1
|
Takahashi K, Tsuji M, Nakagawasai O, Miyagawa K, Kurokawa K, Mochida-Saito A, Iwasa M, Iwasa H, Suzuki S, Takeda H, Tadano T. Anxiolytic effects of Enterococcus faecalis 2001 on a mouse model of colitis. Sci Rep 2024; 14:11519. [PMID: 38769131 PMCID: PMC11106339 DOI: 10.1038/s41598-024-62309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, which is known to cause psychiatric disorders such as anxiety and depression at a high rate in addition to peripheral inflammatory symptoms. However, the pathogenesis of these psychiatric disorders remains mostly unknown. While prior research revealed that the Enterococcus faecalis 2001 (EF-2001) suppressed UC-like symptoms and accompanying depressive-like behaviors, observed in a UC model using dextran sulfate sodium (DSS), whether it has an anxiolytic effect remains unclear. Therefore, we examined whether EF-2001 attenuates DSS-induced anxiety-like behaviors. Treatment with 2% DSS for seven days induced UC-like symptoms and anxiety-like behavior through the hole-board test, increased serum lipopolysaccharide (LPS) and corticosterone concentration, and p-glucocorticoid receptor (GR) in the prefrontal cortex (PFC), and decreased N-methyl-D-aspartate receptor subunit (NR) 2A and NR2B expression levels in the PFC. Interestingly, these changes were reversed by EF-2001 administration. Further, EF-2001 administration enhanced CAMKII/CREB/BDNF-Drebrin pathways in the PFC of DSS-treated mice, and labeling of p-GR, p-CAMKII, and p-CREB showed colocalization with neurons. EF-2001 attenuated anxiety-like behavior by reducing serum LPS and corticosterone levels linked to the improvement of UC symptoms and by facilitating the CAMKII/CREB/BDNF-Drebrin pathways in the PFC. Our findings suggest a close relationship between UC and anxiety.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Masahiro Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Shigeo Suzuki
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
- Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
2
|
Al-Zoubi RM, Abu-Hijleh H, Zarour A, Zakaria ZZ, Yassin A, Al-Ansari AA, Al-Asmakh M, Bawadi H. Zebrafish Model in Illuminating the Complexities of Post-Traumatic Stress Disorders: A Unique Research Tool. Int J Mol Sci 2024; 25:4895. [PMID: 38732113 PMCID: PMC11084870 DOI: 10.3390/ijms25094895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychological condition that may develop in certain individuals following exposure to life-threatening or traumatic events. Distressing symptoms, including flashbacks, are characterized by disrupted stress responses, fear, anxiety, avoidance tendencies, and disturbances in sleep patterns. The enduring effects of PTSD can profoundly impact personal and familial relationships, as well as social, medical, and financial stability. The prevalence of PTSD varies among different populations and is influenced by the nature of the traumatic event. Recently, zebrafish have emerged as a valuable model organism in studying various conditions and disorders. Zebrafish display robust behavioral patterns that can be effectively quantified using advanced video-tracking tools. Due to their relatively simple nervous system compared to humans, zebrafish are particularly well suited for behavioral investigations. These unique characteristics make zebrafish an appealing model for exploring the underlying molecular and genetic mechanisms that govern behavior, thus offering a powerful comparative platform for gaining deeper insights into PTSD. This review article aims to provide updates on the pathophysiology of PTSD and the genetic responses associated with psychological stress. Additionally, it highlights the significance of zebrafish behavior as a valuable tool for comprehending PTSD better. By leveraging zebrafish as a model organism, researchers can potentially uncover novel therapeutic interventions for the treatment of PTSD and contribute to a more comprehensive understanding of this complex condition.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Haya Abu-Hijleh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| | - Ahmad Zarour
- Department of Surgery, Acute Care Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Zain Z. Zakaria
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Center of Medicine and Health Sciences, Dresden International University, 01069 Dresden, Germany
| | - Abdulla A. Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
| | - Maha Al-Asmakh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| |
Collapse
|
3
|
Rehman S, Faizan M, Ali NH, Gulati K, Ray A. Amelioration by Withania somnifera of neurobehavioural and immunological markers in time dependent sensitization induced post traumatic stress disorder in rats. Indian J Pharmacol 2024; 56:20-27. [PMID: 38454585 PMCID: PMC11001169 DOI: 10.4103/ijp.ijp_825_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/01/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
AIMS AND OBJECTIVES Posttraumatic stress disorder (PTSD) is a complex neuropsychiatric pathophysiology with an unmet need for safe, effective, and sustainable therapeutic modalities. Thus, the present study evaluated the effects of Withaniasomnifera (WS, Ashwagandha) on an experimental model of PTSD in rats. MATERIALS AND METHODS Wistar rats (200-250 g) were used and time-dependent sensitization (TDS) was used as the experimental model of PTSD. Standardized WS root extract (100 and 300 mg/kg, p.o. for 15 days) was administered with TDS and their effects were observed on neurobehavioral (anxiety) and brain cytokines, corticosterone, and oxidative stress markers. RESULTS Exposure to TDS resulted in anxiogenic behavior in the elevated plus maze (EPM) test, i.e., reductions in open arm entries and open arm time, as compared to the control group. Pretreatment with WS extract (100 and 300 mg/kg × 14 days) attenuated the TDS-induced anxiogenic activity in a dose-related manner, and these WS effects were comparable to those seen after the comparator drug fluoxetine (10 mg/kg). Assay of brain homogenates showed that TDS also resulted in elevations in brain interleukin-6 and reduction in corticosterone levels in both the hippocampus and prefrontal cortex (PFC), which were reversed after WS pretreatments. Further, WS pretreatment also reversed the TDS-induced changes in brain oxidative stress markers, namely elevated malondialdehyde and reduced glutathione levels in both the hippocampus and PFC. CONCLUSION These results suggest that WS could have potential as a therapeutic agent for treating PTSD by attenuating anxiogenesis, neuroimmune axis activation, and oxidative stress.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Faizan
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Nafaa Hasan Ali
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Arunabha Ray
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Ródenas-González F, Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Cognitive profile of male mice exposed to a Ketogenic Diet. Physiol Behav 2022; 254:113883. [PMID: 35716801 DOI: 10.1016/j.physbeh.2022.113883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
In recent years, nutritional interventions for different psychiatric diseases have gained increasing attention, such as the ketogenic diet (KD). This has led to positive effects in neurological disorders such as Parkinson's disease, addiction, autism or epilepsy. The neurobiological mechanisms through which these effects are induced and the effects in cognition still warrant investigation, and considering that other high-fat diets (HFD) can lead to cognitive disturbances that may affect the results achieved, the main aim of the present work was to evaluate the effects of a KD to determine whether it can induce such cognitive effects. A total of 30 OF1 male mice were employed to establish the behavioral profile of mice fed a KD by testing anxiety behavior (Elevated Plus Maze), locomotor activity (Open Field), learning (Hebb Williams Maze), and memory (Passive Avoidance Test). The results revealed that the KD did not affect locomotor activity, memory or hippocampal-dependent learning, as similar results were obtained with mice on a standard diet, albeit with increased anxiety behavior. We conclude that a KD is a promising nutritional approach to apply in research studies, given that it does not cause cognitive alterations.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain
| | - M Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain.
| |
Collapse
|
5
|
Gao F, Liu A, Qi X, Wang M, Chen X, Wei S, Gao S, Sun Y, Sun P, Li X, Sun W, Li J, Liu Q. Ppp4r3a deficiency leads to depression-like behaviors in mice by modulating the synthesis of synaptic proteins. Dis Model Mech 2022; 15:dmm049374. [PMID: 35314861 PMCID: PMC9150120 DOI: 10.1242/dmm.049374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic stress is one of the main risk factors for the onset of major depressive disorder. Chronic unpredictable mild stress results in reduced expression of synaptic proteins and depression-like behaviors in rodent models. However, the upstream molecule that senses the demand for synaptic proteins and initiates their synthesis under chronic stress remains unknown. In this study, chronic unpredictable mild stress reduced the expression of PPP4R3A in the prefrontal cortex and hippocampus in mice. Selective knockout of Ppp4r3a in the cortex and hippocampus mimicked the depression- and anxiety-like behavioral effects of chronic stress in mice. Notably, Ppp4r3a deficiency led to downregulated mTORC1 signaling, which resulted in reduced synthesis of synaptic proteins and impaired synaptic functions. By contrast, overexpression of Ppp4r3a in the cortex and hippocampus protected against behavioral and synaptic deficits induced by chronic stress in a PPP4R3A-mTORC1-dependent manner. Rapamycin treatment of Ppp4r3a-overexpressing neurons blocked the regulatory effect of Ppp4r3a on the synthesis of synaptic proteins by directly inhibiting mTORC1. Overall, our results reveal a regulatory role of Ppp4r3a in driving synaptic protein synthesis in chronic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
6
|
Webb EK, Weis CN, Huggins AA, Fitzgerald JM, Bennett K, Bird CM, Parisi EA, Kallenbach M, Miskovich T, Krukowski J, deRoon-Cassini TA, Larson CL. Neural impact of neighborhood socioeconomic disadvantage in traumatically injured adults. Neurobiol Stress 2021; 15:100385. [PMID: 34471656 PMCID: PMC8390770 DOI: 10.1016/j.ynstr.2021.100385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Nearly 14 percent of Americans live in a socioeconomically disadvantaged neighborhood. Lower individual socioeconomic position (iSEP) has been linked to increased exposure to trauma and stress, as well as to alterations in brain structure and function; however, the neural effects of neighborhood SEP (nSEP) factors, such as neighborhood disadvantage, are unclear. Using a multi-modal approach with participants who recently experienced a traumatic injury (N = 185), we investigated the impact of neighborhood disadvantage, acute post-traumatic stress symptoms, and iSEP on brain structure and functional connectivity at rest. After controlling for iSEP, demographic variables, and acute PTSD symptoms, nSEP was associated with decreased volume and alterations of resting-state functional connectivity in structures implicated in affective processing, including the insula, ventromedial prefrontal cortex, amygdala, and hippocampus. Even in individuals who have recently experienced a traumatic injury, and after accounting for iSEP, the impact of living in a disadvantaged neighborhood is apparent, particularly in brain regions critical for experiencing and regulating emotion. These results should inform future research investigating how various levels of socioeconomic circumstances may impact recovery after a traumatic injury as well as policies and community-developed interventions aimed at reducing the impact of socioeconomic stressors.
Collapse
Affiliation(s)
- E. Kate Webb
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Carissa N. Weis
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Ashley A. Huggins
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | | | | | - Claire M. Bird
- Marquette University, Department of Psychology, Milwaukee, WI, USA
| | - Elizabeth A. Parisi
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Maddy Kallenbach
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Tara Miskovich
- VA Northern California Healthcare System, Martinez, CA, USA
| | | | - Terri A. deRoon-Cassini
- Medical College of Wisconsin, Department of Surgery, Division of Trauma & Acute Care Surgery, Milwaukee, WI, USA
| | - Christine L. Larson
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
7
|
Zhao D, Lu Y, Yu G. Effects of on behavior and blood-brain barrier in Alzheimer's disease mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:553-560. [PMID: 34986530 PMCID: PMC8732245 DOI: 10.3724/zdxbyxb-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
To investigate the effects of on behavior and blood brain barrier (BBB) in Alzheimer's disease mice. Thirty-eight 4-month-old APP/PS1 double transgenic mice were randomly divided into three groups: model group, low-dose group and high-dose group. Saline, and 12 g·kg·d were given to each group by continuous gavage once a day for respectively. The changes in activities of daily live and fear conditioning memory behavior of mice were examined by nesting behavior test and fear conditioning test, respectively. The β-amyloid protein (Aβ) depositions in cortex and hippocampal CA1 area of mice were detected by thioflavin T staining. The CD34 and activities fibrinogen (Fib) immunofluorescence double staining were used to determine the vascular endothelial integrity and BBB exudation. Compared with model mice, activities of daily live were significantly improved in low-dose and high-dose groups (both <0.01), the fear memory ability was significantly increased in high-dose group (<0.01). The amount of Aβ deposition in cortex and hippocampal CA1 decreased significantly in high-dose group, the area ratio decreased significantly; the area ratio of Aβ deposition in hippocampal CA1 region in low-dose group also decreased (all <0.05). The proportions of CD34 positive area of cortex in low and high dose groups increased, the percentage of fibrinogen positive area decreased (all <0.05). The proportion of CD34 positive area in hippocampal CA1 region in high-dose group was significantly increased, the percentage of fibrinogen positive area decreased significantly (both <0.05). especially high-dose can improve the activities of daily live and fear conditioning memory function of APP/PS1 mice, reduce the deposition of Aβ in brain. The mechanism may be related to the reduction of BBB permeability and the protection of the integrity of BBB.
Collapse
Affiliation(s)
- Dapeng Zhao
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yunwei Lu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guran Yu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
8
|
Forouzan S, Hoffman KL, Kosten TA. Methamphetamine exposure and its cessation alter gut microbiota and induce depressive-like behavioral effects on rats. Psychopharmacology (Berl) 2021; 238:281-292. [PMID: 33097978 DOI: 10.1007/s00213-020-05681-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Methamphetamine is a highly abused psychostimulant drug and its use remains a major public health concern worldwide with limited effective treatment options. Accumulative evidence reveals the influence of gut microbiota on the brain, behavior, and health as a part of the gut-brain axis but its involvement in modulating this substance use disorder remains poorly understood. OBJECTIVE We sought to determine whether methamphetamine exposure and cessation or withdrawal alter the intestinal gut microbiota as well as characterize cessation-induced behavioral changes. METHODS Male, Sprague-Dawley rats were administered methamphetamine (2 mg/kg; s.c.) or vehicle (n = 8 per group) twice per day for 14 consecutive days. On various days before, during, and after administration, fecal samples were collected and tests of anxiety- and depressive-like behaviors were conducted. RESULTS Methamphetamine administration and cessation did not alter the relative abundance of bacteria but significantly changed the composition of gut bacteria through 16S rRNA sequencing. These changes were normalized after 7 days of methamphetamine cessation. Moreover, acute methamphetamine cessation induced depressive-like behavior, with an increase in immobility in the forced swim test but did not alter anxiety-like behaviors in tests of open field test or elevated plus maze. CONCLUSIONS These findings provide direct evidence that methamphetamine and its cessation cause gut dysbiosis and that the latter associates with depressive-like behavior in rodents. Our observation will contribute to a better understanding of the function of gut microbiota in the process of substance use disorders and guide the choice of target therapeutics.
Collapse
Affiliation(s)
- Shadab Forouzan
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Health and Biomedical Sciences Building 1, 4849 Calhoun Road, Houston, TX, 77204-6022, USA
| | - Kristi L Hoffman
- Molecular VIrology and Microbiology Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Therese A Kosten
- Department of Psychology, Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Health and Biomedical Sciences Building 1, 4849 Calhoun Road, Houston, TX, 77204-6022, USA.
| |
Collapse
|
9
|
Shang C, Guo Y, Yao JQ, Fang XX, Sun LJ, Jiang XY, Ding ZC, Ran YH, Wang HL, Zhang LM, Li YF. Rapid anti-PTSD-like activity of the TSPO agonist YL-IPA08: Emphasis on brain GABA, neurosteroids and HPA axis function. Behav Brain Res 2020; 379:112320. [DOI: 10.1016/j.bbr.2019.112320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
|
10
|
Zhang J, Xue R, Li YF, Zhang YZ, Wei HW. Anxiolytic-like effects of treadmill exercise on an animal model of post-traumatic stress disorder and its mechanism. J Sports Med Phys Fitness 2020; 60:172-179. [DOI: 10.23736/s0022-4707.20.10120-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Okuda K, Takao K, Watanabe A, Miyakawa T, Mizuguchi M, Tanaka T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS One 2018; 13:e0196587. [PMID: 29702698 PMCID: PMC5922552 DOI: 10.1371/journal.pone.0196587] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the specific mechanisms of these deficits in the CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Aya Watanabe
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Baranova KA, Rybnikova EA, Samoilov MO. The neurotrophin BDNF is involved in the development and prevention of stress-induced psychopathologies. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Zhang LM, Zhou WW, Ji YJ, Li Y, Zhao N, Chen HX, Xue R, Mei XG, Zhang YZ, Wang HL, Li YF. Anxiolytic effects of ketamine in animal models of posttraumatic stress disorder. Psychopharmacology (Berl) 2015; 232:663-72. [PMID: 25231918 DOI: 10.1007/s00213-014-3697-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/28/2014] [Indexed: 01/13/2023]
Abstract
This study investigated the effectiveness of ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in alleviating the enhanced anxiety and fear response in both a mouse model of PTSD induced by inescapable electric foot shocks and a rat model of PTSD induced by a time-dependent sensitization (TDS) procedure. First, we evaluated the effect of ketamine on behavioral deficits in a mouse model of PTSD that consisted of foot shocks followed by three situational reminders. Our results showed that the aversive procedure induced several behavioral deficiencies, such as increased freezing behavior and anxiety, as well as reduced time spent in an aversive-like context, which were reversed by repeated treatment with ketamine. The effect of ketamine on behavioral changes after exposure to TDS was also investigated, and the levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured. The results revealed that after TDS, the rats showed a significant increase in contextual freezing and a decrease in the percentage of time spent in and numbers of entries into open arms in the elevated plus maze test. As a positive control drug, sertraline (Ser, 15 mg/kg, i.g.), a selective serotonin reuptake inhibitor (SSRI) ameliorated these behavioral deficits. These behavioral effects were mimicked by chronic ketamine treatment. Furthermore, ketamine normalized the decreased BDNF level in the hippocampus in post-TDS rats. Taken together, these results suggest that ketamine exerts a therapeutic effect on PTSD that might be at least partially mediated by an influence on BDNF signaling in the hippocampus.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder. Int J Neuropsychopharmacol 2014; 17:1659-69. [PMID: 24763106 DOI: 10.1017/s1461145714000479] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, the translocator protein (18 kDa) (TSPO), previously called peripheral benzodiazepine receptor (PBR) and both the starting point and an important rate-limiting step in neurosteroidogenesis, has received increased attention in the pathophysiology of post-traumatic stress disorder (PTSD) because it affects the production of neurosteroids, reinforcing the hypothesis that selective TSPO ligands could potentially be used as anti-PTSD drugs. As expected, we showed that chronic treatment with YL-IPA08 [N-ethyl-N-(2-pyridinylmethyl)-2-(3,4-ichlorophenyl)-7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride], a potent and selective TSPO ligand synthesized by our institute, caused significant suppression of enhanced anxiety and contextual fear induced in the inescapable electric foot-shock-induced mouse model of PTSD and the time-dependent sensitization (TDS) procedure. These effects were completely blocked by the TSPO antagonist PK11195. Furthermore, YL-IPA08 could increase the level of allopregnanolone in the prefrontal cortex and serum of post-TDS rats, and these effects were antagonized by PK11195. In summary, the findings from the current study showed that YL-IPA08, a potent and selective TSPO ligand, had a clear anti-PTSD-like effect, which might be partially mediated by binding to TSPO and the subsequent synthesis of allopregnanolone.
Collapse
|
15
|
Baranova KA, Rybnikova EA, Churilova AV, Vetrovoy OV, Samoilov MO. The adaptive role of the CREB and NF-κB neuronal transcription factors in post-stress psychopathology models in rats. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414010048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav 2014; 4:51-9. [PMID: 24653954 PMCID: PMC3937706 DOI: 10.1002/brb3.197] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022] Open
Abstract
The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17β estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.
Collapse
Affiliation(s)
- Divya Anchan
- Neuroscience Program, Tulane University New Orleans, 70118, Louisiana
| | - Sara Clark
- Cell and Molecular Biology Department, Tulane University New Orleans, 70118, Louisiana
| | - Kevin Pollard
- Neuroscience Program, Tulane University New Orleans, 70118, Louisiana
| | - Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University New Orleans, 70118, Louisiana
| |
Collapse
|
17
|
Mironova V, Rybnikova E, Pivina S. Effect of inescapable stress in rodent models of depression and posttraumatic stress disorder on CRH and vasopressin immunoreactivity in the hypothalamic paraventricular nucleus. ACTA ACUST UNITED AC 2013; 100:395-410. [DOI: 10.1556/aphysiol.100.2013.4.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Salunke BP, Umathe SN, Chavan JG. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med 2013; 33:312-26. [DOI: 10.3109/15368378.2013.839453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Campos AC, Piorino EM, Ferreira FR, Guimarães FS. Increased nitric oxide-mediated neurotransmission in the medial prefrontal cortex is associated with the long lasting anxiogenic-like effect of predator exposure. Behav Brain Res 2013; 256:391-7. [PMID: 23948217 DOI: 10.1016/j.bbr.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/28/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder caused by the experience of a severe traumatic event. In rats this disorder has been modeled by exposure to a predator threat. PTSD has been associated to structural and functional changes in the medial prefrontal cortex (mPFC). Direct injections into this brain region of glutamate antagonists or inhibitors of the nitric oxide synthase (NOS) enzyme cause anxiolytic-like effects in rodents. In the present work we investigated if the behavioral changes induced by predator exposure are associated with changes in the mPFC nitrergic system. Since the hippocampus, amygdala and dorsal periaqueductal grey have also been associated to anxiety disorders, including PTSD, we also verified if this procedure would modify the nitrergic system in these regions. Male Wistar rats were exposed to a dummy or live cat for ten minutes and tested in the elevated plus maze test (EPM) seven days later. Immediately after the test their brains were removed for neuronal NOS (nNOS) immunohistochemistry detection and measurements of nitrite/nitrate (NOx) levels. Exposure to the live cat increased freezing responses. One week later the animals that froze when confronted with the cat presented a decreased percentage of entries in the open arms of the EPM and an increased number of nNOS positive neurons in the mPFC and basolateral nucleus of amygdala, but not in the hippocampus, central and medial nuclei of amygdaloid complex or dorsal-lateral periaqueductal grey. Moreover, cat exposed animals showed increased NOx levels in the mPFC but not in the hippocampus one week later. The number of nNOS neurons and NOx levels in the mPFC showed a significant correlation with freezing time during cat exposure. Our results suggest that plastic modifications of the nitrergic system in the mPFC could be related to long lasting behavioral changes induced by severe traumatic events such as predator exposure.
Collapse
Affiliation(s)
- Alline Cristina Campos
- Departament of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Infectious Diseases and Tropical Medicine Program, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | |
Collapse
|
20
|
Jakubcakova V, Flachskamm C, Landgraf R, Kimura M. Sleep phenotyping in a mouse model of extreme trait anxiety. PLoS One 2012; 7:e40625. [PMID: 22808211 PMCID: PMC3394752 DOI: 10.1371/journal.pone.0040625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/11/2012] [Indexed: 01/19/2023] Open
Abstract
Background There is accumulating evidence that anxiety impairs sleep. However, due to high sleep variability in anxiety disorders, it has been difficult to state particular changes in sleep parameters caused by anxiety. Sleep profiling in an animal model with extremely high vs. low levels of trait anxiety might serve to further define sleep patterns associated with this psychopathology. Methodology/Principal Findings Sleep-wake behavior in mouse lines with high (HAB), low (LAB) and normal (NAB) anxiety-related behaviors was monitored for 24 h during baseline and recovery after 6 h sleep deprivation (SD). The amounts of each vigilance state, sleep architecture, and EEG spectral variations were compared between the mouse lines. In comparison to NAB mice, HAB mice slept more and exhibited consistently increased delta power during non-rapid eye movement (NREM) sleep. Their sleep patterns were characterized by heavy fragmentation, reduced maintenance of wakefulness, and frequent intrusions of rapid eye movement (REM) sleep. In contrast, LAB mice showed a robust sleep-wake rhythm with remarkably prolonged sleep latency and a long, persistent period of wakefulness. In addition, the accumulation of delta power after SD was impaired in the LAB line, as compared to HAB mice. Conclusions/Significance Sleep-wake patterns were significantly different between HAB and LAB mice, indicating that the genetic predisposition to extremes in trait anxiety leaves a biological scar on sleep quality. The enhanced sleep demand observed in HAB mice, with a strong drive toward REM sleep, may resemble a unique phenotype reflecting not only elevated anxiety but also a depression-like attribute.
Collapse
Affiliation(s)
| | | | | | - Mayumi Kimura
- Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail:
| |
Collapse
|
21
|
Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012; 100:775-800. [DOI: 10.1016/j.pbb.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|
22
|
Baranova KA, Rybnikova EA, Samoilov MO. Involvement of the transcription factor c-Fos in the protective effect of hypoxic preconditioning in a model of post-traumatic stress disorder in rats. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Increased stress-evoked nitric oxide signalling in the Flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol 2010; 13:461-73. [PMID: 19627650 DOI: 10.1017/s1461145709990241] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stress engenders the precipitation and progression of affective disorders, while stress-related release of excitatory mediators is implicated in the degenerative pathology observed especially in the hippocampus of patients with severe depression. Nitric oxide (NO) release following stress-evoked N-methyl-d-aspartate (NMDA) receptor activation modulates neurotransmission, cellular memory and neuronal toxicity. We have investigated the Flinders rat (FSL/FRL), a genetic animal model of depression, regarding the response of the hippocampal nitrergic system following exposure to an escapable stress/inescapable stress (ES-IS) paradigm. Hippocampal tissue from naive FSL/FRL rats and those exposed to ES-IS were studied with respect to constitutive nitric oxide synthase (cNOS) activity and neuronal nitric oxide synthase (nNOS) protein levels, as well as transcript expression of upstream regulatory proteins in the NMDA-NO signalling pathway, including NMDAR1, nNOS, CAPON, PIN and PSD95. Within stress-naive animals, no differences in hippocampal cNOS activity and nNOS expression or PIN were evident in FSL and FRL rats, although transcripts for NMDAR1 and CAPON were increased in FSL rats. Within the group of ES-IS animals, we found an increase in total hippocampal cNOS activity, nNOS protein levels and mRNA expression in FSL vs. FRL rats, together with an increase in PSD95 transcripts, and a reduction in PIN. In conclusion, ES-IS enhanced hippocampal cNOS activity in FSL rats, but not FRL rats, confirming the NMDA-NO cascade as an important vulnerability factor in the depressive phenotype of the FSL rat.
Collapse
|
24
|
Mironova VI, Rybnikova EA. Stable Modifications to the Expression of Neurohormones in the Rat Hypothalamus in a Model of Post-Traumatic Stress Disorder. ACTA ACUST UNITED AC 2009; 40:111-5. [DOI: 10.1007/s11055-009-9216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 07/18/2008] [Indexed: 10/20/2022]
|
25
|
Kishioka A, Fukushima F, Ito T, Kataoka H, Mori H, Ikeda T, Itohara S, Sakimura K, Mishina M. A novel form of memory for auditory fear conditioning at a low-intensity unconditioned stimulus. PLoS One 2009; 4:e4157. [PMID: 19132103 PMCID: PMC2613534 DOI: 10.1371/journal.pone.0004157] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/23/2008] [Indexed: 11/19/2022] Open
Abstract
Fear is one of the most potent emotional experiences and is an adaptive component of response to potentially threatening stimuli. On the other hand, too much or inappropriate fear accounts for many common psychiatric problems. Cumulative evidence suggests that the amygdala plays a central role in the acquisition, storage and expression of fear memory. Here, we developed an inducible striatal neuron ablation system in transgenic mice. The ablation of striatal neurons in the adult brain hardly affected the auditory fear learning under the standard condition in agreement with previous studies. When conditioned with a low-intensity unconditioned stimulus, however, the formation of long-term fear memory but not short-tem memory was impaired in striatal neuron-ablated mice. Consistently, the ablation of striatal neurons 24 h after conditioning with the low-intensity unconditioned stimulus, when the long-term fear memory was formed, diminished the retention of the long-term memory. Our results reveal a novel form of the auditory fear memory depending on striatal neurons at the low-intensity unconditioned stimulus.
Collapse
Affiliation(s)
- Ayumi Kishioka
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Fumiaki Fukushima
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tamae Ito
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hirotaka Kataoka
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hisashi Mori
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshio Ikeda
- Laboratory of Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, Japan
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Abstract
Obsessive-compulsive disorder is currently classified as an anxiety disorder. However, there is growing interest in the concept of an obsessive-compulsive spectrum of disorders (OCSDs). The relationship between anxiety disorders and OCSDs has been questioned. The psychobiology of anxiety disorders and OCSDs is briefly reviewed in this article. While there appear to be several distinct contrasts in the underlying psychobiology of these conditions, there is also evidence of overlapping mechanisms. In addition, there are crucial gaps in our current database, confounding nosological decision-making. Conceptualizing various anxiety disorders and putative OCSDs as lying within a broader spectrum of emotional disorders may be useful. However, clinicians must also recognize that individual anxiety and obsessive-compulsive spectrum conditions, including disorders characterized by body-focused repetitive behaviors, have distinct psychobiological underpinnings and require different treatment approaches.
Collapse
|
27
|
Shalyapina VG, Vershinina EA, Rakitskaya VV, Ryzhova LY, Semenova MG, Semenova OG. Changes in the adaptive behavior of active and passive wistar rats in a water immersion model of depression. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2007; 37:637-41. [PMID: 17657436 DOI: 10.1007/s11055-007-0063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 05/15/2006] [Indexed: 05/16/2023]
Abstract
Animals with active and passive strategies of adaptive behavior were selected from a population of Wistar rats by testing in a T maze to measure the indexes of behavioral passivity and behavioral activity. After single (stress) or two (stress-restress) water immersions, individual changes in adaptive behavior were used to study the development of post-stress psychopathology and its interaction with the initial behavioral strategy. In the unavoidable aversive environment, active and passive rats developed different types of post-stress depression, only passive individuals fulfilling the criteria of post-traumatic stress disorder.
Collapse
Affiliation(s)
- V G Shalyapina
- Neuroendocrinology Laboratory, I. P. Pavlov Institute of Physiology, St. Petersburg.
| | | | | | | | | | | |
Collapse
|
28
|
Toth M. Use of Mice with Targeted Genetic Inactivation in the Serotonergic System for the Study of Anxiety. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Matuszewich L, Karney JJ, Carter SR, Janasik SP, O'Brien JL, Friedman RD. The delayed effects of chronic unpredictable stress on anxiety measures. Physiol Behav 2006; 90:674-81. [PMID: 17275043 PMCID: PMC1931411 DOI: 10.1016/j.physbeh.2006.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/28/2006] [Accepted: 12/18/2006] [Indexed: 01/22/2023]
Abstract
Previous research has found that exposure to unpredictable stress can augment anxiety in humans and animals. The appearance of anxiety symptoms in humans frequently develop after stress exposure has terminated, but few rodent studies have systematically examined the delayed anxiogenic effects of unpredictable stress. Therefore, the current study investigated whether anxiety-like behaviors in rats would increase at several time intervals following exposure to chronic unpredictable stress (CUS). Unconditioned and conditioned response tasks were used to assess anxiety in male rats 1, 7 or 14 days following exposure to 10 days of a variety of stressors. Rats exposed to CUS showed increased burying behaviors and immobility during the defensive burying test, a conditioned anxiety test. The effects on burying behavior were apparent 7 and 14 days after the termination of the unpredictable stress procedure, but not when tested 1 day after CUS. Total time immobile in the defensive burying test also increased 14 days after termination of the last stressor. In contrast, there were no significant effects of CUS on behavioral measures in the unconditioned response tasks, the elevated plus-maze or light-dark box, at any time point following exposure to CUS. The current findings suggest that CUS may be a useful model of human conditioned anxiety that develops subsequent to chronic stress exposure.
Collapse
Affiliation(s)
- Leslie Matuszewich
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, Ohnishi T, Matsuda H, Yasuda A, Sato A, Diksic M, Kuboki T. Changes in cerebral glucose utilization in patients with panic disorder treated with cognitive–behavioral therapy. Neuroimage 2006; 33:218-26. [PMID: 16889985 DOI: 10.1016/j.neuroimage.2006.06.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/08/2006] [Accepted: 06/16/2006] [Indexed: 11/21/2022] Open
Abstract
Several neuroanatomical hypotheses of panic disorder have been proposed focusing on the significant role of the amygdala and PAG-related "panic neurocircuitry." Although cognitive-behavioral therapy is effective in patients with panic disorder, its therapeutic mechanism of action in the brain remains unclear. The present study was performed to investigate regional brain glucose metabolic changes associated with successful completion of cognitive-behavioral therapy in panic disorder patients. The regional glucose utilization in patients with panic disorder was compared before and after cognitive-behavioral therapy using positron emission tomography with (18)F-fluorodeoxyglucose. In 11 of 12 patients who showed improvement after cognitive-behavioral therapy, decreased glucose utilization was detected in the right hippocampus, left anterior cingulate, left cerebellum, and pons, whereas increased glucose utilization was seen in the bilateral medial prefrontal cortices. Significant correlations were found between the percent change relative to the pretreatment value of glucose utilization in the left medial prefrontal cortex and those of anxiety and agoraphobia-related subscale of the Panic Disorder Severity Scale, and between that of the midbrain and that of the number of panic attacks during the 4 weeks before each scan in all 12 patients. The completion of successful cognitive-behavioral therapy involved not only reduction of the baseline hyperactivity in several brain areas but also adaptive metabolic changes of the bilateral medial prefrontal cortices in panic disorder patients.
Collapse
Affiliation(s)
- Yojiro Sakai
- Department of Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Despite advances in the treatment of anxiety disorders, there is a need for medications with greater efficacy and fewer side effects. Advances in techniques to facilitate high throughput, mass analysis of proteins potentially allows for new drug targets, with a shift in focus from membrane receptor proteins and enzymes of neurotransmitter metabolism to molecules in intracellular signal transduction and other pathways. A computerized literature search was done to collect studies on recently developed proteomic techniques and their application in psychiatric research. Particular techniques, such as two-dimensional electrophoresis, two-dimensional differential gel electrophoresis, isotope-coded affinity tags, and isotope tags for relative and absolute quantification, are reviewed. In addition, a combination of these techniques with MALDI-TOF/TOF and ESI-Q-TOF mass spectrometry analysis is discussed in relation to possible novel signaling pathways relevant to anxiety disorders, and to the development of biomarkers for the evaluation of these conditions.
Collapse
Affiliation(s)
- Joachim D K Uys
- MRC Unit for Stress and Anxiety Disorders, Laboratory for Neuroproteomics, Department of Biomedical Sciences, Division of Medical Physiology, University of Stellenbosch, Tygerberg, South Africa.
| | | | | |
Collapse
|
32
|
Bartz JA, Hollander E. Is obsessive-compulsive disorder an anxiety disorder? Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:338-52. [PMID: 16455175 DOI: 10.1016/j.pnpbp.2005.11.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2005] [Indexed: 11/20/2022]
Abstract
Obsessive-compulsive disorder (OCD) is classified as an anxiety disorder in the DSM-IV-TR [American Psychiatric Association, 2000. Diagnostic and statistical manual of mental disorders, Fourth ed., rev. Washington, DC: Author]; however, the notion of a spectrum of obsessive-compulsive (OC) related disorders that is comprised of such disparate disorders as OCD, body dysmorphic disorder, certain eating disorders, pathological gambling, and autism, is gaining acceptance. The fact that these disorders share obsessive-compulsive features and evidence similarities in patient characteristics, course, comorbidity, neurobiology, and treatment response raises the question of whether OCD is best conceptualized as an anxiety or an OC spectrum disorder. This article reviews evidence from comorbidity and family studies, as well as biological evidence related to neurocircuitry, neurotransmitter function, and pharmacologic treatment response that bear on this question. The implications of removing OCD from the anxiety disorders category and moving it to an OC spectrum disorders category, as is being proposed for the DSM-V, is discussed.
Collapse
Affiliation(s)
- Jennifer A Bartz
- Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA.
| | | |
Collapse
|
33
|
Harvey BH, Brand L, Jeeva Z, Stein DJ. Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol Behav 2006; 87:881-90. [PMID: 16546226 DOI: 10.1016/j.physbeh.2006.01.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 02/02/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by monoaminergic and hypothalamic-pituitary-adrenal (HPA)-axis abnormalities. Understanding monoamine-HPA-axis responses following stress and restress may provide a greater understanding of the neurobiology of PTSD and of its treatment. Hippocampal and frontal cortex serotonin, noradrenaline and dopamine, plasma corticosterone and aversive behavior were studied in rats on day 1 and day 7 post acute stress (AS = sequential restraint stress, swim stress and halothane exposure), and on day 1 and day 7 post restress (RS = swim stress). After AS, there was an early increase in both avoidant behavior and corticosterone (1 h after stress), with subsequent normalisation (day 7), suggesting an adequate adaptive response to the stressor. However, restress (RS) evoked a significant early HPA-axis hyporesponsiveness (1 h after RS) and a later significant increase in avoidant behavior on day 7 post RS. Hippocampal serotonin, noradrenaline and dopamine concentrations were unchanged 1 h post AS, but were significantly raised on day 7 post AS. Restress, however, reduced serotonin and noradrenaline levels 1 h after and on day 7 post RS, respectively, while dopamine was unchanged. In the frontal cortex only dopamine levels were altered, being significantly elevated 1 h after AS, and reduced on day 7 post RS. AS and RS thus differently effect the HPA-axis, evoking regional-specific brain monoamine changes that underlie maladaptive behavior and other post stress-related sequelae.
Collapse
Affiliation(s)
- Brian H Harvey
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, 2520, South Africa.
| | | | | | | |
Collapse
|
34
|
Li Z, Zhou Q, Li L, Mao R, Wang M, Peng W, Dong Z, Xu L, Cao J. Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 2005; 15:815-24. [PMID: 16015621 DOI: 10.1002/hipo.20104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated vivid recalls or flashbacks of traumatic memories and memory deficits are the cardinal features of post-traumatic stress disorder (PTSD). The underlying mechanisms are not fully understood yet. Here, we examined the effects of very strong fear conditioning (20 pairings of a light with a 1.5-mA, 0.5-s foot shock) and subsequent reexposure to the conditioning context (chamber A), a similar context (chamber B), and/or to the fear conditioned stimulus (CS) (a light) on synaptic plasticity in the hippocampal CA1 area in anesthetized Sprague-Dawley rats. The conditioning procedure resulted in very strong conditioned fear, as reflected by high levels of persistent freezing, to both the contexts and to the CS, 24 h after fear conditioning. The induction of long-term potentiation (LTP) was blocked immediately after fear conditioning. It was still markedly impaired 24 h after fear conditioning; reexposure to the conditioning chamber A (CA) or to a similar chamber B (CB) did not affect the impairment. However, presentation of the CS in the CA exacerbated the impairment of LTP, whereas the CS presentation in a CB ameliorated the impairment so that LTP induction did not differ from that of control groups. The induction of long-term depression (LTD) was facilitated immediately, but not 24 h, after fear conditioning. Only reexposure to the CS in the CA, but not reexposure to either chamber A or B alone, or the CS in chamber B, 24 h after conditioning, reinstated the facilitation of LTD induction. These data demonstrate that unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm can have profound effects on hippocampal synaptic plasticity, which may aid to understand the mechanisms underlying impairments of hippocampus-dependent memory by stress or in PTSD.
Collapse
Affiliation(s)
- Zexuan Li
- Mental Health Institute of the 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Harvey BH, Bothma T, Nel A, Wegener G, Stein DJ. Involvement of the NMDA receptor, NO-cyclic GMP and nuclear factor K-beta in an animal model of repeated trauma. Hum Psychopharmacol 2005; 20:367-73. [PMID: 15912566 DOI: 10.1002/hup.695] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Post-traumatic stress disorder (PTSD) may be associated with shrinkage of the hippocampus, with glutamate release causally related to these events. Recent animal studies strongly implicate activation of the nitric oxide (NO)-cascade in anxiety and stress. Using an animal model of repeated trauma, the effect of stress was investigated on the hippocampal NO-cGMP signalling pathway, specifically the release of nitrogen oxides (NOx) and its modulation by NMDA receptor-, NO-, cGMP- and nuclear factor K-beta (NFK-beta)-selective drugs. Immediately after stress, rats received the glutamate NMDA receptor antagonist, memantine (MEM; 5 mg/kg i.p./d), the NO synthase inhibitor, 7-nitroindazole sodium salt (7-NINA; 20 mg/kg i.p./d), the cGMP-specific PDE inhibitor, sildenafil (SIL; 10 mg/kg i.p./d) or the NFkappa-beta antagonist, pyrollidine dithiocarbamate (PDTC; 70 mg/kg i.p./d), for 7 days. Stress significantly increased hippocampal NOx on day 7 post-stress, which was blocked by either 7-NINA or PDTC, while MEM was without effect. SIL, however, significantly augmented stress-induced NOx accumulation. Increased cGMP therefore acts as a protagonist in driving stress-related events, while both nNOS (neuronal NOS) and iNOS (inducible/immunological NOS) may represent a therapeutic target in preventing the effects of severe stress. The value of NMDA receptor antagonism, however, appears limited in this model.
Collapse
Affiliation(s)
- Brian H Harvey
- School of Pharmacy (Pharmacology), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa 2520.
| | | | | | | | | |
Collapse
|
36
|
Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, Ohnishi T, Matsuda H, Yasuda A, Sato A, Diksic M, Kuboki T. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 2005; 16:927-31. [PMID: 15931063 DOI: 10.1097/00001756-200506210-00010] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was performed to assess cerebral glucose metabolism in patients with panic disorder using positron emission tomography. F-fluorodeoxyglucose positron emission tomography with voxel-based analysis was used to compare regional brain glucose utilization in 12 nonmedicated panic disorder patients, without their experiencing panic attacks during positron emission tomography acquisition, with that in 22 healthy controls. Panic disorder patients showed appreciably high state anxiety before scanning, and exhibited significantly higher levels of glucose uptake in the bilateral amygdala, hippocampus, and thalamus, and in the midbrain, caudal pons, medulla, and cerebellum than controls. These results provided the first functional neuroimaging support in human patients for the neuroanatomical hypothesis of panic disorder focusing on the amygdala-based fear network.
Collapse
Affiliation(s)
- Yojiro Sakai
- Department of Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD): evidence from an animal model. Neuropsychiatr Dis Treat 2005; 1:109-23. [PMID: 18568056 PMCID: PMC2413191 DOI: 10.2147/nedt.1.2.109.61049] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that may develop after experiencing or witnessing a traumatic event. Recent clinical evidence has suggested the involvement of neurodegenerative pathology in the illness, particularly with brain imaging studies revealing a marked reduction in hippocampal volume. Of greater significance is that these anatomical changes appear to be positively correlated with the degree of cognitive deficit noted in these patients. Stress-induced increases in plasma cortisol have been implicated in this apparent atrophy. Although not definitive, clinical studies have observed a marked suppression of plasma cortisol in PTSD. The basis for hippocampal neurodegeneration and cognitive decline therefore remains unclear. Stress and glucocorticoids increase glutamate release, which is recognized as an important mediator of glucocorticoid-induced neurotoxicity. Recent preclinical studies have also noted that glutamate and nitric oxide (NO) play a causal role in anxiety-related behaviors. Because of the prominent role of NO in neuronal toxicity, cellular memory processes, and as a neuromodulator, nitrergic pathways may have an important role in stress-related hippocampal degenerative pathology and cognitive deficits seen in patients with PTSD. This paper reviews the preclinical evidence for involvement of the NO-pathway in PTSD, and emphasizes studies that have addressed these issues using time-dependent sensitization - a putative animal model of PTSD.
Collapse
Affiliation(s)
- Frasia Oosthuizen
- School of Pharmacy (Pharmacology), Faculty of Health Sciences, North West University, Potchefstroom, South Africa.
| | | | | |
Collapse
|
38
|
Pawlyk AC, Jha SK, Brennan FX, Morrison AR, Ross RJ. A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biol Psychiatry 2005; 57:268-77. [PMID: 15691528 DOI: 10.1016/j.biopsych.2004.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/26/2004] [Accepted: 11/03/2004] [Indexed: 12/20/2022]
Abstract
BACKGROUND A prominent sleep disturbance, likely including a disruption of rapid eye movement sleep (REMS) continuity, characterizes posttraumatic stress disorder (PTSD). We set out to develop a fear conditioning paradigm in rats that displays alterations in sleep architecture analogous to those in PTSD. METHODS Baseline polysomnographic recordings of rats were performed in a neutral context to which the rats had been habituated for several days. Rats were then shock- or mock-trained in a distinctly different context, and their sleep was studied the following day in that context. A separate group of rats was shock-trained and studied in the neutral context on the following 2 days. RESULTS Rats that slept in the neutral context exhibited a REMS-selective increase in sleep 24 hours after training and increases in REMS and non-REMS 48 hours after training. In contrast, rats that slept in the presence of situational reminders of the training context exhibited a REMS-selective decrease in sleep 24 hours later. Animals that were mock-trained showed no changes in sleep. CONCLUSIONS Shock training induced days-long changes in sleep architecture that were disrupted when the animal was exposed to situational reminders of the training context.
Collapse
Affiliation(s)
- Aaron C Pawlyk
- Laboratory for the Study of the Brain in Sleep, Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
39
|
Harvey BH, Oosthuizen F, Brand L, Wegener G, Stein DJ. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology (Berl) 2004; 175:494-502. [PMID: 15138761 DOI: 10.1007/s00213-004-1836-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Stress-related glucocorticoid and glutamate release have been implicated in hippocampal atrophy evident in patients with post-traumatic stress disorder (PTSD). Glutamatergic mechanisms activate nitric oxide synthase (NOS), while gamma-amino-butyric acid (GABA) may inhibit both glutamatergic and nitrergic transmission. Animal studies support a role for NOS in stress. OBJECTIVES We have studied the role of NOS and glucocorticoids, as well as inhibitory and excitatory transmitters, in a putative animal model of PTSD that emphasizes repeated trauma. METHODS Hippocampal NOS activity, N-methyl-D-aspartate (NMDA) receptor binding characteristics and GABA levels were studied in Sprague-Dawley rats 21 days after exposure to a stress-restress paradigm, using radiometric analysis, radioligand studies and high-performance liquid chromatography (HPLC) analysis with electrochemical detection, respectively. The NOS isoform involved, and the role of stress-mediated corticosterone release in NOS activation, was verified with the administration of selective iNOS and nNOS inhibitors, aminoguanidine (50 mg/kg/day i.p.) and 7-nitroindazole (12.5 mg/kg/day i.p.), and the steroid synthesis inhibitor, ketoconazole (24 mg/kg/day i.p.), administered for 21 days prior to and during the stress procedure. RESULTS Stress evoked a sustained increase in NOS activity, but reduced NMDA receptor density and total GABA levels. Aminoguanidine or ketoconazole, but not 7-nitroindazole or saline, blocked stress-induced NOS activation. CONCLUSIONS Stress-restress-mediated glucocorticoid release activates iNOS, followed by a reactive downregulation of hippocampal NMDA receptors and dysregulation of inhibitory GABA pathways. The role of NO in neuronal toxicity, and its regulation by glutamate and GABA has important implications in stress-related hippocampal degeneration.
Collapse
Affiliation(s)
- Brian H Harvey
- Faculty of Health Sciences, Division of Pharmacology, School of Pharmacy, North West University, 2520 Potchefstroom, South Africa.
| | | | | | | | | |
Collapse
|
40
|
Rodgers RJ, Gentsch C, Hoyer D, Bryant E, Green AJ, Kolokotroni KZ, Martin JL. The NK1 receptor antagonist NKP608 lacks anxiolytic-like activity in Swiss-Webster mice exposed to the elevated plus-maze. Behav Brain Res 2004; 154:183-92. [PMID: 15302124 DOI: 10.1016/j.bbr.2004.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 02/06/2004] [Accepted: 02/06/2004] [Indexed: 12/22/2022]
Abstract
The selective non-peptide NK(1) receptor antagonist NKP608 has been shown to exert potent anxiolytic-like effects in the rat and gerbil social interaction tests. In vitro binding of NKP608 in cortical, striatal and rest-of-brain tissue samples from mice, rats and gerbils indicated comparable pIC(50) values for rats and mice (in all three tissues) and only slightly higher values for gerbils. It would therefore be expected that doses previously found to produce anxiolytic-like effects in rats and gerbils would also be active in mice. The present study evaluated NKP608 in one of the most widely-used animal models of anxiety, the mouse elevated plus-maze. Two consecutive experiments were conducted in which the effects of NKP608 (0.0003-10.0 mg/kg, p.o.) were compared to those produced by the prototypical benzodiazepine anxiolytic, chlordiazepoxide (CDP, 15 mg/kg, p.o.). Ethological scoring methods were used to provide comprehensive behavioural profiles for each compound. In both experiments, acute CDP treatment resulted in significant anxioselective effects, i.e., reductions in measures of open arm avoidance without any alteration in general activity levels (closed arm entries and rearing). Although the results of Experiment 1 (0.001-10.0 mg/kg NKP608) suggested a weak anxiolytic-like action of NKP608 at 0.001 mg/kg (significant increase in percent open arm entries), Experiment 2 failed both to replicate this effect or to find any behavioural activity at lower (0.0003 mg/kg) or higher (0.03 mg/kg) doses. Present findings suggest that the anxiolytic efficacy of this NK(1) receptor antagonist may be test-specific and thus limited to particular subtypes of anxiety. These new data are also discussed in relation to the general difficulty of relating the behavioural profiles of NK(1) receptor antagonists to their potency at NK(1) receptors.
Collapse
Affiliation(s)
- R J Rodgers
- Behavioural Pharmacology Laboratory, School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Harvey BH, Naciti C, Brand L, Stein DJ. Endocrine, cognitive and hippocampal/cortical 5HT 1A/2A receptor changes evoked by a time-dependent sensitisation (TDS) stress model in rats. Brain Res 2003; 983:97-107. [PMID: 12914970 DOI: 10.1016/s0006-8993(03)03033-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Post traumatic stress disorder (PTSD) is characterised by hyperarousal, anxiety and amnesic symptoms. Deficits in explicit memory recall have been causally related to volume reductions of the hippocampus and prefrontal cortex. While stress-related glucocorticoid secretion appears involved in this apparent atrophy, there is also evidence for low plasma cortisol in PTSD. Prior exposure to trauma is an important risk factor for PTSD, suggesting a role for sensitisation. Using Sprague-Dawley rats, we studied the effects of a time-dependent sensitisation (TDS) model of stress on spatial memory deficits, 1 week post-stress, using the Morris water maze. Basal and 7-day post-stress plasma corticosterone levels were also determined. Due to the putative role of serotonin in anxiety and stress, and in the treatment of PTSD, hippocampal 5HT(1A) and prefrontal cortex 5HT(2A) radioligand binding studies were performed. TDS stress evoked a marked deficit in spatial memory on day 7 post TDS stress, coupled with significantly depressed plasma corticosterone levels. Cognitive and endocrine changes at day 7 post stress were associated with a significant increase in receptor density (B(max)) and a significant decrease in receptor affinity (K(d)) for hippocampal 5HT(1A) receptors. The B(max) of prefrontal cortex 5HT(2A) receptors were unaffected, but K(d) was significantly increased. We conclude that TDS stress evokes cognitive and endocrine changes characteristic of PTSD. Moreover, TDS stress induces diverse adaptive 5HT receptor changes in critical brain areas involved in emotion and memory that may underlie the effect of stress on cognitive function.
Collapse
Affiliation(s)
- Brian H Harvey
- Division of Pharmacology, School of Pharmacy, Potchefstroom University for Christian Higher Education, 2520, Potchefstroom, South Africa.
| | | | | | | |
Collapse
|