1
|
Lan Y, Peng Q, Shen J, Liu H. Elucidating common biomarkers and pathways of osteoporosis and aortic valve calcification: insights into new therapeutic targets. Sci Rep 2024; 14:27827. [PMID: 39537712 PMCID: PMC11560947 DOI: 10.1038/s41598-024-78707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteoporosis and aortic valve calcification, prevalent in the elderly, have unclear common mechanisms. This study aims to uncover them through bioinformatics analysis. METHODS Microarray data from GEO was analyzed for osteoporosis and aortic valve calcification. Differential expression analysis identified co-expressed genes. SVM-RFE and random forest selected key genes. GO and KEGG enrichment analyses were performed. Immunoinfiltration and GSEA analyses were subsequently performed. NetworkAnalyst analyzed microRNAs/TFs. HERB predicted drugs, and molecular docking assessed targeting potential. RESULTS Thirteen genes linked to osteoporosis and aortic valve calcification were identified. TNFSF11, KYNU, and HLA-DMB emerged as key genes. miRNAs, TFs, and drug predictions offered therapeutic insights. Molecular docking suggested 17-beta-estradiol and vitamin D3 as potential treatments. CONCLUSION The study clarifies shared mechanisms of osteoporosis and aortic valve calcification, identifies biomarkers, and highlights TNFSF11, KYNU, and HLA-DMB. It also suggests 17-beta-estradiol and vitamin D3 as potential effective treatments.
Collapse
Affiliation(s)
- Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Pan J, Lin PC, Gong SC, Wang Z, Cao R, Lv Y, Zhang K, Wang L. Feasibility study of opportunistic osteoporosis screening on chest CT using a multi-feature fusion DCNN model. Arch Osteoporos 2024; 19:98. [PMID: 39414670 PMCID: PMC11485148 DOI: 10.1007/s11657-024-01455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
A multi-feature fusion DCNN model for automated evaluation of lumbar vertebrae L1 on chest combined with clinical information and radiomics permits estimation of volumetric bone mineral density for evaluation of osteoporosis. PURPOSE To develop a multi-feature deep learning model based on chest CT, combined with clinical information and radiomics to explore the feasibility in screening for osteoporosis based on estimation of volumetric bone mineral density. METHODS The chest CT images of 1048 health check subjects were retrospectively collected as the master dataset, and the images of 637 subjects obtained from a different CT scanner were used for the external validation cohort. The subjects were divided into three categories according to the quantitative CT (QCT) examination, namely, normal group, osteopenia group, and osteoporosis group. Firstly, a deep learning-based segmentation model was constructed. Then, classification models were established and selected, and then, an optimal model to build bone density value prediction regression model was chosen. RESULTS The DSC value was 0.951 ± 0.030 in the testing dataset and 0.947 ± 0.060 in the external validation cohort. The multi-feature fusion model based on the lumbar 1 vertebra had the best performance in the diagnosis. The area under the curve (AUC) of diagnosing normal, osteopenia, and osteoporosis was 0.992, 0.973, and 0.989. The mean absolute errors (MAEs) of the bone density prediction regression model in the test set and external testing dataset are 8.20 mg/cm3 and 9.23 mg/cm3, respectively, and the root mean square errors (RMSEs) are 10.25 mg/cm3 and 11.91 mg/cm3, respectively. The R-squared values are 0.942 and 0.923, respectively. The Pearson correlation coefficients are 0.972 and 0.965. CONCLUSION The multi-feature fusion DCNN model based on only the lumbar 1 vertebrae and clinical variables can perform bone density three-classification diagnosis and estimate volumetric bone mineral density. If confirmed in independent populations, this automated opportunistic chest CT evaluation can help clinical screening of large-sample populations to identify subjects at high risk of osteoporotic fracture.
Collapse
Affiliation(s)
- Jing Pan
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Radiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Peng-Cheng Lin
- School of Electrical Engineering, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shen-Chu Gong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Ze Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Rui Cao
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuan Lv
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Kun Zhang
- School of Electrical Engineering, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Lin Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Shi S, Duan H, Ou X. Targeted delivery of anti-osteoporosis therapy: Bisphosphonate-modified nanosystems and composites. Biomed Pharmacother 2024; 175:116699. [PMID: 38705129 DOI: 10.1016/j.biopha.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoporosis (OP) constitutes a significant health concern that profoundly affects individuals' quality of life. Bisphosphonates, conventional pharmaceuticals widely employed in OP treatment, encounter limitations related to inadequate drug targeting and a short effective duration, thereby compromising their clinical efficacy. The burgeoning field of nanotechnology has witnessed the development and application of diverse functional nanosystems designed for OP treatment. Owing to the bone tissue affinity of bisphosphonates, these nanosystems are modified to address shortcomings associated with traditional drug delivery. In this review, we explore the potential of bisphosphonate-modified nanosystems as a promising strategy for addressing osteoporotic conditions. With functional modification, these nanosystems exhibit a targeted and reversible effect on osteoporotic remodeling, presenting a promising solution to enhance precision in drug delivery. The synthesis methods, physicochemical properties, and in vitro/in vivo performance of bisphosphonate-modified nanosystems are comprehensively examined in this review. Through a thorough analysis of recent advances and accomplishments in this field, we aim to provide insights into the potential applications and future directions of bisphosphonate-modified nanosystems for targeted and reversible osteoporotic remodeling.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Honghao Duan
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
4
|
Sima Y, Li J, Xu L, Xiao C, Li L, Wang L, Chen Y. Quercetin antagonized advanced glycated end products induced apoptosis and functional inhibition of fibroblasts from the prolapsed uterosacral ligament. Drug Discov Ther 2024; 17:415-427. [PMID: 38044121 DOI: 10.5582/ddt.2023.01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The altered behaviors and functions of pelvic floor fibroblasts are pathophysiological changes of pelvic organ prolapse (POP). Our previous study showed that advanced glycated end products (AGEs) accumulated in the pelvic tissues of POP and induced fibroblast apoptosis. The study was designed to investigate whether quercetin antagonize AGEs-induced apoptosis and functional inhibition of fibroblasts. The uptake of 5-ethynyl-2'-deoxyuridine (EdU) was evaluated for cell proliferation. Flow cytometric analysis was applied for cell apoptosis. Intracellular reactive oxygen species (ROS) content was determined by the fluorescence of dichlorofluorescein (DCF). The contractility of fibroblasts was measured by collagen gel contraction assay. The expressions of extracellular matrix (ECM) related genes and the expression of miR-4429 and caspase-3 were quantified by qPCR. The expressions of phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K), serine-threonine kinase (Akt), and phosphorylated Akt (p-Akt) were analyzed by Western Blot. The down-regulation of miR-4429 was achieved by cell transfection. Quercetin antagonized AGEs-induced apoptosis, proliferation inhibition, and ROS increase in fibroblasts. Quercetin did not alleviate AGEs-induced contractile impairment of fibroblasts. Quercetin reduced the gene expressions of lysyl oxidase like protein 1 (LOXL1)and matrix metallopeptidase 1 (MMP1), and increased the gene expressions of lysyl oxidase (LOX) and fibrillin 2 (FBN2) in fibroblasts. Quercetin reversed AGEs-induced upregulation of PTEN and downregulation of PI3K, P-Akt, and miR-4429 in fibroblasts. The inhibitory effect of quercetin on AGEs-induced fibroblast apoptosis was inhibited by downregulating the expression of miR-4429. In conclusion, quercetin antagonized AGEs-induced apoptosis and functional inhibition of fibroblasts from the prolapsed uterosacral ligament. And inhibiting AGEs-induced down-regulation of miR-4429/PTEN/PI3K/Akt pathway was the mechanism underlying the antagonistic effect of quercetin on AGEs-induced apoptosis.
Collapse
Affiliation(s)
- Yizhen Sima
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Junwei Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Leimei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chengzhen Xiao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Quadros KRS, Roza NAV, França RA, Esteves ABA, Barreto J, Dominguez WV, Furukawa LNS, Caramori JT, Sposito AC, de Oliveira RB. Advanced Glycation End Products and Bone Metabolism in Patients with Chronic Kidney Disease. JBMR Plus 2023; 7:e10727. [PMID: 36936360 PMCID: PMC10020922 DOI: 10.1002/jbm4.10727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
Advanced glycation end products (AGEs) accumulation may be involved in the progression of CKD-bone disorders. We sought to determine the relationship between AGEs measured in the blood, skin, and bone with histomorphometry parameters, bone protein, gene expression, and serum biomarkers of bone metabolism in patients with CKD stages 3 to 5D patients. Serum levels of AGEs were estimated by pentosidine, glycated hemoglobin (A1c), and N-carboxymethyl lysine (CML). The accumulation of AGEs in the skin was estimated from skin autofluorescence (SAF). Bone AGEs accumulation and multiligand receptor for AGEs (RAGEs) expression were evaluated by immunohistochemistry; bone samples were used to evaluate protein and gene expression and histomorphometric analysis. Data are from 86 patients (age: 51 ± 13 years; 60 [70%] on dialysis). Median serum levels of pentosidine, CML, A1c, and SAF were 71.6 pmol/mL, 15.2 ng/mL, 5.4%, and 3.05 arbitrary units, respectively. AGEs covered 3.92% of trabecular bone and 5.42% of the cortical bone surface, whereas RAGEs were expressed in 0.7% and 0.83% of trabecular and cortical bone surfaces, respectively. AGEs accumulation in bone was inversely related to serum receptor activator of NF-κB ligand/parathyroid hormone (PTH) ratio (R = -0.25; p = 0.03), and RAGE expression was negatively related to serum tartrate-resistant acid phosphatase-5b/PTH (R = -0.31; p = 0.01). Patients with higher AGEs accumulation presented decreased bone protein expression (sclerostin [1.96 (0.11-40.3) vs. 89.3 (2.88-401) ng/mg; p = 0.004]; Dickkopf-related protein 1 [0.064 (0.03-0.46) vs. 1.36 (0.39-5.87) ng/mg; p = 0.0001]; FGF-23 [1.07 (0.4-32.6) vs. 44.1 (6-162) ng/mg; p = 0.01]; and osteoprotegerin [0.16 (0.08-2.4) vs. 6.5 (1.1-23.7) ng/mg; p = 0.001]), upregulation of the p53 gene, and downregulation of Dickkopf-1 gene expression. Patients with high serum A1c levels presented greater cortical porosity and Mlt and reduced osteoblast surface/bone surface, eroded surface/bone surface, osteoclast surface/bone surface, mineral apposition rate, and adjusted area. Cortical thickness was negatively correlated with serum A1c (R = -0.28; p = 0.02) and pentosidine levels (R = -0.27; p = 0.02). AGEs accumulation in the bone of CKD patients was related to decreased bone protein expression, gene expression changes, and increased skeletal resistance to PTH; A1c and pentosidine levels were related to decreased cortical thickness; and A1c levels were related to increased cortical porosity and Mlt. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kélcia R. S. Quadros
- Nephrology Division, School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Noemi A. V. Roza
- Nephrology Division, School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Renata A. França
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - André B. A. Esteves
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Joaquim Barreto
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Wagner V. Dominguez
- Laboratory of Renal Pathophysiology, LIM‐16, Department of Internal Medicine, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Luzia N. S. Furukawa
- Laboratory of Renal Pathophysiology, LIM‐16, Department of Internal Medicine, School of MedicineUniversity of São PauloSão PauloBrazil
| | | | - Andrei C. Sposito
- Laboratory of Atherosclerosis and Vascular Biology, Cardiology DivisionSchool of Medical Sciences, University of Campinas (Unicamp)CampinasBrazil
| | - Rodrigo Bueno de Oliveira
- Nephrology Division, School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| |
Collapse
|
6
|
Nakano M, Uenishi K, Nakamura Y, Takahashi J, Shiraki M. Distinct dietary risk factors for incident osteoporotic fractures in early and late postmenopausal phase women. J Bone Miner Metab 2023; 41:227-238. [PMID: 36715763 DOI: 10.1007/s00774-023-01400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Available evidence on favorable nutritional factors for preventing osteoporosis remains controversial. Considering the recent increases in life expectancy, we investigated the relationship between incident osteoporotic fractures and dietary habits in early and late postmenopausal phase women. MATERIALS AND METHODS Subjects were Japanese postmenopausal outpatients recruited at a primary care institution in Nagano Prefecture (Nagano Cohort Study). Patients with critical or acute illness or secondary osteoporosis were not included in this study. In total, 1,071 participants were prospectively followed for a mean of 5.8 years. The cohort was divided into early (≤ 70 years) and late (> 70 years) postmenopausal phases based on median age. Dietary nutrient intake was estimated by the food frequency questionnaire method. According to baseline nutrient intake characteristics, we focused on protein/energy and Ca/NaCl intake ratios, which were also divided by the median values. RESULTS Kaplan-Meier plots revealed a significantly higher occurrence of fractures for the high protein/energy intake group in early postmenopausal subjects (P = 0.009), whereas the low Ca/NaCl intake group in late postmenopausal subjects exhibited a significantly earlier occurrence of fractures (P = 0.002). Multivariate Cox regression uncovered significant independent risks of higher protein/energy (HR 1.35; 95% CI 1.04-1.74) and lower Ca/NaCl (HR 0.79; 95% CI 0.63-0.99) intake ratios for incident osteoporotic fractures in the early and late postmenopausal cohorts, respectively. CONCLUSION Distinct dietary risk factors for osteoporotic fractures were identified in early and late postmenopausal phase women. Appropriate nutritional guidance according to patient age will be important for maintaining bone health and quality of life.
Collapse
Affiliation(s)
- Masaki Nakano
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kazuhiro Uenishi
- Division of Nutritional Physiology, Kagawa Nutrition University, Sakado, Saitama, 350-0288, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, Azumino, Nagano, 399-8101, Japan
| |
Collapse
|
7
|
Damrath JG, Metzger CE, Allen MR, Wallace JM. A novel murine model of combined insulin-dependent diabetes and chronic kidney disease has greater skeletal detriments than either disease individually. Bone 2022; 165:116559. [PMID: 36116758 PMCID: PMC9798592 DOI: 10.1016/j.bone.2022.116559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Diabetes and chronic kidney disease (CKD) consistently rank among the top ten conditions in prevalence and mortality in the United States. Insulin-dependent diabetes (IDD) and CKD each increase the risk of skeletal fractures and fracture-related mortality. However, it remains unknown whether these conditions have interactive end-organ effects on the skeleton. We hypothesized that combining IDD and CKD in mice would cause structural and mechanical bone alterations that are more deleterious compared to the single disease states. Female C57BL6/J mice were divided into four groups: 1) N = 12 Control (CTRL), 2) N = 10 Streptozotocin-induced IDD (STZ), 3) N = 10 Adenine diet-induced CKD (AD), and 4) N = 9 Combination (STZ+AD). STZ administration resulted in significantly higher blood glucose, HbA1c (p < 0.0001), and glucose intolerance (p < 0.0001). AD resulted in higher blood urea nitrogen (p = 0.0002) while AD, but not STZ+AD mice, had high serum parathyroid hormone (p < 0.0001) and phosphorus (p = 0.0005). STZ lowered bone turnover (p = 0.001). Trabecular bone volume was lowered by STZ (p < 0.0001) and increased by AD (p = 0.003). Tissue mineral density was lowered by STZ (p < 0.0001) and AD (p = 0.02) in trabecular bone but only lowered by STZ in cortical bone (p = 0.002). Cortical porosity of the proximal tibia was increased by AD, moment of inertia was lower in both disease groups, and most cortical properties were lower in all groups vs CTRL. Ultimate force, stiffness, toughness, and total displacement/strain were lowered by STZ and AD. Fracture toughness was lower by AD (p = 0.003). Importantly, Cohen's D indicated that STZ+AD most strongly lowered bone turnover and mechanical properties. Taken together, structural and material-level bone properties are altered by STZ and AD while their combination resulted in greater detriments, indicating that improving bone health in the combined disease state may require novel interventions.
Collapse
Affiliation(s)
- John G Damrath
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Corinne E Metzger
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Matthew R Allen
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Joseph M Wallace
- Indiana University-Purdue University at Indianapolis, Department of Biomedical Engineering, Indianapolis, IN, United States.
| |
Collapse
|
8
|
Wu X, Wang F, Cai X, Wang S. Characteristics and osteogenic mechanism of glycosylated peptides-calcium chelate. Curr Res Food Sci 2022; 5:1965-1975. [PMID: 36312881 PMCID: PMC9596740 DOI: 10.1016/j.crfs.2022.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Finding effective practical components to promote bone mineralization from the diet has become an effective method to regulate bone mass. In this study, peptides-calcium chelate derived from Crimson Snapper scales protein hydrolysates (CSPHs), and xylooligosaccharide (XOS)-peptides-calcium chelate prepared by transglutaminase (TGase) pathway, named CSPHs-Ca and XOS-CSPHs-Ca-TG, were used to explore the effects of glycosylation on their structural properties and osteogenic activity in vitro. Results showed that XOS-CSPHs-Ca-TG had better calcium phosphate crystallization inhibition activity with more unified structures than CSPHs-Ca, and could effectively maintain a stable calcium content in the gastrointestinal tract. Meanwhile, the glycosylated peptide-calcium chelate could accelerate the calcium transport efficiency in the Caco-2 cell monolayer, up to 3.54 folds of the control group. Moreover, XOS-CSPHs-Ca-TG exhibited prominent osteogenic effects by promoting the proliferation of MC3T3-E1 cells, increasing the secretion of osteogenic related factors, and accelerating the formation of intracellular mineralized nodules. RT-qPCR results further confirmed that this beneficial effect of XOS-CSPHs-Ca-TG was achieved by activating the Wnt/β-catenin signaling pathway. These results suggested that glycosylation might be a promising method for optimizing structural properties and osteogenic activity of peptide-calcium chelate.
Collapse
Affiliation(s)
- Xiaoping Wu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China,College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fangfang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China,Corresponding author.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China,Corresponding author.
| |
Collapse
|
9
|
Jiang J, Zhao C, Han T, Shan H, Cui G, Li S, Xie Z, Wang J. Advanced Glycation End Products, Bone Health, and Diabetes
Mellitus. Exp Clin Endocrinol Diabetes 2022; 130:671-677. [DOI: 10.1055/a-1861-2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAdvanced glycation end products (AGEs), the compounds resulting from the
non-enzymatic glycosylation between reducing sugars and proteins, are derived
from food or produced de novo. Over time, more and more endogenous and
exogenous AGEs accumulate in various organs such as the liver, kidneys, muscle,
and bone, threatening human health. Among these organs, bone is most widely
reported. AGEs accumulating in bone reduce bone strength by participating in
bone structure formation and breaking bone homeostasis by binding their
receptors to alter the proliferation, differentiation, and apoptosis of cells
involved in bone remodeling. In this review, we summarize the research about the
effects of AGEs on bone health and highlight their associations with bone health
in diabetes patients to provide some clues toward the discovery of new treatment
and prevention strategies for bone-related diseases caused by AGEs.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Tingting Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui
Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P. R.
China
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Guiyou Cui
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product
Safety, the Ministry of Education of China, Institutes of Agricultural Science
and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou,
225009, Jiangsu, P. R. China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui
Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P. R.
China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui
Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P. R.
China
| |
Collapse
|
10
|
Rochín-Hernández LS, Rochín-Hernández LJ, Flores-Cotera LB. Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review. Molecules 2022; 27:molecules27144469. [PMID: 35889349 PMCID: PMC9322667 DOI: 10.3390/molecules27144469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.
Collapse
Affiliation(s)
- Lory Sthephany Rochín-Hernández
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Lory Jhenifer Rochín-Hernández
- Department of Biomedicine and Molecular Biology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México City 07360, Mexico;
- Correspondence: ; Tel.: +55-13499526
| |
Collapse
|
11
|
Zhou W, Chen B, Shang J, Li R. Ferulic acid attenuates osteoporosis induced by glucocorticoid through regulating the GSK-3β/Lrp-5/ERK signalling pathways. Physiol Int 2021; 108:317-341. [PMID: 34529586 DOI: 10.1556/2060.2021.00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
Objective To evaluate in-vivo and in-vitro effects of ferulic acid (FA) on glucocorticoid-induced osteoarthritis (GIO) to establish its possible underlying mechanisms. Methods The effects of FA on cell proliferation, cell viability (MTT assay), ALP activity, and mineralization assay, and oxidative stress markers (ROS, SOD, GSH LDH and MDA levels) were investigated by MC3T3-E1 cell line. Wistar rats received standard saline (control group) or dexamethasone (GC, 2 mg-1 kg) or DEX+FA (50 and 100 mg-1 kg) orally for 8 weeks. Bone density, micro-architecture, bio-mechanics, bone turnover markers and histo-morphology were determined. The expression of OPG, RANKL, osteogenic markers, and other signalling proteins was assessed employing quantitative RT-PCR and Western blotting. Results The findings indicated the elevation of ALP mRNA expressions, osteogenic markers (Runx-2, OSX, Col-I, and OSN), and the β-Catenin, Lrp-5 and GSK-3β protein expressions. FA showed the potential to increase MC3T3-E1 cell differentiation, proliferation, and mineralization. FA increased oxidative stress markers (SOD, MDA, and GSH) while decreasing ROS levels and lactate dehydrogenase release in GIO rats. The OPG/RANKL mRNA expression ratio was increased by FA, followed by improved GSK-3β and ERK phosphorylation with enhanced mRNA expressions of Lrp-5 and β-catenin. Conclusion These findings showed that FA improved osteoblasts proliferation with oxidative stress suppression by controlling the Lrp-5/GSK-3β/ERK pathway in GIO, demonstrating the potential pathways involved in the mechanism of actions of FA in GIO therapy.
Collapse
Affiliation(s)
- Wei Zhou
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | - Bo Chen
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | - Jingbo Shang
- Spinal and Trauma's Ward, The Third People Hospital of Dalian, Dalian City, 116000, China
| | | |
Collapse
|
12
|
Mandair GS, Akhter MP, Esmonde-White FWL, Lappe JM, Bare SP, Lloyd WR, Long JP, Lopez J, Kozloff KM, Recker RR, Morris MD. Altered collagen chemical compositional structure in osteopenic women with past fractures: A case-control Raman spectroscopic study. Bone 2021; 148:115962. [PMID: 33862262 PMCID: PMC8259347 DOI: 10.1016/j.bone.2021.115962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Incidences of low-trauma fractures among osteopenic women may be related to changes in bone quality. In this blinded, prospective-controlled study, compositional and heterogeneity contributors of bone quality to fracture risk were examined. We hypothesize that Raman spectroscopy can differentiate between osteopenic women with one or more fractures (cases) from women without fractures (controls). This study involved the Raman spectroscopic analysis of cortical and cancellous bone composition using iliac crest biopsies obtained from 59-cases and 59-controls, matched for age (62.0 ± 7.5 and 61.7 ± 7.3 years, respectively, p = 0.38) and hip bone mineral density (BMD, 0.827 ± 0.083 and 0.823 ± 0.072 g/cm3, respectively, p = 0.57). Based on aggregate univariate case-control and odds ratio based logistic regression analyses, we discovered two Raman ratiometric parameters that were predictive of past fracture risk. Specifically, 1244/1268 and 1044/959 cm-1 ratios, were identified as the most differential aspects of bone quality in cortical cases with odds ratios of 0.617 (0.406-0.938 95% CI, p = 0.024) and 1.656 (1.083-2.534 95% CI, p = 0.020), respectively. Both 1244/1268 and 1044/959 cm-1 ratios exhibited moderate sensitivity (59.3-64.4%) but low specificity (49.2-52.5%). These results suggest that the organization of mineralized collagen fibrils were significantly altered in cortical cases compared to controls. In contrast, compositional and heterogeneity parameters related to mineral/matrix ratios, B-type carbonate substitutions, and mineral crystallinity, were not significantly different between cases and controls. In conclusion, a key outcome of this study is the significant odds ratios obtained for two Raman parameters (1244/1268 and 1044/959 cm-1 ratios), which from a diagnostic perspective, may assist in the screening of osteopenic women with suspected low-trauma fractures. One important implication of these findings includes considering the possibility that changes in the organization of collagen compositional structure plays a far greater role in postmenopausal women with osteopenic fractures.
Collapse
Affiliation(s)
- Gurjit S Mandair
- School of Dentistry, Departments of Biologic and Materials, University of Michigan, Ann Arbor, MI, USA.
| | | | | | - Joan M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Susan P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - William R Lloyd
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Long
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Lopez
- School of Dentistry, Departments of Biologic and Materials, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
14
|
Park E, Kim J, Jin HS, Choi CW, Choi TH, Choi S, Huh D, Jeong SY. Scopolin Attenuates Osteoporotic Bone Loss in Ovariectomized Mice. Nutrients 2020; 12:nu12113565. [PMID: 33233714 PMCID: PMC7699886 DOI: 10.3390/nu12113565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Bone remodeling is a renewal process regulated by bone synthesis (osteoblasts) and bone destruction (osteoclasts). A previous study demonstrated that Lycii radicis cortex (LRC) extract inhibited ovariectomized (OVX)-induced bone loss in mice. This study investigated the anti-osteoporotic effects of bioactive constituent(s) from the LRC extract. The effective compound(s) were screened, and a single compound, scopolin, which acts as a phytoalexin, was chosen as a candidate component. Scopolin treatment enhanced alkaline phosphatase activity and increased mineralized nodule formation in MC3T3-E1 pre-osteoblastic cells. However, osteoclast differentiation in primary-cultured monocytes was reduced by treatment with scopolin. Consistently, scopolin treatment increased osteoblast differentiation in the co-culture of monocytes (osteoclasts) and MC3T3-E1 (osteoblast) cells. Scopolin treatment prevented bone mineral density loss in OVX-induced osteoporotic mice. These results suggest that scopolin could be a therapeutic bioactive constituent for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea;
| | - Chun Whan Choi
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Korea;
| | - Tae Hyun Choi
- Department of Molecular Imaging, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Dam Huh
- Dongwoodang Pharmacy Co. Ltd., Yeongchen 38819, Korea;
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-4520
| |
Collapse
|
15
|
Huang L, Zhao Z, Wen J, Ling W, Miao Y, Wu J. Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review). Mol Med Rep 2020; 22:2155-2162. [PMID: 32705234 PMCID: PMC7411359 DOI: 10.3892/mmr.2020.11339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/22/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic organ prolapse (POP) is a common symptom of pelvic floor disorders which is characterized by the descent of the uterus, bladder or bowel from their normal anatomical position towards or through the vagina. Among the older population, the incidence of POP increases with age. It is becoming necessary to recognize that POP is a degenerative disease that is correlated with age. In recent years, studies have been performed to improve understanding of the cellular and molecular mechanisms concerning senescent fibroblasts in pelvic tissues, which contribute to the loss of structure supporting the pelvic organs. These mechanisms can be classified into gene and mitochondrial dysfunctions, intrinsic senescence processes, protein imbalance and alterations in stem cells. The present review provides an integrated overview of the current research and concepts regarding POP, in addition to discussing how fibroblasts can be targeted to evade the negative impact of senescence on POP. However, it is probable that other mechanisms that can also cause POP exist during cell senescence, which necessitates further research and provides new directions in the development of novel medical treatment, stem cell therapy and non-surgical interventions for POP.
Collapse
Affiliation(s)
- Liwei Huang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jirui Wen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wang Ling
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|
17
|
Chen NX, Srinivasan S, O’Neill K, Nickolas TL, Wallace JM, Allen MR, Metzger CE, Creecy A, Avin KG, Moe SM. Effect of Advanced Glycation End-Products (AGE) Lowering Drug ALT-711 on Biochemical, Vascular, and Bone Parameters in a Rat Model of CKD-MBD. J Bone Miner Res 2020; 35:608-617. [PMID: 31743501 PMCID: PMC9030558 DOI: 10.1002/jbmr.3925] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic disorder that affects blood measures of bone and mineral homeostasis, vascular calcification, and bone. We hypothesized that the accumulation of advanced glycation end-products (AGEs) in CKD may be responsible for the vascular and bone pathologies via alteration of collagen. We treated a naturally occurring model of CKD-MBD, the Cy/+ rat, with a normal and high dose of the AGE crosslink breaker alagebrium (ALT-711), or with calcium in the drinking water to mimic calcium phosphate binders for 10 weeks. These animals were compared to normal (NL) untreated animals. The results showed that CKD animals, compared to normal animals, had elevated blood urea nitrogen (BUN), PTH, FGF23 and phosphorus. Treatment with ALT-711 had no effect on kidney function or PTH, but 3 mg/kg lowered FGF23 whereas calcium lowered PTH. Vascular calcification of the aorta assessed biochemically was increased in CKD animals compared to NL, and decreased by the normal, but not high dose of ALT-711, with parallel decreases in left ventricular hypertrophy. ALT-711 (3 mg/kg) did not alter aorta AGE content, but reduced aorta expression of receptor for advanced glycation end products (RAGE) and NADPH oxidase 2 (NOX2), suggesting effects related to decreased oxidative stress at the cellular level. The elevated total bone AGE was decreased by 3 mg/kg ALT-711 and both bone AGE and cortical porosity were decreased by calcium treatment, but only calcium improved bone properties. In summary, treatment of CKD-MBD with an AGE breaker ALT-711, decreased FGF23, reduced aorta calcification, and reduced total bone AGE without improvement of bone mechanics. These results suggest little effect of ALT-711 on collagen, but potential cellular effects. The data also highlights the need to better measure specific types of AGE proteins at the tissue level in order to fully elucidate the impact of AGEs on CKD-MBD. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Neal X Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shruthi Srinivasan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kalisha O’Neill
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas L Nickolas
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Matthew R Allen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Keith G Avin
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, IN, USA
| | - Sharon M Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
18
|
Phosphorylation of porcine bone collagen peptide to improve its calcium chelating capacity and its effect on promoting the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Anti-Osteoporotic Effects of Combined Extract of Lycii Radicis Cortex and Achyranthes japonica in Osteoblast and Osteoclast Cells and Ovariectomized Mice. Nutrients 2019; 11:nu11112716. [PMID: 31717518 PMCID: PMC6893723 DOI: 10.3390/nu11112716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by low bone density and quality with high risk of bone fracture. Here, we investigated anti-osteoporotic effects of natural plants (Lycii Radicis Cortex (LRC) and Achyranthes japonica (AJ)) in osteoblast and osteoclast cells in vitro and ovariectomized mice in vivo. Combined LRC and AJ enhanced osteoblast differentiation and mineralized bone-forming osteoblasts by the up-regulation of bone metabolic markers (Alpl, Runx2 and Bglap) in the osteoblastic cell line MC3T3-E1. However, LRC and AJ inhibited osteoclast differentiation of monocytes isolated from mouse bone marrow. In vivo experiments showed that treatment of LRC+AJ extract prevented OVX-induced trabecular bone loss and osteoclastogenesis in an osteoporotic animal model. These results suggest that LRC+AJ extract may be a good therapeutic agent for the treatment and prevention of osteoporotic bone loss.
Collapse
|
20
|
Endo K, Takahata M, Sugimori H, Yamada S, Tadano S, Wang J, Todoh M, Ito YM, Takahashi D, Kudo K, Iwasaki N. Magnetic resonance imaging T1 and T2 mapping provide complementary information on the bone mineral density regarding cancellous bone strength in the femoral head of postmenopausal women with osteoarthritis. Clin Biomech (Bristol, Avon) 2019; 65:13-18. [PMID: 30928786 DOI: 10.1016/j.clinbiomech.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Since bone mass is not the only determinant of bone strength, there has been increasing interest in incorporating the bone quality into fracture risk assessments. We aimed to examine whether the magnetic resonance imaging (MRI) T1 or T2 mapping value could provide information that is complementary to bone mineral density for more accurate prediction of cancellous bone strength. METHODS Four postmenopausal women with hip osteoarthritis underwent 3.0-T MRI to acquire the T1 and T2 values of the cancellous bone of the femoral head before total hip arthroplasty. After the surgery, the excised femoral head was portioned into multiple cubic cancellous bone specimens with side of 5 mm, and the specimens were then subjected to microcomputed tomography followed by biomechanical testing. FINDINGS The T1 value positively correlated with the yield stress (σy) and collapsed stress (σc). The T2 value did not correlate with the yield stress, but it correlated with the collapsed stress and strength reduction ratio (σc/σy), which reflects the progressive re-fracture risk. Partial correlation coefficient analyses, after adjusting for the bone mineral density, showed a statistically significant correlation between T1 value and yield stress. The use of multiple coefficients of determination by least squares analysis emphasizes the superiority of combining the bone mineral density and the MRI mapping values in predicting the cancellous bone strength compared with the bone mineral density-based prediction alone. INTERPRETATION The MRI T1 and T2 values predict cancellous bone strength including the change in bone quality.
Collapse
Affiliation(s)
- Kaori Endo
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | - Satoshi Yamada
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shigeru Tadano
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jeffrey Wang
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Masahiro Todoh
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Department of Statistical Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 2019; 120:187-193. [PMID: 30394355 PMCID: PMC6360115 DOI: 10.1016/j.bone.2018.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Greater understanding of the determinants of skeletal fragility is highly sought due to the great burden that bone affecting diseases and fractures have on economies, societies and health care systems. Being a complex, hierarchical composite of collagen type-I and non-stoichiometric substituted hydroxyapatite, bone derives toughness from its organic phase. In this study, we tested whether early observations that a strong correlation between bone collagen integrity measured by thermomechanical methods and work to fracture exist in a more general and heterogeneous sampling of the population. Neighboring uniform specimens from an established, highly characterized and previously published collection of human cortical bone samples (femur mid-shaft) were decalcified in EDTA. Fifty-four of the original 62 donors were included (26 male and 28 females; ages 21-101 years; aging, osteoporosis, diabetes and cancer). Following decalcification, bone collagen was tested using hydrothermal isometric tension (HIT) testing in order to measure the collagen's thermal stability (denaturation temperature, Td) and network connectivity (maximum rate of isometric tension generation; Max.Slope). We used linear regression and general linear models (GLMs) with several explanatory variables to determine whether relationships between HIT parameters and generally accepted bone quality factors (e.g., cortical porosity, pentosidine content [pen], pyridinoline content [pyd]), age, and measures of fracture toughness (crack initiation fracture toughness, Kinit, and total energy release/dissipation rate evaluated at the point of unstable fast fracture, J-int) were significant. Bone collagen connectivity (Max.Slope) correlated well with the measures of fracture toughness (R2 = 24-35%), and to a lesser degree with bound water fraction (BW; R2 = 7.9%) and pore water fraction (PW; R2 = 9.1%). Significant correlations with age, apparent volumetric bone mineral density (vBMD), and mature enzymatic [pyd] and non-enzymatic collagen crosslinks [pen] were not detected. GLMs found that Max.Slope and vBMD (or BW), with or without age as additional covariate, all significantly explained the variance in Kinit (adjusted-R2 = 36.7-49.0%). Also, the best-fit model for J-int (adjusted-R2 = 35.7%) included only age and Max.Slope as explanatory variables with Max.Slope contributing twice as much as age. Max.Slope and BW without age were also significant predictors of J-int (adjusted-R2 = 35.5%). In conclusion, bone collagen integrity as measured by thermomechanical methods is a key factor in cortical bone fracture toughness. This study further demonstrates that greater attention should be paid to degradation of the overall organic phase, rather than a specific biomarker (e.g. [pen]), when seeking to understand elevated fracture rates in aging and disease.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mathilde Granke
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jeffry S Nyman
- Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
22
|
Burke M, Akens M, Kiss A, Willett T, Whyne C. Mechanical behavior of metastatic vertebrae are influenced by tissue architecture, mineral content, and organic feature alterations. J Orthop Res 2018; 36:3013-3022. [PMID: 29978906 DOI: 10.1002/jor.24105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
Diminished vertebral mechanical behavior with metastatic involvement is typically attributed to modified architecture and trabecular bone content. Previous work has identified organic and mineral phase bone quality changes in the presence of metastases, yet limited work exists on the potential influence of such tissue level modifications on vertebral mechanical characteristics. This work seeks to determine correlations between features of bone (structural and tissue level) and mechanical behavior in metastatically involved vertebral bone. It is hypothesized that tissue level properties (mineral and organic) will improve these correlations beyond architectural properties and BMD alone. Twenty-four female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic (N = 8) or mixed (osteolytic/osteoblastic, N = 7) metastases, respectively. Twenty-one days post-inoculation L1-L3 pathologic vertebral motion segments were excised and μCT imaged. 3D morphometric parameters and axial rigidity of the L2 vertebrae were quantified. Sequential loading and μCT imaging measured progression of failure, stiffness and peak force. Relationships between mechanical testing (whole bone and tissue-level) and tissue-level material property modifications with metastatic involvement were evaluated utilizing linear regression models. Osteolytic involvement reduced vertebral trabecular bone volume, structure, CT-derived axial rigidity, stiffness and failure force compared to healthy controls (N = 9). Mixed metastases demonstrated similar trends. Previously assessed collagen cross-linking and proline-based residues were correlated to mechanical behavior and improved the predictive ability of the regression models. Similarly, collagen organization improved predictive regression models for metastatic bone hardness. This work highlights the importance of both bone content/architecture and organic tissue-level features in characterizing metastatic vertebral mechanics. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3013-3022, 2018.
Collapse
Affiliation(s)
- Mikhail Burke
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, Ontario.,Techna, University Health Network, Toronto, Ontario
| | - Alex Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Science Program, Sunnybrook Research Institute, Toronto, Ontario
| | - Thomas Willett
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario
| | - Cari Whyne
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario.,Department of Surgery, University of Toronto, Toronto, Ontario
| |
Collapse
|
23
|
Godoy DJD, Chokboribal J, Pauwels R, Banlunara W, Sangvanich P, Jaroenporn S, Thunyakitpisal P. Acemannan increased bone surface, bone volume, and bone density in a calvarial defect model in skeletally-mature rats. J Dent Sci 2018; 13:334-341. [PMID: 30895142 PMCID: PMC6388811 DOI: 10.1016/j.jds.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background/purpose Acemannan, a β-(1-4)-acetylated polymannose extracted from Aloe vera gel, has been proposed as biomaterial for bone regeneration. The aim of this study was to investigate the effect of acemannan in calvarial defect healing. Materials and methods Acemannan was processed to freeze-dried sponge form and disinfected by UV irradiation. Thirty-five female Sprague-Dawley rats were used in the in vivo study. Seven-mm diameter mid-calvarial defects were created and randomly allocated into blood clot control (C), acemannan 1 mg (A1), 2 mg (A2), 4 mg (A4), and 8 mg (A8) groups (n = 7). After four weeks, the calvarial specimens were subjected to microcomputed tomography (microCT) and histopathological analysis. Results MicroCT revealed a significant increase in bone surface and bone volume in the A1 and A2 groups, and tissue mineral density in the A4 and A8 groups compared with the control group (p < 0.05). Histologically, the acemannan-treated groups had denser bone matrix compared with the control group. Conclusion Acemannan is an effective bioactive agent for bone regeneration, enhancing bone growth as assayed in two- and three-dimensions.
Collapse
Affiliation(s)
- Dyna Jeanne D Godoy
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Jaroenporn Chokboribal
- Department of Materials Science, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok, Thailand
| | - Ruben Pauwels
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sukanya Jaroenporn
- Primate Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pasutha Thunyakitpisal
- Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Develos Godoy DJ, Banlunara W, Jaroenporn S, Sangvanich P, Thunyakitpisal P. Collagen and mPCL-TCP scaffolds induced differential bone regeneration in ovary-intact and ovariectomized rats. Biomed Mater Eng 2018; 29:389-399. [PMID: 29578466 DOI: 10.3233/bme-181733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The data on biomaterial-mediated bone regeneration directly comparing commercially available scaffolds in aging and osteoporotic conditions remain sparse. OBJECTIVE To investigate the effects of an absorbable collagen sponge (ACS) and a medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold on calvarial defect healing in ovary-intact and ovariectomized rats. METHODS Forty-two, 5-month old female Sprague-Dawley rats were divided into sham (OVI) or ovariectomy (OVX) groups (n=21). When rats reached 6 months old, 7 mm diameter calvarial defects were created and treated, further dividing each group into blood clot control, mPCL-TCP, or ACS subgroups (n=7). After four weeks, the calvarial specimens were evaluated using micro-computed tomography for bone volume fraction (BVF), and histopathology. RESULTS The effects of ovariectomy were confirmed by changes in body, uterine, and vaginal weight, and osteopenia in the femur. A significant increase in BVF was observed in ACS-subgroups compared with their respective control groups (p<0.05). Histopathological analysis revealed no cellular inflammatory infiltrate in any group. Fibrous tissue encapsulated the mPCL-TCP, while the ACS was well-integrated with the bone matrix. The OVX groups presented more osteoid and enlarged marrow cavities compared with the OVI groups. CONCLUSION ACS scaffold enhanced calvarial bone regeneration in OVI and OVX rats after four weeks.
Collapse
Affiliation(s)
- Dyna Jeanne Develos Godoy
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Thailand.,Department of Materials Science, Faculty of Science, Chulalongkorn University, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Sukanya Jaroenporn
- Department of Biology, Faculty of Science, Chulalongkorn University, Thailand
| | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand
| | - Pasutha Thunyakitpisal
- Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Thailand
| |
Collapse
|
25
|
Illien-Juünger S, Palacio-Mancheno P, Kindschuh WF, Chen X, Sroga GE, Vashishth D, Iatridis JC. Dietary Advanced Glycation End Products Have Sex- and Age-Dependent Effects on Vertebral Bone Microstructure and Mechanical Function in Mice. J Bone Miner Res 2018; 33:437-448. [PMID: 29160901 PMCID: PMC5865476 DOI: 10.1002/jbmr.3321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022]
Abstract
Back pain is a leading cause of global disability that can arise from vertebral fracture and osteoporosis. Although poor general health and obesity are among the strongest risk factors for back pain, there is remarkably little known about how diet influences spinal diseases. Advanced glycation end-products (AGEs) are implicated in increased fracture risk, yet no studies investigated how dietary AGEs affect spinal health. We tested the hypothesis that high dietary AGE ingestion will diminish vertebral structure and function in a sex- and age-dependent manner. Female and male mice were fed low-AGE (L-AGE) or high-AGE (H-AGE) isocaloric diets for 6 and 18 months and multiple measurements of bone structure and function were taken. AGE levels in serum and cortical vertebrae were increased only for 6-month-old H-AGE female mice while blood glucose and body weight remained normal for all animals. When fed an H-AGE diet, 6-month-old female mice had inferior vertebral trabecular structure with decreased bone mineral density (BMD) and bone volume fraction. Biomechanical testing and analytical modeling further showed functional deterioration in 6-month-old H-AGE females with reduced shear and compression moduli, and maximum load to failure. At 18 months, H-AGE mice of both sexes had significant but small decreases in cortical BMD and thickness, yet functional biomechanical behaviors were not distinguishable from other aging changes. We conclude that an H-AGE diet, without diabetic or overweight conditions, diminished vertebral microstructure, mechanical behaviors, and fracture resistance in young female mice in a manner suggesting accelerated bone aging. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Svenja Illien-Juünger
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Palacio-Mancheno
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William F Kindschuh
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue Chen
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Banevicius M, Vilkeviciute A, Kriauciuniene L, Liutkeviciene R, Deltuva VP. The Association Between Variants of Receptor for Advanced Glycation End Products (RAGE) Gene Polymorphisms and Age-Related Macular Degeneration. Med Sci Monit 2018; 24:190-199. [PMID: 29317590 PMCID: PMC5771184 DOI: 10.12659/msm.905311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of blindness in people aged 65 years and older in developed countries. The pathogenesis of AMD has been linked to mechanisms involving inflammation, oxidative stress, and basal laminar deposit formation between retinal pigment epithelium (RPE) cells and the basal membrane, caused by advanced glycation end products (AGEs). AGEs are implicated in the pathogenesis of AMD through the AGE-and receptor for AGE (RAGE) interaction, which can be altered by polymorphisms of the RAGE gene. We examined RAGE rs1800624 and rs1800625 gene polymorphisms contributing to AMD development. Material/Methods The study enrolled 300 patients with early AMD, 300 patients with exudative AMD, and 800 healthy controls. The genotyping was carried out using the RT-PCR method. Results The analysis of two single nucleotide polymorphisms (SNPs) in the RAGE gene showed that rs1800624 was associated with a 1.6-fold decreased risk for exudative AMD under the dominant model after adjustment for age (OR=0.616; 95% CI: 0.394–0.963; p=0.034) and each copy of allele T at rs1800624 was associated with a 1.4-fold decreased risk for exudative AMD development under the additive model after adjustment for age (OR=0.701; 95% CI: 0.510–0.962; p=0.028). Analysis revealed that the rs1800625 allele G at rs1800625 was associated with a 1.5-fold increased risk for exudative AMD after adjustment for age (OR=1.545; 95% CI: 1.003–2.379; p=0.048). These results suggested that the allele G at rs1800625 was a risk-allele for exudative AMD development. In haplotype analysis, A-G haplotype was significantly more frequently observed in exudative AMD patients compared to healthy controls (3.3% versus 1.4%, p=0.035). Conclusions We revealed a significant association between RAGE gene rs1800624 and rs1800625 polymorphisms and AMD risk. We considered T allele at rs1800624 to be protective against AMD development, while allele G at rs1800625 was considered to be a marker of poor prognosis in AMD development.
Collapse
Affiliation(s)
- Mantas Banevicius
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Vytenis Pranas Deltuva
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
27
|
Gu C, Fu L, Yuan X, Liu Z. Promoting Effect of Pinostrobin on the Proliferation, Differentiation, and Mineralization of Murine Pre-osteoblastic MC3T3-E1 Cells. Molecules 2017; 22:molecules22101735. [PMID: 29035339 PMCID: PMC6151515 DOI: 10.3390/molecules22101735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Pinostrobin (PI), a natural flavonoid found in a variety of plants, is well known for its rich pharmacological activities. However, its osteogenic function remains unclear. The aim of this study is to evaluate the effect of PI on the proliferation, differentiation, and mineralization of murine pre-osteoblastic MC3T3-E1 cells in vitro using MTT, alkaline phosphatase (ALP) activity, the synthesis of collagen I (Col I) assay, and Von-Kossa staining, respectively. The expression of osteocalcin (OCN) mRNA in cells was detected by real-time PCR. The effect of PI on the differentiation of dexamethasone (DEX)-suppressed cells was also investigated. The results showed that PI greatly promoted the proliferation of MC3T3-E1 cells at 5–80 μg/mL (p < 0.05 or p < 0.01), and caused a significant elevation of ALP activity, Col I content, and mineralization of osteoblasts at 10–40 μg/mL (p < 0.05 or p < 0.01), and the expression levels of OCN gene were greatly upregulated after PI treatment (p < 0.01). Furthermore, PI could rescue the inhibition effect of cell differentiation induced by DEX. Taken together, these results indicated that PI could directly promote proliferation, differentiation, and mineralization of MC3T3-E1 cells and has potential for use as a natural treatment for osteoporosis.
Collapse
Affiliation(s)
- Chengbo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Linan Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Xiaohan Yuan
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin 150030, China.
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
28
|
Chen YS, Wang XJ, Feng W, Hua KQ. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways. Int J Mol Med 2017; 40:987-998. [PMID: 28849117 PMCID: PMC5593496 DOI: 10.3892/ijmm.2017.3097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
The present study was carried out to observe the impact of advanced glycation end products (AGEs) on collagen I derived from vaginal fibroblasts in the context of pelvic organ prolapse (POP), and explore the downstream effects on MAPK and nuclear factor-κB (NF-κB) signaling. After treating primary cultured human vaginal fibroblasts (HVFs) derived from POP and non-POP cases with AGEs, cell counting was carried out by sulforhodamine B. The expression levels of collagen I, receptor of advanced glycation end products (RAGE), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were detected by western blot analysis and PCR. RAGE, MAPK and NF-κB were molecularly and pharmacologically-inhibited by siRNA, SB203580 and PDTC, respectively, and downstream changes were detected by western blot analysis and PCR. Inhibition of HVF proliferation by AGEs occurred more readily in POP patients than that noted in the controls. After treatment with AGEs, collagen I levels decreased and MMP-1 levels increased to a greater extent in the HVFs of POP than that noted in the controls. During this same period, RAGE and TIMP-1 levels remained stable. Following treatment with AGEs and RAGE pathway inhibitors by siRNA, SB203580 and PDTC, the impact induced by AGEs was diminished. The inhibition of p-p38 MAPK alone was not able to block the promoting effect of AGEs on the levels of NF-κB, which suggests that AGEs may function through other pathways, as well as p-p38 MAPK. On the whole, this study demonstrated that AGEs inhibited HVF proliferation in POP cases and decreased the expression of collagen I through RAGE and/or p-p38 MAPK and NF-κB-p-p65 pathways. Our results provide important insights into the collagen I metabolism in HVFs in POP.
Collapse
Affiliation(s)
- Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Xiao-Juan Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Weiwei Feng
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, P.R. China
| | - Ke-Qin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
29
|
Altman-Singles AR, Jeong Y, Tseng WJ, de Bakker CMJ, Zhao H, Lott C, Robberts J, Qin L, Han L, Kim DG, Liu XS. Intermittent Parathyroid Hormone After Prolonged Alendronate Treatment Induces Substantial New Bone Formation and Increases Bone Tissue Heterogeneity in Ovariectomized Rats. J Bone Miner Res 2017; 32:1703-1715. [PMID: 28467646 PMCID: PMC5550334 DOI: 10.1002/jbmr.3165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/15/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis is often treated with bisphosphonates (eg, alendronate, [ALN]), but oversuppression of bone turnover by long-term bisphosphonate treatment may decrease bone tissue heterogeneity. Thus, alternate treatment strategies after long-term bisphosphonates are of great clinical interest. The objective of the current study was to determine the effect of intermittent parathyroid hormone (PTH) following 12 weeks of ALN (a bisphosphonate) treatment in 6-month-old, ovariectomized (OVX) rats on bone microarchitecture, bone remodeling dynamics, and bone mechanical properties at multiple length scales. By using in vivo μCT and 3D in vivo dynamic bone histomorphometry techniques, we demonstrated the efficacy of PTH following ALN therapy for stimulating new bone formation, and increasing trabecular thickness and bone volume fraction. In healthy bone, resorption and formation are coupled and balanced to sustain bone mass. OVX results in resorption outpacing formation, and subsequent bone loss and reduction in bone tissue modulus and tissue heterogeneity. We showed that ALN treatment effectively reduced bone resorption activity and regained the balance with bone formation, preventing additional bone loss. However, ALN treatment also resulted in significant reductions in the heterogeneity of bone tissue mineral density and tissue modulus. On the other hand, PTH treatment was able to shift the bone remodeling balance in favor of formation, with or without a prior treatment with ALN. Moreover, by altering the tissue mineralization, PTH alleviated the reduction in heterogeneity of tissue material properties induced by prolonged ALN treatment. Furthermore, switching to PTH treatment from ALN improved bone's postyield mechanical properties at both the whole bone and apparent level compared to ALN alone. The current findings suggest that intermittent PTH treatment should be considered as a viable treatment option for patients with prior treatment with bisphosphonates. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Allison R. Altman-Singles
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Yonghoon Jeong
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chantal M. J. de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, China
| | - Carina Lott
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juhanna Robberts
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Galliera E, Marazzi MG, Gazzaruso C, Gallotti P, Coppola A, Montalcini T, Pujia A, Corsi Romanelli MM. Evaluation of circulating sRAGE in osteoporosis according to BMI, adipokines and fracture risk: a pilot observational study. IMMUNITY & AGEING 2017. [PMID: 28630637 PMCID: PMC5471670 DOI: 10.1186/s12979-017-0097-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Osteoporosis is a systemic metabolic disease based on age-dependent imbalance between the rates of bone formation and bone resorption. Recent studies on the pathogenesis of this disease identified that bone remodelling impairment, at the base of osteoporotic bone fragility, could be related to protein glycation, in association to oxidative stress. The glycation reactions lead to the generation of glycation end products (AGEs) which, in turn, accumulates into bone, where they binds to the receptor for AGE (RAGE). The aim of this study is to investigate the potential role of circulating sRAGE in osteoporosis, in particular evaluating the correlation of sRAGE with the fracture risk, in association with bone mineral density, the fracture risk marker FGF23, and lipid metabolism. Results Circulating level of soluble RAGE correlate with osteopenia and osteoporosis level. Serum sRAGE resulted clearly associated on the one hand to bone fragility and, on the other hand, with BMI and leptin. sRAGE is particularly informative because serum sRAGE is able to provide, as a single marker, information about both the aspects of osteoporotic disease, represented by bone fragility and lipid metabolism. Conclusions The measure serum level of sRAGE could have a potential diagnostic role in the monitoring of osteoporosis progression, in particular in the evaluation of fracture risk, starting from the prevention and screening stage, to the osteopenic level to osteoporosis.
Collapse
Affiliation(s)
- Emanuela Galliera
- Department of Biomedical, Surgical and Oral Science, Università degli Studi di Milano, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Monica Gioia Marazzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Carmine Gazzaruso
- Internal Medicin, Diabetes, Vascular and Endocrine-Mtabolical Disease Unit and the Centre of Applied Clinical Research (Ce.R.C.A), Clinical Institute Betato Matteo, Vigevano, Italy
| | - Pietro Gallotti
- Internal Medicin, Diabetes, Vascular and Endocrine-Mtabolical Disease Unit and the Centre of Applied Clinical Research (Ce.R.C.A), Clinical Institute Betato Matteo, Vigevano, Italy
| | - Adriana Coppola
- Internal Medicin, Diabetes, Vascular and Endocrine-Mtabolical Disease Unit and the Centre of Applied Clinical Research (Ce.R.C.A), Clinical Institute Betato Matteo, Vigevano, Italy
| | - Tiziana Montalcini
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, Catanzaro, Italy
| | - Massimiliano M Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C SMEL-1 Patologia Clinica IRCCS Policlinico San Donato, San Donato, Milan, Italy
| |
Collapse
|
31
|
Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, Tang SY, Vashishth D, Busse B. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone 2017; 97:243-251. [PMID: 28109917 PMCID: PMC5443987 DOI: 10.1016/j.bone.2017.01.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Aging and many disease conditions, most notably diabetes, are associated with the accumulation of non-enzymatic cross-links in the bone matrix. The non-enzymatic cross-links, also known as advanced glycation end products (AGEs), occur at the collagen tissue level, where they are associated with reduced plasticity and increased fracture risk. In this study, Fourier-transform infrared (FTIR) imaging was used to detect spectroscopic changes associated with the formation of non-enzymatic cross-links in human bone collagen. Here, the non-enzymatic cross-link profile was investigated in one cohort with an in vitro ribose treatment as well as another cohort with an in vivo bisphosphonate treatment. With FTIR imaging, the two-dimensional (2D) spatial distribution of collagen quality associated with non-enzymatic cross-links was measured through the area ratio of the 1678/1692cm-1 subbands within the amide I peak, termed the non-enzymatic crosslink-ratio (NE-xLR). The NE-xLR increased by 35% in the ribation treatment group in comparison to controls (p<0.005), with interstitial bone tissue being more susceptible to the formation of non-enzymatic cross-links. Ultra high-performance liquid chromatography, fluorescence microscopy, and fluorometric assay confirm a correlation between the non-enzymatic cross-link content and the NE-xLR ratio in the control and ribated groups. High resolution FTIR imaging of the 2D bone microstructure revealed enhanced accumulation of non-enzymatic cross-links in bone regions with higher tissue age (i.e., interstitial bone). This non-enzymatic cross-link ratio (NE-xLR) enables researchers to study not only the overall content of AGEs in the bone but also its spatial distribution, which varies with skeletal aging and diabetes mellitus and provides an additional measure of bone's propensity to fracture.
Collapse
Affiliation(s)
- F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, 22529 Hamburg, Germany.
| | - E A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center, 22529 Hamburg, Germany.
| | - G M Campbell
- Institute of Biomechanics, Hamburg University of Technology, 21073 Hamburg, Germany.
| | - G E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - K Püschel
- Department of Forensic Medicine, University Medical Center, 22529 Hamburg, Germany.
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center, 22529 Hamburg, Germany.
| | - S Y Tang
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, MO, USA.
| | - D Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center, 22529 Hamburg, Germany.
| |
Collapse
|
32
|
Pentosidine as a Biomarker for Poor Bone Quality and Elevated Fracture Risk. BIOMARKERS IN BONE DISEASE 2017. [DOI: 10.1007/978-94-007-7693-7_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Burke MV, Atkins A, Akens M, Willett TL, Whyne CM. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix. J Orthop Res 2016; 34:2126-2136. [PMID: 27027407 DOI: 10.1002/jor.23248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Metastatic involvement in vertebral bone diminishes the mechanical integrity of the spine; however minimal data exist on the potential impact of metastases on the intrinsic material characteristics of the bone matrix. Thirty-four (34) female athymic rats were inoculated with HeLa (N = 17) or Ace-1 (N = 17) cancer cells lines producing osteolytic or mixed (osteolytic and osteoblastic) metastases, respectively. A maximum of 21 days was allowed between inoculation and rat sacrifice for vertebrae extraction. High performance liquid chromatography (HPLC) was utilized to determine modifications in collagen-I parameters such as proline hydroxylation and the formation of specific enzymatic and non-enzymatic (pentosidine) cross-links. Raman spectroscopy was used to determine relative changes in mineral crystallinity, mineral carbonation, mineral/collagen matrix ratio, collagen quality ratio, and proline hydroxylation. HPLC results showed significant increase in the formation of pentosidine and decrease in the formation of the enzymatic cross-link deoxy-pryridinoline within osteolytic bone compared to mixed bone. Raman results showed decreased crystallinity, increased carbonation, and collagen quality (aka 1660/1690 sub-band) ratio with osteolytic bone compared to mixed bone and healthy controls along with an observed increase in proline hydroxylation with metastatic involvement. The mineral/matrix ratio decreased in both osteolytic and mixed bone compared to healthy controls. Quantifying modifications within the intrinsic characteristics of bone tissue will provide a foundation to assess the impact of current therapies on the material behavior of bone tissue in the metastatic spine and highlight targets for the development of new therapeutics and approaches for treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2126-2136, 2016.
Collapse
Affiliation(s)
- Mikhail V Burke
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario, M4N 3M5, Canada.,Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada
| | - Ayelet Atkins
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario, M4N 3M5, Canada
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Techna, University Health Network, Toronto, Ontario, Canada
| | - Thomas L Willett
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Cari M Whyne
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario, M4N 3M5, Canada.,Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Woodside M, Willett TL. Elastic-plastic fracture toughness and rising JR-curve behavior of cortical bone is partially protected from irradiation-sterilization-induced degradation by ribose protectant. J Mech Behav Biomed Mater 2016; 64:53-64. [PMID: 27479894 DOI: 10.1016/j.jmbbm.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/03/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study tested the hypothesis that pre-treating cortical bone with ribose would protect the rising fracture resistance curve behavior and crack initiation fracture toughness of both bovine and human cortical bone from the degrading effects of γ-irradiation sterilization. MATERIALS AND METHODS A ribose pre-treatment (1.8 M for bovine, and 1.2 M for human, in PBS at 60 °C for 24 h) was applied to single-edge notched bending fracture specimens prior to sterilization with a 33 kGy dose of γ-irradiation. Fracture resistance curves were generated with a single specimen method using an optical crack length measurement technique. The effect of the treatment on overall fracture resistance behavior, crack initiation fracture toughness, and tearing modulus was compared with non-irradiated and conventionally irradiation sterilized controls. Hydrothermal isometric tension testing was used to examine collagen network connectivity and thermal stability to explore relationships between collagen network quality and fracture resistance. RESULTS The ribose pre-treatment successfully protected the crack growth initiation fracture toughness of bovine and human bone by 32% and 63%, respectively. The rising JR-curve behavior was also partially protected. Furthermore, collagen connectivity and thermal stability followed similar patterns to those displayed by fracture toughness. CONCLUSIONS This paper demonstrates that the fracture toughness of irradiation-sterilized bone tissue can be partially protected with a ribose pre-treatment. This new approach shows potential for the production and clinical application of sterilized allografts with improved mechanical performance and durability.
Collapse
Affiliation(s)
- Mitchell Woodside
- Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Musculoskeletal Research Laboratory, Mount Sinai Hospital - Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Thomas L Willett
- Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Musculoskeletal Research Laboratory, Mount Sinai Hospital - Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Division of Orthopaedic Surgery, Mount Sinai Hospital, Toronto, ON, Canada; Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, ON, Canada.
| |
Collapse
|
35
|
Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury 2016; 47 Suppl 2:S11-20. [PMID: 27338221 PMCID: PMC4955555 DOI: 10.1016/s0020-1383(16)47003-8] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility.
Collapse
Affiliation(s)
- Georg Osterhoff
- Division of Orthopaedic Trauma, Department of Orthopaedic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Lamya Karim
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Laoise M. McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland,National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| | - Peter Augat
- Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria,Corresponding author at: Institute of Biomechanics, Berufsgenossenschaftliche Unfallklinik, Murnau Prof.-Kuentscher-Str. 8, D-82418 Murnau am Staffelsee, Germany. Tel.: +49 8841 484563; fax: +49 8841 484573. (P. Augat)
| |
Collapse
|
36
|
Bala Y, Seeman E. Bone's Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 2015; 97:308-26. [PMID: 25712256 DOI: 10.1007/s00223-015-9971-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
Abstract
Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone's material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone 'qualities' than 'quality'. These qualities are the subject of this manuscript.
Collapse
Affiliation(s)
- Y Bala
- Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées de Lyon, Campus LyonTech la Doua, Villeurbanne, France
| | | |
Collapse
|
37
|
Gollwitzer H, Yang X, Spevak L, Lukashova L, Nocon A, Fields K, Pleshko N, Courtland HW, Bostrom MP, Boskey AL. Fourier Transform Infrared Spectroscopic Imaging of Fracture Healing in the Normal Mouse. JOURNAL OF SPECTROSCOPY (HINDAWI) 2015; 2015:659473. [PMID: 26034749 PMCID: PMC4448139 DOI: 10.1155/2015/659473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fourier transform infrared spectroscopic imaging (FTIRI) was used to study bone healing with spatial analysis of various callus tissues in wild type mice. Femoral fractures were produced in 28 male C57BL mice by osteotomy. Animals were sacrificed at 1, 2, 4, and 8 weeks to obtain callus tissue at well-defined healing stages. Following microcomputerized tomography, bone samples were cut in consecutive sections for FTIRI and histology, allowing for spatial correlation of both imaging methods in different callus areas (early calcified cartilage, woven bone, areas of intramembranous and endochondral bone formation). Based on FTIRI, mineral/matrix ratio increased significantly during the first 4 weeks of fracture healing in all callus areas and correlated with bone mineral density measured by micro-CT. Carbonate/phosphate ratio was elevated in newly formed calcified tissue and at week 2 attained values comparable to cortical bone. Collagen maturity and mineral crystallinity increased during weeks 1-8 in most tissues while acid phosphate substitution decreased. Temporal and callus area dependent changes were detected throughout the healing period. These data assert the usefulness of FTIRI for evaluation of fracture healing in the mouse and its potential to evaluate pathologic fracture healing and the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Hans Gollwitzer
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
- Klinik für Orthopädie und Sportorthopädie, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Xu Yang
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | - Lyudmila Spevak
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | - Lyudmila Lukashova
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | - Allina Nocon
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | - Kara Fields
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | - Nancy Pleshko
- Temple University College of Engineering, 1947 N. 12th Street, Philadelphia, PA 19122, USA
| | | | - Mathias P. Bostrom
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | - Adele L. Boskey
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| |
Collapse
|