0.32-3.00 μΜ), suggesting the importance of coordination unsaturation and cationic charge for effective bioactivity. A very low cytotoxicity against HDFa normal cells was observed, revealing a high degree of selectivity (selectivity index ~10) and, hence, biocompatibility. Fluorescence microscopy using 2 showed effective targeting on the membrane of the HeLa cancer cells, subsequently inducing cell death. Binding of the complexes to serum albumin proteins is reasonably strong for potential uptake and subsequent release to target sites. A moderate in vitro antioxidant capacity for free radicals scavenging was observed and a low potential to destroy the double-strand structure of calf-thymus DNA by intercalation, suggesting likely implication of these properties in the bioactivity mechanisms of these complexes. Further insight into possible mechanisms of bioactivity was obtained by molecular modeling calculations, by exploring their ability to act as potential inhibitors of DNA-gyrase, human estrogen receptor alpha, human cyclin-dependent kinase 6, and human papillomavirus E6 oncoprotein.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Emmanuel Panteris
- Laboratory of Botany, Department of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George D Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
3
|
Anastasiadou D, Geromichalou E, Tsavea E, Psomas G, Hatzidimitriou AG, Kalogiannis S, Geromichalos G, Trafalis D, Dalezis P, Aslanidis P. Silver complexes with heterocyclic thioamide and tertiary arylphosphane ligands: Synthesis, crystal structures, in vitro and in silico antibacterial and cytotoxic activity, and interaction with DNA. J Inorg Biochem 2020; 210:111167. [PMID: 32653633 DOI: 10.1016/j.jinorgbio.2020.111167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022]
Abstract
Herein we report on the synthesis and molecular structures of six silver(I) mixed-ligand complexes containing a heterocyclic thioamide [4-phenyl-imidazole-2-thione (phimtH) or 2,2,5,5-tetramethyl-imidazolidine-4-thione (tmimdtH)] and a tertiary arylphosphane [triphenylphosphine (PPh3), tri-o-tolylphosphane (totp)] or diphosphane [(1,2-bis(diphenylphosphano)ethane (dppe), bis(2-diphenylphosphano-phenyl)ether (DPEphos) or 4,5-bis(diphenylphosphano)-9,9-dimethylxanthene) (xantphos)]. The interaction of the compounds with calf-thymus DNA (CT DNA), as monitored directly via UV-vis spectroscopy and DNA-viscosity measurements and indirectly via its competition with ethidium bromide for DNA-intercalation sites, is suggested to take place via an intercalative mode. The new complexes show selective significant in vitro antibacterial activity against four bacterial strains. The antiproliferative effects and cytostatic efficacies of the complexes against four human cancer cell lines were evaluated. The best cytostatic and cytotoxic activity was appeared for the complexes bearing the phimtH moiety. In order to explain the described in vitro activity of the complexes, and to approach a possible mechanism of action, molecular docking studies were adopted on the crystal structure of CT DNA, DNA-gyrase, human estrogen receptor alpha and a cell-cycle specific target protein, human cyclin-dependent kinase 6.
Collapse
Affiliation(s)
- Despoina Anastasiadou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Eleni Tsavea
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Thessaloniki, Greece
| | - George Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece.
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
4
|
Choi BKA, D’Onofrio PM, Shabanzadeh AP, Koeberle PD. Stabilization of primary cilia reduces abortive cell cycle re-entry to protect injured adult CNS neurons from apoptosis. PLoS One 2019; 14:e0220056. [PMID: 31369591 PMCID: PMC6675095 DOI: 10.1371/journal.pone.0220056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Abortive cell cycle (ACC) re-entry of apoptotic neurons is a recently characterized phenomenon that occurs after central nervous system (CNS) injury or over the course of CNS disease. Consequently, inhibiting cell cycle progression is neuroprotective in numerous CNS pathology models. Primary cilia are ubiquitous, centriole-based cellular organelles that prevent cell cycling, but their ability to modulate abortive cell cycle has not been described. Here, we show that neuronal cilia are ablated in-vitro and in-vivo following injury by hypoxia or optic nerve transection (ONT), respectively. Furthermore, forced cilia resorption sensitized neurons to these injuries and enhanced cell death. In contrast, pharmacological inhibition or shRNA knockdown of the proteins that disassemble the cilia increased neuron survival and decreased the phosphorylation of retinoblastoma (Rb), a master switch for cell cycle re-entry. Our findings show that the stabilization of neuronal primary cilia inhibits, at least transiently, apoptotic cell cycling, which has implications for future therapeutic strategies that halt or slow the progression of neurodegenerative diseases and acute CNS injuries.
Collapse
Affiliation(s)
- Brian K. A. Choi
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada
- Graduate Department of Rehabilitation Sciences, University of Toronto, Toronto, ON, Canada
| | - Philippe M. D’Onofrio
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada
- Graduate Department of Rehabilitation Sciences, University of Toronto, Toronto, ON, Canada
| | - Alireza P. Shabanzadeh
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Paulo D. Koeberle
- Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, Canada
- Graduate Department of Rehabilitation Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MIR. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies. Curr Genomics 2017; 18:106-131. [PMID: 28367072 PMCID: PMC5345333 DOI: 10.2174/1389202917666160808125645] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.
Collapse
|
6
|
Chen S, Zhou L, Zhang Y, Leng Y, Pei XY, Lin H, Jones R, Orlowski RZ, Dai Y, Grant S. Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 2014; 34:3435-3449. [PMID: 25002530 PMCID: PMC4135623 DOI: 10.1128/mcb.01383-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/29/2013] [Accepted: 06/22/2014] [Indexed: 02/05/2023] Open
Abstract
In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Liang Zhou
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Yu Zhang
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Yun Leng
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Xin-Yan Pei
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Hui Lin
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Richard Jones
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yun Dai
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Steven Grant
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Biochemistry, Virginia Commonwealth University and Massey Cancer Center and Virginia Institute of Molecular Medicine, Richmond, Virginia, USA
| |
Collapse
|
7
|
Effects of Auraptene on IGF-1 Stimulated Cell Cycle Progression in the Human Breast Cancer Cell Line, MCF-7. Int J Breast Cancer 2012; 2012:502092. [PMID: 23320178 PMCID: PMC3536038 DOI: 10.1155/2012/502092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
Auraptene is being investigated for its chemopreventive effects in many models of cancer including skin, colon, prostate, and breast. Many mechanisms of action including anti-inflammatory, antiproliferative, and antiapoptotic effects are being suggested for the chemopreventive properties of auraptene. We have previously shown in the N-methylnitrosourea induced mammary carcinogenesis model that dietary auraptene (500 ppm) significantly delayed tumor latency. The delay in time to tumor corresponded with a significant reduction in cyclin D1 protein expression in the tumors. Since cyclin D1 is a major regulator of cell cycle, we further studied the effects of auraptene on cell cycle and the genes related to cell cycle in MCF-7 cells. Here we show that auraptene significantly inhibited IGF-1 stimulated S phase of cell cycle in MCF-7 cells and significantly changed the transcription of many genes involved in cell cycle.
Collapse
|
8
|
Terashima T, Haque A, Kajita Y, Takeuchi A, Nakagawa T, Yokochi T. Flavopiridol inhibits interferon-γ-induced nitric oxide production in mouse vascular endothelial cells. Immunol Lett 2012; 148:91-6. [DOI: 10.1016/j.imlet.2012.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/30/2012] [Accepted: 10/07/2012] [Indexed: 12/26/2022]
|
9
|
Narayanan A, Sampey G, Van Duyne R, Guendel I, Kehn-Hall K, Roman J, Currer R, Galons H, Oumata N, Joseph B, Meijer L, Caputi M, Nekhai S, Kashanchi F. Use of ATP analogs to inhibit HIV-1 transcription. Virology 2012; 432:219-31. [PMID: 22771113 DOI: 10.1016/j.virol.2012.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/21/2012] [Accepted: 06/02/2012] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of AIDS. Chronic persistent infection is an important reason for the presence of "latent cell populations" even after Anti-Retroviral Therapy (ART). We have analyzed the effect of ATP analogs in inhibiting cdk9/T1 complex in infected cells. A third generation drug named CR8#13 is an effective inhibitor of Tat activated transcription. Following drug treatment, we observed a decreased loading of cdk9 onto the HIV-1 DNA. We found multiple novel cdk9/T1 complexes present in infected and uninfected cells with one complex being unique to infected cells. This complex is sensitive to CR8#13 in kinase assays. Treatment of PBMC with CR8#13 does not kill infected cells as compared to Flavopiridol. Interestingly, there is a difference in sensitivity of various clades to these analogs. Collectively, these results point to targeting novel complexes for inhibition of cellular proteins that are unique to infected cells.
Collapse
Affiliation(s)
- Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu J, Stoica BA, Dinizo M, Pajoohesh-Ganji A, Piao C, Faden AI. Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle 2012; 11:1782-95. [PMID: 22510563 DOI: 10.4161/cc.20153] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes tissue loss and associated neurological dysfunction through mechanical damage and secondary biochemical and physiological responses. We have previously described the pathobiological role of cell cycle pathways following rat contusion SCI by examining the effects of early intrathecal cell cycle inhibitor treatment initiation or gene knockout on secondary injury. Here, we delineate changes in cell cycle pathway activation following SCI and examine the effects of delayed (24 h) systemic administration of flavopiridol, an inhibitor of major cyclin-dependent kinases (CDKs), on functional recovery and histopathology in a rat SCI contusion model. Immunoblot analysis demonstrated a marked upregulation of cell cycle-related proteins, including pRb, cyclin D1, CDK4, E2F1 and PCNA, at various time points following SCI, along with downregulation of the endogenous CDK inhibitor p27. Treatment with flavopiridol reduced induction of cell cycle proteins and increased p27 expression in the injured spinal cord. Functional recovery was significantly improved after SCI from day 7 through day 28. Treatment significantly reduced lesion volume and the number of Iba-1(+) microglia in the preserved tissue and increased the myelinated area of spared white matter as well as the number of CC1(+) oligodendrocytes. Furthermore, flavopiridol attenuated expression of Iba-1 and glactin-3, associated with microglial activation and astrocytic reactivity by reduction of GFAP, NG2, and CHL1 expression. Our current study supports the role of cell cycle activation in the pathophysiology of SCI and by using a clinically relevant treatment model, provides further support for the therapeutic potential of cell cycle inhibitors in the treatment of human SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Morachis JM, Huang R, Emerson BM. Identification of kinase inhibitors that target transcription initiation by RNA polymerase II. Oncotarget 2011; 2:18-28. [PMID: 21378408 PMCID: PMC3248145 DOI: 10.18632/oncotarget.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our current understanding of eukaryotic transcription has greatly benefited from use of small molecule inhibitors that have delineated multiple regulatory steps in site-specific initiation and elongation of RNA synthesis by multiple forms of RNA polymerase (RNAP). This class of "transcription" drugs is also of therapeutic interest and under evaluation in clinical trials. However, to date very few small molecules that directly abolish transcription have been identified, particularly those that act at the level of RNAP II initiation. Using a biochemical assay that measures transcription from recombinant, natural p53-responsive promoters and an artificial "super" promoter, we have identified three distinct small molecules that inhibit mRNA synthesis in vitro. Unexpectedly, these are kinase inhibitors, Hypericin, Rottlerin, and SP600125, with known substrates, which we find also strongly impair transcriptional initiation (IC50s = µM range) by targeting specific components of the RNAP II pre-initiation complex. When measured before and during transcription in vitro, one common target of inhibition by all three compounds is modification of the TATA Binding Protein (TBP) within the RNAP II holocomplex as it converts to an active transcribing enzyme. On this basis, by blocking the critical step of TBP modification, transcriptional initiation is effectively abolished even on structurally distinct core promoters.
Collapse
Affiliation(s)
- José M Morachis
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
12
|
Hsu LC, Durrant DE, Huang CC, Chi NW, Baruchello R, Rondanin R, Rullo C, Marchetti P, Grisolia G, Simoni D, Lee RM. Development of hemiasterlin derivatives as potential anticancer agents that inhibit tubulin polymerization and synergize with a stilbene tubulin inhibitor. Invest New Drugs 2011; 30:1379-88. [PMID: 21655917 DOI: 10.1007/s10637-011-9702-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/02/2011] [Indexed: 11/30/2022]
Abstract
Hemiasterlins are cytotoxic tripeptides with antimicrotubule activity originally isolated from marine sponges. We have developed new hemiasterlin derivatives BF65 and BF78 that are highly potent to induce cancer cell death in the low nanomolar range. Examination of their mechanisms of cell cycle arrest and disruption of microtubules revealed an unusual characteristic in addition to anti-tubulin effect. Immunofluorescence staining revealed that A549 lung carcinoma cells treated with BF65 or BF78 exhibited both monopolar and multipolar mitotic spindles. Centrosomes were separated with short spindle microtubules in cells with multipolar spindles. In vitro tubulin polymerization assay confirmed that both BF65 and BF78 were highly potent to inhibit tubulin polymerization. These two compounds induced the formation of monoastral spindles suggesting that they might be inhibitors of mitotic kinesins such as KSP/Eg5. However, kinetic measurement of microtubule activated kinesin ATPase activity demonstrated that unlike the positive control monastrol, neither BF65 nor BF78 suppressed KSP/Eg5 activity. Hence the effect may be a variant form of tubulin inhibition. Similar to vinca alkaloids, BF compounds synergized with a colchicine site microtubule inhibitor stilbene 5c both in vitro and in vivo, which may provide a potential drug combination in the future clinical application.
Collapse
Affiliation(s)
- Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, 12F, No 1, Section 1, Jen-Ai Road, Taipei 10051, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Traumatic spinal cord injury (SCI) evokes a complex cascade of events with initial mechanical damage leading to secondary injury processes that contribute to further tissue loss and functional impairment. Growing evidence suggests that the cell cycle is activated following SCI. Up-regulation of cell cycle proteins after injury appears to contribute not only to apoptotic cell death of postmitotic cells, including neurons and oligodendrocytes, but also to post-traumatic gliosis and microglial activation. Inhibition of key cell cycle regulatory pathways reduces injury-induced cell death, as well as microglial and astroglial proliferation both in vitro and in vivo. Treatment with cell cycle inhibitors in rodent SCI models prevents neuronal cell death and reduces inflammation, as well as the surrounding glial scar, resulting in markedly reduced lesion volumes and improved motor recovery. Here we review the effects of SCI on cell cycle pathways, as well as the therapeutic potential and mechanism of action of cell cycle inhibitors for this disorder.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
14
|
Sun Y, Li YX, Wu HJ, Wu SH, Wang YA, Luo DZ, Liao DJ. Effects of an Indolocarbazole-Derived CDK4 Inhibitor on Breast Cancer Cells. J Cancer 2011; 2:36-51. [PMID: 21234300 PMCID: PMC3020360 DOI: 10.7150/jca.2.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 01/06/2011] [Indexed: 01/13/2023] Open
Abstract
Introduction: Cyclin D1 (D1) binds to cyclin-dependent kinases (CDK) 4 or 6 to form a holoenzyme that phosphorylates the Rb protein to promote cell cycle progression from G1 to S phase. Therefore, targeting CDK4/6 may be a good strategy for chemotherapy of cancer. We performed a proof-of-principle study to determine the effect of Naphtho [2, 1-α] pyrrolo [3, 4-c] carbazole-5, 7 (6H, 12H)-dione (NPCD), a novel CDK4 inhibitor, on breast cancer cell lines. Methods: NPCD was synthesized and purified to over 99% purity verified by HPLC. MCF7, MB231, MCF15, T47D and GI101Ap human breast cancer cells were analyzed for the efficacy of NPCD with MTT and clonogenic assays, with FACS and staining for ethidium bromide and acridine orange for cell death and cell cycle profile. Western blot, reverse transcription and PCR were used for studies of gene expression, and co-immunoprecipitation for protein-complex formation. Results: MTT assay showed that NPCD caused growth arrest and apoptosis of MCF7, MDA-MB231, T47D, MCF15 and GI101Ap cells with an IC50 ranging between 3 to 8 µM given as a single dose. The growth arrest persisted for many days after cessation of the treatment, as shown in a clonogenic assay. NPCD could induce or reduce the D1 and CDK4 protein levels, depending on the cell line, but this effect was not correlated with its efficacy. Phosphorylation of D1 at Thr286 was decreased but it unexpectedly did not correlate with the change in D1 level in the cell lines studied. Phosphorylation of the Rb protein was decreased as expected whereas the p27kip1 protein level was decreased unexpectedly. Protein levels of p21cip1, CDK2 and cyclin E were also decreased in some, but not all, of the cell lines, whereas the mRNA levels of D1, CDK4, cyclin E, CDK2, p27kip1 and p21cip1 were increased in different cell lines. Conclusions: NPCD can cause long-lasting growth arrest and cell death of breast cancer cell lines at an IC50 of 3-8 µM. Decreased phosphorylation of Rb by D1-CDK4/6 and decreased p27kip1 protein level may be part of the underlying mechanism.
Collapse
Affiliation(s)
- Yuan Sun
- 1. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, Xue D. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. J Cancer Res Clin Oncol 2010; 136:897-903. [PMID: 19941148 DOI: 10.1007/s00432-009-0731-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 01/07/2023]
Abstract
PURPOSE In a recent publication, we have shown that dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin, inhibits growth of pancreatic cancer cells in vitro and in vivo mediated by its anti-proliferative and pro-apoptotic effects. As it has been shown that the apoptosis might be induced due to cell cycle arrest, and that transcriptional factor nuclear factor-kappa B (NF-kappaB) plays vital roles in the apoptosis of pancreatic cancer cells, we extend our study to investigate the effects of DHA on cell cycle progression and NF-kappaB activity in pancreatic cancer cells to further reveal the anticancer effects of DHA on pancreatic cancer. METHODS Cell cycle progression was determined by propidium iodide staining and flow cytometry. Changes in the expression of cell cycle-associated proteins were detected using Western blot analysis. Measurement of NF-kappaB activity was performed with immunoblot analyzing the nuclear protein expression of NF-kappaB/p65 and ELISA detecting the NF-kappaB DNA-binding activity. RESULTS The treatment with DHA resulted in a dose-dependent G(0)/G(1) cell cycle arrest and regulated the expression of some cyclins, cdks and cdk inhibitors that involved in the G(0)/G(1) cell cycle progression such as cyclin E, cdk2, cdk4 and p27(Kip1) in pancreatic cancer BxPC-3 and AsPC-1 cells. The translocation and DNA-binding activity of NF-kappaB were inhibited in DHA-treated cells in a dose-dependent manner, indicated the inactivation effects of DHA in pancreatic cancer cells. CONCLUSIONS Together with our previous observations, our data show that DHA induces cell cycle arrest and apoptosis in pancreatic cancer cells, and this effect might be due to inhibition of NF-kappaB signaling. We suggest that DHA could be developed as a novel agent against pancreatic cancer.
Collapse
Affiliation(s)
- Hua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, 150001 Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang W, Bu B, Xie M, Zhang M, Yu Z, Tao D. Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 2009; 89:1-17. [DOI: 10.1016/j.pneurobio.2009.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 01/19/2023]
|
17
|
Abstract
Although the concepts of secondary injury and neuroprotection after neurotrauma are experimentally well supported, clinical trials of neuroprotective agents in traumatic brain injury or spinal cord injury have been disappointing. Most strategies to date have used drugs directed toward a single pathophysiological mechanism that contributes to early necrotic cell death. Given these failures, recent research has increasingly focused on multifunctional (i.e., multipotential, pluripotential) agents that target multiple injury mechanisms, particularly those that occur later after the insult. Here we review two such approaches that show particular promise in experimental neurotrauma: cell cycle inhibitors and small cyclized peptides. Both show extended therapeutic windows for treatment and appear to share at least one important target.
Collapse
Affiliation(s)
- Bogdan Stoica
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | |
Collapse
|
18
|
Zhu QS, Ren W, Korchin B, Lahat G, Dicker A, Lu Y, Mills G, Pollock RE, Lev D. Soft tissue sarcoma cells are highly sensitive to AKT blockade: a role for p53-independent up-regulation of GADD45 alpha. Cancer Res 2008; 68:2895-903. [PMID: 18413758 DOI: 10.1158/0008-5472.can-07-6268] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AKT signaling pathway is activated in soft tissue sarcoma (STS). However, AKT blockade has not yet been studied as a potential targeted therapeutic approach. Here, we examined the in vitro and in vivo effects of AKT inhibition in STS cells. Western blot analysis was used to evaluate the expression of AKT pathway components and the effect of AKT stimulation and inhibition on their phosphorylation. Cell culture assays were used to assess the effect of AKT blockade (using a phosphatidylinositol 3-kinase inhibitor and a specific AKT inhibitor) on STS cell growth, cell cycle, and apoptosis. Oligoarrays were used to determine gene expression changes in response to AKT inhibition. Reverse transcription-PCR was used for array validation. Specific small inhibitory RNA was used to knockdown GADD45 alpha. Human STS xenografts in nude mice were used for in vivo studies, and immunohistochemistry was used to assess the effect of treatment on GADD45 alpha expression, proliferation, and apoptosis. Multiple STS cell lines expressed activated AKT. AKT inhibition decreased STS downstream target phosphorylation and growth in vitro; G(2) cell cycle arrest and apoptosis were also observed. AKT inhibition induced GADD45 alpha mRNA and protein expression in all STS cells treated independent of p53 mutational status. GADD45 alpha knockdown attenuated the G(2) arrest induced by AKT inhibition. In vivo, AKT inhibition led to decreased STS xenograft growth. AKT plays a critical role in survival and proliferation of STS cells. Modulation of AKT kinase activity may provide a novel molecularly based strategy for STS-targeted therapies.
Collapse
Affiliation(s)
- Quan-Sheng Zhu
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ma Y, Cress WD. Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity. Oncogene 2007; 26:3532-40. [PMID: 17173074 PMCID: PMC2128050 DOI: 10.1038/sj.onc.1210143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 09/06/2006] [Accepted: 10/14/2006] [Indexed: 11/08/2022]
Abstract
In spite of the fact that cyclin-dependent kinase (cdk) inhibiting drugs are potent transcriptional repressors, we discover that p57 (Kip2, CDKN1C) transcription is significantly upregulated by three small molecule cdk inhibitors, including BMS-387032. Treatment of MDA-MB-231 breast cancer cells with BMS-387032 led to a stabilization of the E2F1 protein that was accompanied by significant increases in the p57 mRNA and protein. This increase did not occur in an E2F1-deficient cell line. An E2F1-estrogen receptor fusion protein activated the endogenous p57 promoter in response to hydroxytamoxifen treatment in the presence of cycloheximide. Luciferase constructs driven by the p57 promoter verified that upregulation of p57 mRNA by BMS-387032 is transcriptional and dependent on E2F-binding sites in the promoter. Expression of exogenous p57 significantly decreased the fraction of cells in S phase. Furthermore, p57-deficient MDA-MB-231 cell lines were significantly more sensitive to BMS-387032-induced apoptosis than controls. The results presented in this manuscript demonstrate that small molecule cdk inhibitors transcriptionally activate p57 dependent upon E2F1 and that this activation in turn serves to limit E2F1's death-inducing activity.
Collapse
Affiliation(s)
- Y Ma
- Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, College of Medicine, Tampa, FL 33612-9497, USA
| | | |
Collapse
|
20
|
Dai Y, Khanna P, Chen S, Pei XY, Dent P, Grant S. Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood 2007; 109:4415-4423. [PMID: 17264303 PMCID: PMC1885487 DOI: 10.1182/blood-2006-09-047076] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 01/20/2007] [Indexed: 02/05/2023] Open
Abstract
Interactions between UCN-01 and HMG-CoA reductase inhibitors (ie, statins) have been examined in human leukemia and myeloma cells. Exposure of U937 and U266 cells to minimally toxic concentrations of UCN-01 and various statins (eg, lovastatin, simvastatin, or fluvastatin) dramatically increased mitochondrial dysfunction, caspase activation, and apoptosis. Comparable effects were observed in other leukemia and myeloma cell lines as well as in primary acute myeloid leukemia (AML) blasts but not in normal hematopoietic cells. Potentiation of UCN-01 lethality by lovastatin was associated with disruption of Ras prenylation and activation. These events were significantly attenuated by farnesyl pyrophosphate (FPP) but not by geranylgeranyl pyrophosphate (GGPP), implicating perturbations in farnesylation rather than geranylgeranylation in synergistic interactions. Coexposure to statins and UCN-01 resulted in inactivation of ERK1/2 and Akt, accompanied by JNK activation. U266 cells ectopically expressing JNK1-APF, a dominant negative JNK1 mutant, displayed significantly reduced susceptibility to lovastatin/UCN-01-mediated lethality. Moreover, transfection of U266 cells with constitutively activated H-Ras (Q61L) attenuated ERK1/2 inactivation and dramatically diminished the lethality of this regimen. Collectively, these findings indicate that HMG-CoA reductase inhibitors act through a Ras farnesylation-associated mechanism to induce signaling perturbations, particularly prevention of Ras and ERK1/2 activation, in UCN-01-treated cells, resulting in the synergistic induction of cell death.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Massey Cancer Center, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
21
|
Byrnes KR, Faden AI. Role of Cell Cycle Proteins in CNS Injury. Neurochem Res 2007; 32:1799-807. [PMID: 17404835 DOI: 10.1007/s11064-007-9312-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/08/2007] [Indexed: 12/29/2022]
Abstract
Following trauma or ischemia to the central nervous system (CNS), there is a marked increase in the expression of cell cycle-related proteins. This up-regulation is associated with apoptosis of post-mitotic cells, including neurons and oligodendrocytes, both in vitro and in vivo. Cell cycle activation also induces proliferation of astrocytes and microglia, contributing to the glial scar and microglial activation with release of inflammatory factors. Treatment with cell cycle inhibitors in CNS injury models inhibits glial scar formation and neuronal cell death, resulting in substantially decreased lesion volumes and improved behavioral recovery. Here we critically review the role of cell cycle pathways in the pathophysiology of experimental stroke, traumatic brain injury and spinal cord injury, and discuss the potential of cell cycle inhibitors as neuroprotective agents.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Neuroscience, Georgetown University Medical Center, Room EP16A, New Research Building, 3970 Reservoir Rd., NW, Washington, DC 20057, USA.
| | | |
Collapse
|
22
|
Jessen BA, Lee L, Koudriakova T, Haines M, Lundgren K, Price S, Nonomiya J, Lewis C, Stevens GJ. Peripheral white blood cell toxicity induced by broad spectrum cyclin-dependent kinase inhibitors. J Appl Toxicol 2007; 27:133-42. [PMID: 17211896 DOI: 10.1002/jat.1177] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclin-dependent kinases (CDKs) have been pursued for more than a decade for the treatment of cancer. CDK inhibitors are expected to slow the rate of cell division and potentially increase the apoptotic fraction of rapidly dividing cells. Although CDK activity is often increased in tumors, normal dividing tissues are also susceptible to the cytostatic and cytotoxic effects of CDK inhibitor action. Therefore the typical toxicity profile associated with cytotoxic anti-cancer therapy, bone marrow suppression and gastrointestinal toxicity, is expected with CDK inhibitors. Bone marrow toxicity and the ensuing delayed peripheral leukocyte suppression often limit the therapeutic application of cytotoxic anticancer drugs. Here we characterize an unusual bone marrow-independent acute toxicity toward leukocytes from broad spectrum CDK inhibitors in monkeys and rodents. The potential combination of both acute and delayed immunosuppression would likely further restrict the application of these particular compounds. Since the cells targeted were non-proliferating, it was assumed that the toxicity was not driven by the intended pharmacological mechanism thereby facilitating the development of a testing strategy to identify compounds with a reduced potential for acute leukocyte toxicity. This testing strategy resulted in a CDK inhibitor void of bone marrow-independent leukocyte toxicity that is currently undergoing clinical testing.
Collapse
Affiliation(s)
- Bart A Jessen
- Pfizer Global Research and Development, La Jolla Laboratories, 10777 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bagella L, Sun A, Tonini T, Abbadessa G, Cottone G, Paggi MG, De Luca A, Claudio PP, Giordano A. A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo. Oncogene 2006; 26:1829-39. [PMID: 17043661 DOI: 10.1038/sj.onc.1209987] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One strategy in the development of anticancer therapeutics has been to arrest malignant proliferation through inhibition of the enzymatic activity of cyclin-dependent kinases (cdks), which are key regulatory molecules of the cell cycle. Over the past few years, numerous compounds with remarkable cdk inhibitory activity have been studied in cancer therapy, although it is very difficult to point out the best cdk to target. An excellent candidate appears to be cdk2, whose alteration is a pathogenic hallmark of tumorigenesis. The small molecule described in our study showed an inhibitory effect on the kinase activity of cdk2, a significant growth arrest observed in a colony formation assay and a reduction in the size of the tumor in nude mice, thus suggesting its potential role as a promising new type of mechanism-based antitumor drug, also for the treatment of hyperproliferative disorders.
Collapse
Affiliation(s)
- L Bagella
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre of Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guo J, Zhou AW, Fu YC, Verma UN, Tripathy D, Frenkel EP, Becerra CR. Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil. Acta Pharmacol Sin 2006; 27:1375-81. [PMID: 17007746 DOI: 10.1111/j.1745-7254.2006.00421.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Clinical treatment of solid tumors with docetaxel, flavopiridol, or 5-fluorouracil (5-FU) often encounters undesirable side effects and drug resistance. This study aims to evaluate the potential role of combination therapy with docetaxel, flavopiridol, or 5-FU in modulating chemosensitivity and better understand how they might be used clinically. METHODS HCT116 colon cancer cells were treated with docetaxel, flavopiridol, and 5-FU in several different administrative schedules in vitro, either sequentially or simultaneously. Cell survival was measured by MTT assay. The activity of caspase-3 was determined by caspase-3 assays and the soft agar colony assay was used to test the colony formation of HCT116 cells in soft agar. We also established xenograft models to extend in vitro observations to an in vivo system. RESULTS The maximum cytotoxicity was found when human colon cancer HCT116 cells were treated with docetaxel for 1 h followed by flavopiridol for 24 h and 5-FU for another 24 h. This sequential combination therapy not only inhibits tumor cell growth more strongly compared to other combination therapies but also significantly reduces colony formation in soft agar and augments apoptosis of HCT116 cells. Sequencing of docetaxel followed 1 h later by flavopiridol, followed 24 h later by 5-FU in xenograft models, also resulted in delayed tumor growth and higher survival rate. CONCLUSION These results highlight the importance of an administrative schedule when combining docetaxel with flavopiridol and 5-FU, providing a rationale explanation for its development in clinical trials.
Collapse
Affiliation(s)
- Jun Guo
- Harold C. Simmons Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Price PM, Yu F, Kaldis P, Aleem E, Nowak G, Safirstein RL, Megyesi J. Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol 2006; 17:2434-42. [PMID: 16914540 PMCID: PMC1698291 DOI: 10.1681/asn.2006020162] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapeutics, but its usefulness is limited by its toxicity to normal tissues, including cells of the kidney proximal tubule. The purpose of these studies was to determine the mechanism of cisplatin cytotoxicity. It was shown in vivo that cisplatin administration induces upregulation of the gene for the p21 cyclin-dependent kinase (cdk) inhibitor in kidney cells. This protein is a positive effector on the fate of cisplatin-exposed renal tubule cells in vivo and in vitro; adenoviral transduction of p21 completely protected proximal tubule cells from cisplatin toxicity. Herein is reported that cdk2 inhibitory drugs protect kidney cells in vivo and in vitro, that transduction of kidney cells in vitro with dominant-negative cdk2 also protected, and that cdk2 knockout cells were resistant to cisplatin. The cdk2 knockout cells regained cisplatin sensitivity after transduction with wild-type cdk2. It is concluded that cisplatin cytotoxicity depends on cdk2 activation and that the mechanism of p21 protection is by direct inhibition of cdk2. This demonstrated the involvement of a protein that previously was associated with cell-cycle progression with pathways of apoptosis. It also was demonstrated that this pathway of cisplatin-induced cell death can be interceded in vivo to prevent nephrotoxicity.
Collapse
Affiliation(s)
- Peter M Price
- Department of Medicine, University of Arkansas for Medical Sciences, VA Medical Center-Research Section, 4300 West 7th Street, Room GC 147, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gao N, Kramer L, Rahmani M, Dent P, Grant S. The three-substituted indolinone cyclin-dependent kinase 2 inhibitor 3-[1-(3H-imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516) kills human leukemia cells via down-regulation of Mcl-1 through a transcriptional mechanism. Mol Pharmacol 2006; 70:645-55. [PMID: 16672643 DOI: 10.1124/mol.106.024505] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of lethality of the three-substituted indolinone and putatively selective cyclin-dependent kinase (CDK)2 inhibitor 3-[1-(3H-imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1,3-dihydro-indol-2-one (SU9516) were examined in human leukemia cells. Exposure of U937 and other leukemia cells to SU9516 concentrations > or =5 microM rapidly (i.e., within 4 h) induced cytochrome c release, Bax mitochondrial translocation, and apoptosis in association with pronounced down-regulation of the antiapoptotic protein Mcl-1. These effects were associated with inhibition of phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase (Pol) II on serine 2 but not serine 5. Reverse transcription-polymerase chain reaction analysis revealed pronounced down-regulation of Mcl-1 mRNA levels in SU9516-treated cells. Similar results were obtained in Jurkat and HL-60 leukemia cells. Furthermore, cotreatment with the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocked SU9516-mediated Mcl-1 down-regulation, implicating proteasomal degradation in diminished expression of this protein. Ectopic expression of Mcl-1 largely blocked SU9516-induced cytochrome c release, Bax translocation, and apoptosis, whereas knockdown of Mcl-1 by small interfering RNA potentiated SU9516 lethality, confirming the functional contribution of Mcl-1 down-regulation to SU9516-induced cell death. It is noteworthy that SU9516 treatment resulted in a marked increase in reactive oxygen species production, which was diminished, along with cell death, by the free radical scavenger N-acetylcysteine (NAC). We were surprised to find that NAC blocked SU9516-mediated inhibition of RNA Pol II CTD phosphorylation on serine 2, reductions in Mcl-1 mRNA levels, and Mcl-1 down-regulation. Together, these findings suggest that SU9516 kills leukemic cells through inhibition of RNA Pol II CTD phosphorylation in association with oxidative damage and down-regulation of Mcl-1 at the transcriptional level, culminating in mitochondrial injury and cell death.
Collapse
Affiliation(s)
- Ning Gao
- Division of Hematology/Oncology, MCV Station Box 230, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
27
|
Mundinger GS, Espina V, Liotta LA, Petricoin EF, Calvo KR. Clinical phosphoproteomic profiling for personalized targeted medicine using reverse phase protein microarray. Target Oncol 2006. [DOI: 10.1007/s11523-006-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Appert-Collin A, Hugel B, Levy R, Niederhoffer N, Coupin G, Lombard Y, André P, Poindron P, Gies JP. Cyclin dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. Life Sci 2006; 79:484-90. [PMID: 16530228 DOI: 10.1016/j.lfs.2006.01.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/16/2006] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Recent evidence suggests that apoptosis in post-mitotic neurons involves an aborted attempt of cells to re-enter the cell cycle which is characterized by increased expression of cyclins, such as cyclin D1, prior to death. However, such cyclins activation prior to apoptotic cell death remains controversial. Many neurological disorders are characterized by neuronal loss, particularly amyotrophic lateral sclerosis (ALS). ALS is a motoneuronal degenerative condition in which motoneuron loss could be due to an inappropriate return of these cells in the cell cycle. In the present study, we observed that deprivation of neurotrophic factor in purified motoneuron cultures induces an apoptotic pathway. After neurotrophic factor withdrawal, DAPI (4,6-diamidin-2-phenylindol dichlorohydrate) staining revealed the presence of nuclear condensation, DNA fragmentation, and perinuclear apoptotic body. Similarly, release of apoptotic microparticles and activation of caspases-3 and -9 were observed within the first hours following neurotrophic factor withdrawal. Next, we tested whether inhibition of cell cycle-related cyclin-dependent kinases (cdks) can prevent motoneuronal cell death. We showed that three cdk inhibitors, olomoucine, roscovitine and flavopiridol, suppress the death of motoneurons. Finally, we observed early increases in cyclin D1 and cyclin E expression after withdrawal of neurotrophic factors. These findings support the hypothesis that after removal of trophic support, post-mitotic neuronal cells die due to an attempt to re-enter the cell cycle in an uncoordinated and inappropriate manner.
Collapse
Affiliation(s)
- A Appert-Collin
- Université Louis Pasteur, Faculté de Pharmacie, UMR7175-LC1, BP 24, F-67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The same doses of medication cause considerable heterogeneity in efficacy and toxicity across human populations. Genetic factors are thought to represent important determinants of drug efficacy and toxicity. Pharmacogenetics focuses on the prediction of the response of tumor and normal tissue to standard therapy by genetic profiling and, thereby, to select the most appropriate medication at optimal doses for each individual patient. In the present review, we discuss the relevance of single nucleotide polymorphisms (SNP) in genes, whose gene products act upstream of the actual drug target sites, that is, drug transporters and drug metabolizing phase I and II enzymes, or downstream of them, that is, apoptosis-regulating genes and chemokines. SNPs in relevant genes, which encode for proteins that interact with anticancer drugs, were also considered, that is, enzymes of DNA biosynthesis and metabolism, DNA repair enzymes, and proteins of the mitotic spindle. A significant body of evidence supports the concept of predicting drug efficacy and toxicity by SNP genotyping. As the efficacy of cancer chemotherapy, as well as the drug-related toxicity in normal tissues is multifactorial in nature, sophisticated approaches such as genome-wide linkage analyses and integrate drug pathway profiling may improve the predictive power compared with genotyping of single genes. The implementation of pharmacogenetics into clinical routine diagnostics including genotype-based recommendations for treatment decisions and risk assessment for practitioners represents a challenge for the future.
Collapse
Affiliation(s)
- Thomas Efferth
- German Cancer Research Center, M070, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Van Schaeybroeck S, Karaiskou-McCaul A, Kelly D, Longley D, Galligan L, Van Cutsem E, Johnston P. Epidermal Growth Factor Receptor Activity Determines Response of Colorectal Cancer Cells to Gefitinib Alone and in Combination with Chemotherapy. Clin Cancer Res 2005; 11:7480-9. [PMID: 16243822 DOI: 10.1158/1078-0432.ccr-05-0328] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Up to now, there have been no established predictive markers for response to epidermal growth factor receptor (EGFR/HER1/erbB1) inhibitors alone and in combination with chemotherapy in colorectal cancer. To identify markers that predict response to EGFR-based chemotherapy regimens, we analyzed the response of human colorectal cancer cell lines to the EGFR-tyrosine kinase inhibitor, gefitinib (Iressa, AstraZeneca, Wilmington, DE), as a single agent and in combination with oxaliplatin and 5-fluorouracil (5-FU). EXPERIMENTAL DESIGN Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and crystal violet cell viability assays and analyzed by ANOVA. Apoptosis was measured by flow cytometry, poly(ADP-ribose) polymerase, and caspase 3 cleavage. EGFR protein phosphorylation was detected by Western blotting. RESULTS Cell lines displaying high constitutive EGFR phosphorylation (a surrogate marker for EGFR activity) were more sensitive to gefitinib. Furthermore, in cell lines exhibiting low constitutive EGFR phosphorylation, an antagonistic interaction between gefitinib and oxaliplatin was observed, whereas in cell lines with high basal EGFR phosphorylation, the interaction was synergistic. In addition, oxaliplatin treatment increased EGFR phosphorylation in those cell lines in which oxaliplatin and gefitinib were synergistic but down-regulated EGFR phosphorylation in those lines in which oxaliplatin and gefitinib were antagonistic. In contrast to oxaliplatin, 5-FU treatment increased EGFR phosphorylation in all cell lines and this correlated with synergistic decreases in cell viability when 5-FU was combined with gefitinib. CONCLUSIONS These results suggest that phospho-EGFR levels determine the sensitivity of colorectal cancer cells to gefitinib alone and that chemotherapy-mediated changes in phospho-EGFR levels determine the nature of interaction between gefitinib and chemotherapy.
Collapse
Affiliation(s)
- Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, North Ireland
| | | | | | | | | | | | | |
Collapse
|
31
|
Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:160-70. [PMID: 16185941 DOI: 10.1016/j.bbapap.2005.07.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent protein kinases (CDKs) are attractive targets for drug discovery and efforts have led to the identification of novel CDK selective inhibitors in the development of treatments for cancers, neurological disorders, and infectious diseases. More recently, they have become the focus of rational drug design programs for the development of new antimalarial agents. CDKs are valid targets as they function as essential regulators of cell growth and differentiation. To date, several CDKs have been characterized from the genome of the malaria-causing protozoan Plasmodium falciparum. Our approach employs experimental and virtual screening methodologies to identify and refine chemical inhibitors of the parasite CDK Pfmrk, a sequence homologue of human CDK7. Chemotypes of Pfmrk inhibitors include the purines, quinolinones, oxindoles, and chalcones, which have sub-micromolar IC50 values against the parasite enzyme, but not the human CDKs. Additionally, we have developed and validated a pharmacophore, based on Pfmrk inhibitors, which contains two hydrogen bond acceptor functions and two hydrophobic sites, including one aromatic ring hydrophobic site. This pharmacophore has been exploited to identify additional compounds that demonstrate significant inhibitory activity against Pfmrk. A molecular model of Pfmrk designed using the crystal structure of human CDK7 highlights key amino acid substitutions in the ATP binding pocket. Molecular modeling and docking of the active site pocket with selective inhibitors has identified possible receptor-ligand interactions that may be responsible for inhibitor specificity. Overall, the unique biochemical characteristics associated with this protein, to include distinctive active site amino acid residues and variable inhibitor profiles, distinguishes the Pfmrk drug screen as a paradigm for CDK inhibitor analysis in the parasite.
Collapse
Affiliation(s)
- Jeanne A Geyer
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Ft. Detrick, MD 20910, USA.
| | | | | |
Collapse
|
32
|
Takahashi T, Yamasaki F, Sudo T, Itamochi H, Adachi S, Tamamori-Adachi M, Ueno NT. Cyclin A–associated kinase activity is needed for paclitaxel sensitivity. Mol Cancer Ther 2005; 4:1039-46. [PMID: 16020661 DOI: 10.1158/1535-7163.mct-04-0282] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Cyclin A–associated kinases, such as cyclin-dependent kinase 2 (CDK2), participate in regulating cellular progression from G1 to S to G2, and CDK2 has also been implicated in the transition to mitosis. The antitumor properties of CDK inhibitors, alone or in combination with taxanes, are currently being examined in clinical trials. Here, we examined whether the activity of kinases associated with cyclin A (such as CDK2) is important in determining cellular sensitivity to paclitaxel, a taxane and mitotic inhibitor used in chemotherapy for breast and ovarian cancer. We used adenoviral suppression or overexpression to manipulate the expression of CDK2 and cyclin A in one breast cancer and three ovarian cancer cell lines with different sensitivities to paclitaxel and assessed protein expression, kinase activity, cell cycle distribution, and sensitivity to paclitaxel. Transfection of a dominant-negative (DN)-CDK2 evoked resistance to paclitaxel by preventing cellular progression to mitosis through loss of CDK1 activity. Reexpression of wild-type CDK2 in DN-CDK2–transfected cancer cells restored CDK2 activity but not paclitaxel sensitivity. However, expression of cyclin A in DN-CDK2–transfected cells restored their sensitivity to paclitaxel. Although CDK2 activity was not directly involved in paclitaxel sensitivity, cyclin A–associated kinases did up-regulate CDK1 via phosphorylation. We conclude that cyclin A–associated kinase activity is required for these cells to enter mitosis and undergo paclitaxel-induced cell death. Combining taxane chemotherapy with any drug targeting cyclin A–associated kinases (e.g., pure CDK2 inhibitors) should be done with caution, if at all, because of the potential for enhancing taxane resistance.
Collapse
Affiliation(s)
- Takeshi Takahashi
- Department of Blood and Marrow Transplantation, Unit 448, The University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 114:513-21. [PMID: 15609335 DOI: 10.1002/ijc.20785] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Melanoma accounts for only about 4% of all skin cancer cases but most of skin cancer-related deaths. Standard systemic therapies such as interferon (IFN) have not been adequately effective in the management of melanoma. Therefore, novel approaches are needed for prevention and treatment of this disease. Chemoprevention by naturally occurring agents present in food and beverages has shown benefits in certain cancers including nonmelanoma skin cancers. Here, employing 2 human melanoma cell lines (A-375 amelanotic malignant melanoma and Hs-294T metastatic melanoma) and normal human epidermal melanocytes (NHEM), we studied the antiproliferative effects of epigallocatechin-3-gallate (EGCG), the major polyphenolic antioxidant present in green tea. EGCG treatment was found to result in a dose-dependent decrease in the viability and growth of both melanoma cell lines. Interestingly, at similar EGCG concentrations, the normal melanocytes were not affected. EGCG treatment of the melanoma cell lines resulted in decreased cell proliferation (as assessed by Ki-67 and PCNA protein levels) and induction of apoptosis (as assessed cleavage of PARP, TUNEL assay and JC-1 assay). EGCG also significantly inhibited the colony formation ability of the melanoma cells studied. EGCG treatment of melanoma cells resulted in a downmodulation of anti-apoptotic protein Bcl2, upregulation of proapoptotic Bax and activation of caspases -3, -7 and -9. Furthermore, our data demonstrated that EGCG treatment resulted in a significant, dose-dependent decrease in cyclin D1 and cdk2 protein levels and induction of cyclin kinase inhibitors (ckis) p16INK4a, p21WAF1/CIP1 and p27KIP1. Our data suggest that EGCG causes significant induction of cell cycle arrest and apoptosis of melanoma cells that is mediated via modulations in the cki-cyclin-cdk network and Bcl2 family proteins. Thus, EGCG, alone or in conjunction with current therapies, could be useful for the management of melanoma.
Collapse
Affiliation(s)
- Minakshi Nihal
- Department of Dermatology, University of Wisconsin and William S. Middleton Veterans Memorial Hospital, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma is the B-cell lymphoma with the worst prognosis. Until now, no standard treatment has resulted in cure. Improvements in understanding of the disease are needed to advance therapeutic efforts. RECENT FINDINGS Pathology and immunohistochemistry can identify the subset of patients with the worse prognosis. New data suggest that at least a subset of mantle cell lymphoma cases have undergone some form of antigene selection, and particular types of Ig gene rearrangement seem to give a better prognosis. The cell cycle, the ATM, gene and the nuclear factor kappaB pathways are the main targets of the genetic abnormalities occurring in mantle cell lymphoma: new genomic and expression data have been recently published. Unfortunately, this progress has not yet brought any major improvements in therapeutic approaches, which still remain highly unsatisfactory. Autologous and allogenic bone marrow transplantations appear to be the only current treatments that might improve the outcome of patients with PMCL. New additional treatment modalities are currently under investigation. SUMMARY This review summarizes all the most recent data published on the biology and treatment of mantle cell lymphoma.
Collapse
MESH Headings
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 14/genetics
- Gene Expression Regulation, Leukemic/genetics
- Gene Rearrangement, B-Lymphocyte/genetics
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/therapy
- Prognosis
- Signal Transduction/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Francesco Bertoni
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| | | | | |
Collapse
|
35
|
Blasco F, Peñuelas S, Cascalló M, Hernández JL, Alemany C, Masa M, Calbó J, Soler M, Nicolás M, Pérez-Torras S, Gómez A, Tarrasón G, Noé V, Mazo A, Ciudad CJ, Piulats J. Expression profiles of a human pancreatic cancer cell line upon induction of apoptosis search for modulators in cancer therapy. Oncology 2004; 67:277-90. [PMID: 15557790 DOI: 10.1159/000081329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/11/2004] [Indexed: 01/13/2023]
Abstract
We analyzed the differential gene expression in the pancreatic cancer cell line NP-18 upon induction of apoptosis caused by cyclin-dependent kinase inhibition triggered by either overexpression of the tumor suppressor gene p16(INK4A)using an adenoviral construction or incubation with the chemical inhibitors, roscovitine or olomoucine. Screening was performed using cDNA arrays from Clontech that allowed the determination of the expression of 1,176 genes specifically related with cancer. The analysis was carried out using the Atlas Image 2.01 (Clontech) and GeneSpring 4.2 (Silicon Genetics) softwares. Among the differentially expressed genes, we chose for further validation histone deacetylase 1 (HDAC1), von Hippel Lindau and decorin as upregulated genes, and Sp1, hypoxia-inducible factor-1 alpha and DNA primase as downregulated genes. The changes in the expression of these genes to mRNA were validated by quantitative RT-PCR and the final translation into protein by Western blot analysis. Inhibition of HDAC activity, Sp1 binding and DNA primase expression led to an increase in the level of apoptosis, both in parental cells and in doxorubicin-resistant cells. Therefore, these proteins could constitute possible targets to develop modulators in cancer chemotherapy that would increase or restore apoptosis.
Collapse
Affiliation(s)
- F Blasco
- Biomedical Research Laboratory, Merck Farma y Química, S.A., Science Park of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pei XY, Dai Y, Grant S. The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism. Mol Cancer Ther 2004; 3:1513-1524. [PMID: 15634644 DOI: 10.1158/1535-7163.1513.3.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between the cyclin-dependent kinase inhibitor flavopiridol and the small-molecule Bcl-2 antagonist HA14-1 were examined in human multiple myeloma cells. Whereas individual treatment of U266 myeloma cells with 10 micromol/L HA14-1 or 100 nmol/L flavopiridol had little effect, exposure of cells to flavopiridol (6 hours) followed by HA14-1 (18 hours) resulted in a striking increase in mitochondrial dysfunction (cytochrome c and Smac/DIABLO release; loss of mitochondrial membrane potential), activation of the caspase cascade, apoptosis, and diminished clonogenic survival. Similar findings were noted in other myeloma cell lines (e.g., MM.1S, RPMI8226, and NCI-H929) as well as in those resistant to dexamethasone and cytotoxic agents (e.g., MM.1R, 8226/Dox40, and 8226/LR5). Combined exposure to flavopiridol and HA14-1 was associated with down-regulation of Mcl-1 and Bcl-xL, Bid cleavage, and mitochondrial translocation of Bax. Flavopiridol/HA14-1-treated cells also exhibited a pronounced activation of Jun NH2-terminal kinase, a modest activation of p38 mitogen-activated protein kinase, and down-regulation of cyclin D1. Flavopiridol/HA14-1-induced apoptosis was associated with a marked increase in reactive oxygen species generation; moreover,both events were attenuated by the antioxidant N-acetyl-l-cysteine. Finally, in contrast to dexamethasone, flavopiridol/HA14-1-induced lethality was unaffected by exogenous interleukin-6 or insulin-like growth factor-I. Together, these findings indicate that flavopiridol and the small-molecule Bcl-2 antagonist HA14-1 cooperate to trigger oxidant injury, mitochondrial dysfunction, caspase activation, and apoptosis in human multiple myeloma cells and suggest that this approach may warrant further evaluation as an antimyeloma strategy.
Collapse
Affiliation(s)
- Xin-Yan Pei
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
37
|
Abstract
Over the past decade and a half, the paradigm has emerged of cardiac hypertrophy and ensuing heart failure as fundamentally a problem in signal transduction, impinging on the altered expression or function of gene-specific transcription factors and their partners, which then execute the hypertrophic phenotype. Strikingly, RNA polymerase II (RNAPII) is itself a substrate for two protein kinases—the cyclin-dependent kinases Cdk7 and Cdk9—that are activated by hypertrophic cues. Phosphorylation of RNAPII in the carboxyl terminal domain (CTD) of its largest subunit controls a number of critical steps subsequent to transcription initiation, among them enabling RNAPII to overcome its stalling in the promoter-proximal region and to engage in efficient transcription elongation. Here, we summarize our current understanding of the RNAPII-directed protein kinases in cardiac hypertrophy. Cdk9 activation is essential in tissue culture for myocyte enlargement and sufficient in transgenic mice for hypertrophy to occur and yet is unrelated to the “fetal” gene program that is typical of pathophysiological heart growth. Although this trophic effect of Cdk9 appears benign superficially, pathophysiological levels of Cdk9 activity render myocardium remarkably susceptible to apoptotic stress. Cdk9 interacts adversely with Gq-dependent pathways for hypertrophy, impairing the expression of numerous genes for mitochondrial proteins, and, in particular, suppressing master regulators of mitochondrial biogenesis and function, perioxisome proliferator-activated receptor-γ coactivator-1 (PGC-1), and nuclear respiratory factor-1 (NRF-1). Given the dual transcriptional roles of Cdk9 in hypertrophic growth and mitochondrial dysfunction, we suggest the potential usefulness of Cdk9 as a target in heart failure drug discovery.
Collapse
Affiliation(s)
- Motoaki Sano
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|