1
|
Gaspary JFP, Lopes LFD, Camara AG. Translational interdisciplinary research on human chorionic gonadotropin's enhancement of neuroendocrine crosstalk: a novel medical hypothesis for systemic adjunctive treatment of psychiatric disorders. Front Psychiatry 2025; 16:1537442. [PMID: 40365004 PMCID: PMC12070194 DOI: 10.3389/fpsyt.2025.1537442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/12/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction It is increasingly recognized that the brain continuously interacts with other body systems such as the immune system, the gut-brain axis, and the endocrine system. Dysfunctions in these systems can impact mental health by altering neurotransmitter levels and the neurochemical environment. This shift in understanding underscores the need for therapeutic strategies that address systemic health and mitochondrial function, alongside psychosocial aspects of the disease, offering a more personalized and adaptive approach to treatment. Methodology This study utilizes a translational research approach structured through the Work Breakdown Structure methodology, dividing the process into six interconnected Work Packages (WPs). These include systematic literature reviews on endocrine dysfunctions and hormonal therapies in mental disorders, application of Design Thinking for neuroendocrine innovation, and hypothesis exploration of hCG as a systemic adjunctive treatment for psychiatric disorders, culminating in result dissemination and evaluation. Results Work The study identified multiple mechanistic impacts of human chorionic gonadotropin (hCG) relevant to psychiatric treatment. Key findings from hCG Hormetic Therapy (HHT) include stimulation of sex hormone production, reduction of insulin resistance and systemic inflammation, enhancement of hypothalamic activity to regulate appetite, sleep, and emotions, and LH-like effects on cognition. HHT also increases IGF-1 availability, promoting neuroprotection, cognitive improvements, and reduced mitochondrial dysfunction, restoring cellular function critical for brain health. Implications for Clinical Practice The findings underscore the significance of enhancing endocrine and metabolic functions as a viable strategy for improving psychiatric care, aligning with trends that advocate holistic treatment strategies. The suggested dose for future research protocols is 500 IU IM per week for at least 10 weeks. Conclusion Supporting diverse and varied research is crucial for advancing medical knowledge. Continuous exploration of neuroendocrine dysfunctions in mental disorders using advanced tools from neuroscience, endocrinology, and psychiatry can provide new pathways for more effective and personalized treatments. The study of HHT effects offers insights into complex neuroendocrine interactions, underscoring the potential for innovative therapeutic strategies in psychiatry.
Collapse
Affiliation(s)
- João Francisco Pollo Gaspary
- Instituto AuBento – Center for Teaching, Clinical Practice and Research in Orthomolecular and Translational Health Innovation, Santa Maria, Brazil
- Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Felipe Dias Lopes
- Center for Social and Human Sciences, Postgraduate Program in Administration, Federal University of Santa Maria, Santa Maria, Brazil
| | - Antonio Geraldo Camara
- Institute Camara – Center for Clinical and Orthomolecular Practice, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Hansen BH, Andresen HN, Gjesvik J, Thorsby PM, Naerland T, Knudsen-Heier S. Associations between psychiatric comorbid disorders and executive dysfunctions in hypocretin-1 deficient pediatric narcolepsy type1. Sleep Med 2023; 109:149-157. [PMID: 37442017 DOI: 10.1016/j.sleep.2023.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE/BACKGROUND Psychiatric symptoms and cognitive deficits add significantly to impairment in academic achievement and quality of life in patients with narcolepsy. The primary aim of this study was to evaluate the prevalence of psychiatric disorders and executive dysfunctions, secondly to explore the association between psychiatric comorbidity, executive dysfunctions, subjective and objective sleep measures, and severity of cerebrospinal fluid (CSF) hypocretin-1 deficiency in pediatric narcolepsy type 1 (PNT1). PATIENTS/METHODS Cross-sectional study of 59 consecutively included PNT1 patients (age: 6-20 years; 34:25 girls: boys; 54/59 H1N1 (Pandemrix®)-vaccinated). Core narcolepsy symptoms including subjective sleepiness, polysomnography and multiple sleep latency test results, CSF hypocretin-1 levels, psychiatric disorders (by semistructured diagnostic interview Kaufmann Schedule for Affective Disorders and Schizophrenia Present and Lifetime version (KSADS)), and executive dysfunction (by Behavior Rating of Executive Function (BRIEF)) were assessed. RESULTS 52.5% of the patients had one or more psychiatric comorbid disorder, and 64.7% had executive dysfunction in a clinically relevant range, with no sex difference in prevalence, while older age was associated with poorer executive function (p=0.013). Having any psychiatric comorbid disorder was associated with poorer executive functions (p=0.001). CSF hypocretin-1 deficiency severity was significantly associated with presence of psychiatric comorbidity (p=0.022) and poorer executive functions (p=0.030), and poorer executive functions was associated with subjective sleepiness (p=0.009). CONCLUSIONS The high occurrence of, and association between, psychiatric comorbidity and executive dysfunction underlines the importance of close attention to both these comorbidities in clinical care of NT1.
Collapse
Affiliation(s)
- Berit Hjelde Hansen
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Department of Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway.
| | | | | | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Aker Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Terje Naerland
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Department of Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Stine Knudsen-Heier
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Department of Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
4
|
Luo F, Deng JY, Sun X, Zhen J, Luo XD. Anterior cingulate cortex orexin signaling mediates early-life stress-induced social impairment in females. Proc Natl Acad Sci U S A 2023; 120:e2220353120. [PMID: 37155875 PMCID: PMC10193930 DOI: 10.1073/pnas.2220353120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.
Collapse
Affiliation(s)
- Fei Luo
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang330031, China
- Department of Psychiatry, Yichun First municipal People’s Hospital, YiChun336000, China
| | - Jun-yang Deng
- Department of Psychiatry, Yichun First municipal People’s Hospital, YiChun336000, China
| | - Xuan Sun
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang330031, China
| | - Jian Zhen
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang330031, China
| | - Xiao-dan Luo
- Department of Psychiatry, Yichun First municipal People’s Hospital, YiChun336000, China
| |
Collapse
|
5
|
D’Alterio A, Menchetti M, Zenesini C, Rossetti A, Vignatelli L, Franceschini C, Varallo G, Pizza F, Plazzi G, Ingravallo F. Resilience and its correlates in patients with narcolepsy type 1. J Clin Sleep Med 2023; 19:719-726. [PMID: 36689313 PMCID: PMC10071382 DOI: 10.5664/jcsm.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 01/24/2023]
Abstract
STUDY OBJECTIVES This study aimed to explore resilience and its possible association with sociodemographic and clinical features in patients with narcolepsy type 1 (NT1). METHODS This was a cross-sectional study involving patients with NT1 and age-/sex-matched controls (comparison group). Sociodemographic and clinical data were collected through semistructured interviews and validated questionnaires, including the Epworth Sleepiness Scale (ESS), State-Trait Anxiety Inventory (STAI)-State Anxiety, Beck Depression Inventory (BDI), 36-item Short Form Survey (SF-36), and the Resilience Scale (RS). Different statistical approaches were used to investigate the relationship between resilience and NT1 and associations with sociodemographic and clinical features. RESULTS The participants comprised 137 patients (mean age, 38.0 years; 52.6% female) and 149 controls (39.6 years; 55.7% female). Compared with controls, patients had a significantly lower (122.6 vs 135.5) mean RS score and a 2-fold risk of having low/mild-range resilience (adjusted odds ratio = 1.99, 95% confidence interval 1.13-3.52). Patients with high resilience had sociodemographic and narcolepsy characteristics similar to patients with low resilience, but they reported anxiety and depressive symptomatology less frequently (4.2% vs 55.8% and 58.3%, respectively), and their SF-36 scores were comparable to those of the comparison group. In patients, RS score was strongly associated with STAI-State Anxiety and BDI (rho = -0.57 and -0.56, respectively) and weakly with ESS (rho = -20) scores. CONCLUSIONS The results of this study suggest that resilience may play a key role in patients' adaptation to NT1. Furthermore, this study supports interventions aimed at increasing patients' resilience and provides a base for further studies, preferably longitudinal and including objective measures, directed toward understanding the relationship between resilience, depression, and quality of life in patients with narcolepsy. CITATION D'Alterio A, Menchetti M, Zenesini C, et al. Resilience and its correlates in patients with narcolepsy type 1. J Clin Sleep Med. 2023;19(4):719-726.
Collapse
Affiliation(s)
- Alessandra D’Alterio
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Andrea Rossetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | | | - Giorgia Varallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ingravallo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Reisi P, Imanpour V. The effect of orexin-2 and endocannabinoid-1 antagonists on neuronal activity of hippocampal CA1 pyramidal neurons in response to tramadol in rats. Adv Biomed Res 2022; 11:26. [PMID: 35720213 PMCID: PMC9201222 DOI: 10.4103/abr.abr_65_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: CA1, as a major structure involved in learning and memory, has been shown to be affected by tramadol addiction. Both orexin and endocannabinoid receptors express in CA1 and play an important role in drug dependency. The aim of this study was to evaluate the modulatory effects of orexin-2 (OX2R) and endocannabinoid-1 (CB1R) receptors on neuronal activity in CA1, in response to tramadol in rats. Materials and Methods: Male Wistar rats were divided into 8 groups (n = 6–7); saline-dimethyl sulfoxide (DMSO), tramadol-DMSO, saline-TCS-OX2-29, saline-AM251, tramadol-TCS-OX2-29, tramadol-AM251, saline-TCS-OX2-29-AM251, tramadol-TCS-OX2-29-AM251. Tramadol was injected intraperitoneally, and then, AM251 (1 nmol/0.3 μL), CB1R antagonist and TCS-OX2-29 (1 nmol/0.3 μL), OX2R antagonist, were microinjected individually or concurrently into the CA1. Using in vivo extracellular single-unit recording, the firing of CA1 pyramidal neurons was investigated. Results: Tramadol decreased neuronal activity in CA1 (P < 0.01) but increased it after micro-injection of DMSO. TCS-OX2-29 increased neuronal activity in saline group (P < 0.05) but decreased it in tramadol group. AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Concurrent micro-injection of TCS-OX2-29 and AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Conclusions: Our findings suggest that neural activity in CA1 is rapidly affected by acute use of tramadol, and some of these effects may be induced through the endocannabinoid and orexin systems. Thus, the function of endocannabinoid and orexin systems in CA1 may play a role in tramadol addiction.
Collapse
|
7
|
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina. Neuropharmacology 2021; 187:108492. [PMID: 33582153 DOI: 10.1016/j.neuropharm.2021.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Collapse
|
8
|
Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020; 89:139-146. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Excessive, binge drinking is a major contributor to the great harm and cost of alcohol use disorder. We recently showed, using both limited and intermittent-access two-bottle-choice models, that inhibiting nucleus accumbens shell (Shell) orexin-1-receptors (Ox1Rs) reduces alcohol intake in higher-drinking male C57BL/6 mice (Lei et al., 2019). Other studies implicate Ox1Rs, tested systemically, for several higher-drinking models, including the single-bottle, Rhodes Drinking-in-the-Dark paradigm. Here, we report studies examining whether Shell Ox1Rs contribute to alcohol intake in male mice using a single-bottle Limited Daily Access (LDA) drinking model modified from drinking-in-the-dark paradigms (2-h access starting 3 h into the dark cycle, 5 days per week). In addition, some previous work has suggested possible differences in circuitry for one- versus two-choice behaviors, and thus other mice first drank under a single-bottle schedule, and then an additional water bottle was included 2 days a week starting in week 3. Surprisingly, at the same time we were determining Ox1R importance for two-bottle-choice models, parallel studies found that inhibiting Shell Ox1Rs had no impact on drinking using the single-bottle LDA model, or when a second bottle containing water was added later during drinking. Furthermore, we have related Shell Ox1R regulation of intake to basal consumption, but no such pattern was observed with single-bottle LDA drinking. Thus, unlike our previous work showing the importance of Shell Ox1Rs for male alcohol drinking under several two-bottle-choice models, Shell Ox1Rs were not required under a single-bottle paradigm, even if a second water-containing bottle was later added. These results raise the speculations that different mechanisms could promote intake under single- versus two-bottle access conditions, and that the conditions under which an animal learns to drink can impact circuitry driving future intake.
Collapse
|
9
|
Escalona Belmonte JJ, Romero Molina S, Sepúlveda Haro E, Malo Manso A, Guerrero Orriach JL. Narcolepsy and opioid-free anesthesia: a review and case report. ACTA ACUST UNITED AC 2020; 68:165-170. [PMID: 33160690 DOI: 10.1016/j.redar.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Narcolepsy is the second most common sleep disorder. It is characterised by excessive daytime sleepiness together with other symptoms such as cataplexy, sleep paralysis, and hallucinations. The pathophysiology and treatment of this disease, together with its associated syndromes, can severely interfere with anaesthesia. METHODOLOGY Due to the lack of quality evidence on which to base a high grade of recommendation for anaesthesia in these patients, we performed a non-systematic, narrative review of the literature in Pubmed. We used the descriptors narcolepsy, anesthesia, surgery, perioperative, opioid, obstructive, apnea and sleep both individually and with AND and OR connectors. CONCLUSION The recommendation to avoid opioids and the stability of opioid-free anaesthesia (OFA) make this approach an option to consider in these patients. We describe a case in which it was used safely.
Collapse
Affiliation(s)
- J J Escalona Belmonte
- Hospital Universitario Virgen de la Victoria, Málaga, España; Instituto de Investigación Biomédica de Málaga, IBIMA, grupo de investigación A-21, Málaga, España
| | - S Romero Molina
- Hospital Universitario Virgen de la Victoria, Málaga, España
| | | | - A Malo Manso
- Hospital Universitario Virgen de la Victoria, Málaga, España; Instituto de Investigación Biomédica de Málaga, IBIMA, grupo de investigación A-21, Málaga, España.
| | - J L Guerrero Orriach
- Hospital Universitario Virgen de la Victoria, Málaga, España; Instituto de Investigación Biomédica de Málaga, IBIMA, grupo de investigación A-21, Málaga, España
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The complex nature of narcolepsy symptoms, along with the use of stimulants and anticataplectic medications, poses diagnostic difficulties in terms of underlying neuropsychiatric comorbidities. This study reviews recent evidence for the association between narcolepsy and neuropsychiatric disorders. We also critically analyze studies that have addressed the neuropsychiatric correlates of patients with narcolepsy, with a discussion of the possible pathophysiological mechanisms linking narcolepsy and neuropsychiatric disorders. RECENT FINDINGS Neuropsychiatric manifestations are common among patients with narcolepsy as narcolepsy and some neuropsychiatric disorders share common clinical features. This may create challenges in making the correct diagnosis, and hence result in a delay in starting appropriate treatment. Comorbid neuropsychiatric manifestations in patients with narcolepsy include depression, anxiety, psychosis, rapid eye movement (REM) sleep behavior disorder, and cognitive impairment. Although hypocretin deficiency has been proposed as a pathophysiological mechanism underlying both narcolepsy and neuropsychiatric disorders, further research is necessary to identify the exact mechanisms. Narcolepsy patients often manifest comorbid neuropsychiatric symptoms, which makes the diagnosis difficult. Therefore, it is essential to address neuropsychiatric symptoms in the clinical care of patients with narcolepsy.
Collapse
|
11
|
Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020; 168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The neuropeptide hypocretin/orexin plays a broad and important role in physiological functions ranging from addiction, stress, and anxiety to sleep, energy metabolism, and homeostatic regulation. A number of recent reviews addressing the importance of orexin for different addictive behaviors, especially the contribution of orexin-1-receptors (Ox1Rs) in responding for intoxicants in higher-motivation individuals and situations, and orexin-2-receptor (Ox2Rs) in stress-related aspects of addictive responding. This may parallel the importance of more lateral orexin neurons in the hypothalamus for reward and more medial for stress and arousal. However, there is clearly also some crossover, which may reflect, in part, where positive and negative conditioning (reward- and relief-seeking) are both present concurrently in established addiction, and also where orexin signaling can differ in subregions of a particular brain region. Here, we attempt to examine and synthesize some of the most recent work addressing orexin functions in addiction, including a particular role for Ox1Rs for driving responding in higher-motivation individuals and under higher levels of effort. While there are some commonalities across addictive substances addressed here (alcohol, cocaine, opiates), there are also some differences, which may relate to several factors including the speed of intoxication with a given substance. Together, recent findings have shed important insight and clues into what a more unified role of Ox1Rs might entail, and critical areas for future work. In addition, these many studies support the development of Ox1R blockers for use in humans to counteract addiction and other disorders of motivation. This article is part of the special issue on Neuropeptides.
Collapse
|
12
|
Zhan S, Che P, Zhao X, Li N, Ding Y, Liu J, Li S, Ding K, Han L, Huang Z, Wu L, Wang Y, Hu M, Han X, Ding Q. Molecular mechanism of tumour necrosis factor alpha regulates hypocretin (orexin) expression, sleep and behaviour. J Cell Mol Med 2019; 23:6822-6834. [PMID: 31386303 PMCID: PMC6787512 DOI: 10.1111/jcmm.14566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
Hypocretin 1 and hypocretin 2 (orexin A and B) regulate sleep, wakefulness and emotion. Tumour necrosis factor alpha (TNF-α) is an important neuroinflammation mediator. Here, we examined the effects of TNF-α treatment on hypocretin expression in vivo and behaviour in mice. TNF-α decreased hypocretin 1 and hypocretin 2 expression in a dose-dependent manner in cultured hypothalamic neurons. TNF-α decreased mRNA stability of prepro-hypocretin, the single precursor of hypocretin 1 and hypocretin 2. Mice challenged with TNF-α demonstrated decreased expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in hypothalamus. In response to TNF-α, prepro-hypocretin mRNA decay was increased in hypothalamus. TNF-α neutralizing antibody restored the expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in vivo in TNF-α challenged mice, supporting hypocretin system can be impaired by increased TNF-α through decreasing hypocretin expression. Repeated TNF-α challenge induced muscle activity during rapid eye movement sleep and sleep fragmentation, but decreased learning, cognition and memory in mice. TNF-α neutralizing antibody blocked the effects of TNF-α; in contrast, hypocretin receptor antagonist enhanced the effects of TNF-α. The data support that TNF-α is involved in the regulation of hypocretin expression, sleep and cognition. The findings shed some lights on the role of neuroinflammation in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Shuqin Zhan
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Pulin Che
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- NeurologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Xue‐ke Zhao
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Ning Li
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Yan Ding
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Jianghong Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Spring Li
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Karyn Ding
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Lynn Han
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Liyong Wu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Meng Hu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xiaosi Han
- NeurologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Qiang Ding
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
13
|
Music enhances activity in the hypothalamus, brainstem, and anterior cerebellum during script-driven imagery of affective scenes. Neuropsychologia 2019; 133:107073. [PMID: 31026474 DOI: 10.1016/j.neuropsychologia.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Music is frequently used to establish atmosphere and to enhance/alter emotion in dramas and films. During music listening, visual imagery is a common mechanism underlying emotion induction. The present functional magnetic resonance imaging (fMRI) study examined the neural substrates of the emotional processing of music and imagined scene. A factorial design was used with factors emotion valence (positive; negative) and music (withoutMUSIC: script-driven imagery of emotional scenes; withMUSIC: script-driven imagery of emotional scenes and simultaneously listening to affectively congruent music). The baseline condition was imagery of neutral scenes in the absence of music. Eleven females and five males participated in this fMRI study. Behavioural data revealed that during scene imagery, participants' subjective emotions were significantly intensified by music. The contrasts of positive and negative withoutMUSIC conditions minus the baseline (imagery of neutral scenes) showed no significant activation. When comparing the withMUSIC to withoutMUSIC conditions, activity in a number of emotion-related regions was observed, including the temporal pole (TP), amygdala, hippocampus, hypothalamus, anterior ventral tegmental area (VTA), locus coeruleus, and anterior cerebellum. We hypothesized that the TP may integrate music and the imagined scene to extract socioemotional significance, initiating the subcortical structures to generate subjective feelings and bodily responses. For the withMUSIC conditions, negative emotions were associated with enhanced activation in the posterior VTA compared to positive emotions. Our findings replicated and extended previous research which suggests that different subregions of the VTA are sensitive to rewarding and aversive stimuli. Taken together, this study suggests that emotional music embedded in an imagined scenario is a salient social signal that prompts preparation of approach/avoidance behaviours and emotional responses in listeners.
Collapse
|
14
|
Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019; 13:88. [PMID: 30814925 PMCID: PMC6381036 DOI: 10.3389/fnins.2019.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
Excessive, binge alcohol drinking is a potent and pernicious obstacle to treating alcohol use disorder (AUD), and heavy-drinking humans are responsible for much of the substantial costs and harms of AUD. Thus, identifying key mechanisms that drive intake in higher-drinking individuals may provide important, translationally useful therapeutic interventions. Orexin-1-receptors (Ox1Rs) promote states of high motivation, and studies with systemic Ox1R inhibition suggest a particular role in individuals with higher intake levels. However, little has been known about circuits where Ox1Rs promote pathological intake, especially excessive alcohol consumption. We previously discovered that binge alcohol drinking requires Ox1Rs in medial nucleus accumbens shell (Shell), using two-bottle-choice Drinking-in-the-Dark (2bc-DID) in adult, male C57BL/6 mice. Here, we show that Shell Ox1Rs promoted intake during intermittent-access alcohol drinking as well as 2bc-DID, and that Shell inhibition with muscimol/baclofen also suppressed 2bc-DID intake. Importantly, with this large data set, we were able to demonstrate that Shell Ox1Rs and overall activity were particularly important for driving alcohol consumption in higher-drinking individuals, with little overall impact in moderate drinkers. Shell inhibition results were compared with control data combined from drug treatments that did not reduce intake, including NMDAR or PKC inhibition in Shell, Ox1R inhibition in accumbens core, and systemic inhibition of dopamine-1 receptors; these were used to understand whether more specific Shell Ox1R contributions in higher drinkers might simply result from intrinsic variability in mouse drinking. Ineffectiveness of Shell inhibition in moderate-drinkers was not due to a floor effect, since systemic baclofen reduced alcohol drinking regardless of basal intake levels, without altering concurrent water intake or saccharin consumption. Finally, alcohol intake in the first exposure predicted consumption levels weeks later, suggesting that intake level may be a stable trait in each individual. Together, our studies indicate that Shell Ox1Rs are critical mediators of binge alcohol intake in higher-drinking individuals, with little net contribution to alcohol drinking in more moderate bingers, and that targeting Ox1Rs may substantially reduce AUD-related harms.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Claudina Kwok
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - David Darevsky
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - JiHwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lisa Nakayama
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Vincent Pedrozo
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lexy Anderson
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Shahbaj Ghotra
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Fouad
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Ji MJ, Zhang XY, Chen Z, Wang JJ, Zhu JN. Orexin prevents depressive-like behavior by promoting stress resilience. Mol Psychiatry 2019; 24:282-293. [PMID: 30087452 PMCID: PMC6755988 DOI: 10.1038/s41380-018-0127-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
Hypothalamic neuropeptide orexin has been implicated in the pathophysiology of psychiatric disorders and accumulating clinical evidence indicates a potential link between orexin and depression. However, the exact role of orexin in depression, particularly the underlying neural substrates and mechanisms, remains unknown. In this study, we reveal a direct projection from the hypothalamic orexinergic neurons to the ventral pallidum (VP), a structure that receives an increasing attention for its critical position in rewarding processing, stress responses, and depression. We find that orexin directly excites GABAergic VP neurons and prevents depressive-like behaviors in rats. Two orexin receptors, OX1R and OX2R, and their downstream Na+-Ca2+ exchanger and L-type Ca2+ channel co-mediate the effect of orexin. Furthermore, pharmacological blockade or genetic knockdown of orexin receptors in VP increases depressive-like behaviors in forced swim test and sucrose preference test. Intriguingly, blockage of orexinergic inputs in VP has no impact on social proximity in social interaction test between novel partners, but remarkably strengthens social avoidance under an acute psychosocial stress triggered by social rank. Notably, a significantly increased orexin level in VP is accompanied by an increase in serum corticosterone in animals exposed to acute stresses, including forced swimming, food/water deprivation and social rank stress, rather than non-stress situations. These results suggest that endogenous orexinergic modulation on VP is especially critical for protecting against depressive reactions to stressful events. The findings define an indispensable role for the central orexinergic system in preventing depression by promoting stress resilience.
Collapse
Affiliation(s)
- Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
16
|
Baykal S, Albayrak Y, Durankuş F, Güzel S, Abbak Ö, Potas N, Beyazyüz M, Karabekiroğlu K, Donma MM. Decreased serum orexin A levels in drug-naive children with attention deficit and hyperactivity disorder. Neurol Sci 2019; 40:593-602. [PMID: 30617449 DOI: 10.1007/s10072-018-3692-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Saliha Baykal
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Tekirdağ Namık Kemal University, Tekirdag, Turkey.
| | - Yakup Albayrak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| | - Ferit Durankuş
- Faculty of Medicine, Department of Pediatrics, Okan University, Istanbul, Turkey
| | - Savaş Güzel
- Faculty of Medicine, Department of Biochemistry, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| | - Özlem Abbak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| | - Nihan Potas
- Faculty of Economics and Administrative Science, Department of Healthcare Management, Gazi University, Ankara, Turkey
| | - Murat Beyazyüz
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| | - Koray Karabekiroğlu
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Metin Donma
- Faculty of Medicine, Department of Pediatrics, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| |
Collapse
|
17
|
Abstract
The neuropeptides orexins are important in regulating the neurobiological systems that respond to stressful stimuli. Furthermore, orexins are known to play a role many of the phenotypes associated with stress-related mental illness such as changes in cognition, sleep-wake states, and appetite. Interestingly, orexins are altered in stress-related psychiatric disorders such as Major Depressive Disorder and Anxiety Disorders. Thus, orexins may be a potential target for treatment of these disorders. In this review, we will focus on what is known about the role of orexins in acute and repeated stress, in stress-induced phenotypes relevant to psychiatric illness in preclinical models, and in stress-related psychiatric illness in humans. We will also briefly discuss how orexins may contribute to sex differences in the stress response and subsequent phenotypes relevant to mental health, as many stress-related psychiatric disorders are twice as prevalent in women.
Collapse
|
18
|
Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018; 41:5060288. [PMID: 30060151 PMCID: PMC6454482 DOI: 10.1093/sleep/zsy141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/10/2018] [Indexed: 01/17/2023] Open
Abstract
Study Objectives The present study investigated the function of Hypocretin (Hcrt or Orexin/OX) receptor antagonists in sleep modulation and memory function with optical methods in transgenic mice. Methods We used Hcrt-IRES-Cre knock-in mice and AAV vectors expressing channelrhodopsin-2 (ChR2) to render Hcrt neurons sensitive to blue light stimulation. We optogenetically stimulated Hcrt neurons and measured latencies to wakefulness in the presence or absence of OX1/2R antagonists and Zolpidem. We also examined endogenous Hcrt neuronal activity with fiber photometry. Changes in memory after optogenetic sleep disruption were evaluated by the novel object recognition test (NOR) and compared for groups treated with vehicle, OX1/2R antagonists, or Zolpidem. We also analyzed electroencephalogram (EEG) power spectra of wakefulness, rapid eye movement (REM) sleep, and non-REM (NREM) sleep following the injections of vehicle, OX1/2R antagonists, and Zolpidem in young adult mice. Results Acute optogenetic stimulation of Hcrt neurons at different frequencies resulted in wakefulness. Treatment with dual OX1/2R antagonists (DORAs) DORA12 and MK6096, as well as selective OX2R antagonist MK1064 and Zolpidem, but not selective OX1R antagonist 1SORA1, significantly reduced the bout length of optogenetic stimulation-evoked wakefulness episode. Fiber photometry recordings of GCaMP6f signals showed that Hcrt neurons are active during wakefulness, even in the presence of OXR antagonists. Treatment with dual OX1/2R antagonists improved memory function despite optogenetic sleep fragmentation caused impaired memory function in a NOR test. Conclusions Our results show DORAs and selective OX2R antagonists stabilize sleep and improve sleep-dependent cognitive processes even when challenged by optogenetic stimulation mimicking highly arousing stimuli.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Natalie Nevárez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
19
|
Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull 2018; 145:59-74. [PMID: 30016726 DOI: 10.1016/j.brainresbull.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
Sleep is frequently altered in systemic infections as a component of sickness behavior in response to inflammation. Sleepiness in sickness behavior has been extensively investigated. Much less attention has instead been devoted to sleep and wake alterations in brain infections. Most of these, as other neuroinfections, are prevalent in sub-Saharan Africa. The present overview highlights the importance of this topic from both the clinical and pathogenetic points of view. Vigilance states and their regulation are first summarized, emphasizing that key nodes in this distributed brain system can be targeted by neuroinflammatory signaling. Sleep-wake changes in the parasitic disease human African trypanosomiasis (HAT) and its animal models are then reviewed and discussed. Experimental data have revealed that the suprachiasmatic nucleus, the master circadian pacemaker, and peptidergic cell populations of the lateral hypothalamus (the wake-promoting orexin neurons and the sleep-promoting melanin-concentrating hormone neurons) are targeted by African trypanosome infection. It is then discussed how prominent and disturbing are sleep changes in HIV/AIDS, also when the infection is cured with antiretroviral therapy. This recalls attention on the bidirectional interactions between sleep and immune system, including the specialized brain immune response of which microglial cells are protagonists. Sleep changes in an ancient viral disease, rabies, and in the emerging infection due to Zika virus which causes a congenital syndrome, are also dealt with. Altogether the findings indicate that sleep-wake regulation is targeted by brain infections caused by different pathogens and, although the relevant pathogenetic mechanisms largely remain to be clarified, these alterations differ from hypersomnia occurring in sickness behavior. Thus, brain infections point to the vulnerability of the neural network of sleep-wake regulation as a highly relevant clinical and basic science challenge.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
20
|
Abstract
Purpose of Review The aim of this review was to summarize collected data on the role of orexin and orexin neurons in the control of sleep and blood pressure. Recent Findings Although orexins (hypocretins) have been known for only 20 years, an impressive amount of data is now available regarding their physiological role. Hypothalamic orexin neurons are responsible for the control of food intake and energy expenditure, motivation, circadian rhythm of sleep and wake, memory, cognitive functions, and the cardiovascular system. Multiple studies show that orexinergic stimulation results in increased blood pressure and heart rate and that this effect may be efficiently attenuated by orexinergic antagonism. Increased activity of orexinergic neurons is also observed in animal models of hypertension. Summary Pharmacological intervention in the orexinergic system is now one of the therapeutic possibilities in insomnia. Although the role of orexin in the control of blood pressure is well described, we are still lacking clinical evidence that this is a possibility for a new approach in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-235, Gdansk, Poland.
| | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-235, Gdansk, Poland
| | - Eemil Partinen
- Department of Neurology, University of Helsinki, Helsinki, Finland
- Vitalmed Helsinki Sleep Clinic, Helsinki, Finland
| |
Collapse
|
21
|
Kowalska M, Kapelusiak-Pielok M, Grzelak T, Wypasek E, Kozubski W, Dorszewska J. The New *G29A and G1222A of HCRTR1, 5-HTTLPR of SLC6A4 Polymorphisms and Hypocretin-1, Serotonin Concentrations in Migraine Patients. Front Mol Neurosci 2018; 11:191. [PMID: 29922128 PMCID: PMC5996111 DOI: 10.3389/fnmol.2018.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Migraine is one of the most common primary headache disorders that affects 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura (MA) and migraine without aura (MO). Both serotonergic and hypocretinergic systems are involved in the migraine pathomechanism. Polymorphisms in the serotonin transporter gene (SLC6A4) and the hypocretin receptor 1 gene (HCRTR1) may be risk factors for migraine development due to their ability to affect serotonin and hypocretin-1 (HCRT-1) concentrations. The aim of the study was to analyze, for the first time in the Polish population, the 5-HT transporter linked polymorphic region (5-HTTLPR) in SLC6A4, G1222A (rs2271933) and the never before studied *G29A (rs41263963) polymorphisms in the HCRTR1 gene, as well as the 5-HT and hypocretin-1 plasma concentrations in migraine patients (MA, MO) and control subjects. The study included 123 patients that were diagnosed with migraine and 123 control subjects. Methods such as PCR, HRMA and sequencing were used for genotyping, while 5-HT was determined by HPLC/EC and hypocretin-1 by ELISA. No significant differences were observed in 5-HTTLPR frequencies. The A allele of HCRTR1 G1222A occurred more often in MO, while the GA genotype of HCRTR1 *G29A was more frequent among MA when compared to control group (p < 0.05). The mean age of migraine onset in individuals with HCRTR1 *G29A was 18 years old for patients with MA and 26 years old for MO patients. The localization and type of HCRTR1 polymorphisms (G1222A-missense variant in exon 7, *G29A-3'UTR variant) may predispose patients to the clinical subtype of migraine: MO or MA, respectively. In control subjects, the short allele of 5-HTTLPR tended to decrease the 5-HT concentration, while the A allele of HCRTR1 G1222A decreased both 5-HT and hypocretin-1 levels. Serotonin concentrations differed in terms of clinical features of migraine. The relation between genotypes of 5-HTTLPR, HCRTR1 G1222A, and 5-HT concentrations may bedisturbed in migraine. It seems that HCRTR1 *G29A is more strongly associated with regulating the 5-HT in patients with MA than MO, and therefore may contribute to the early age of onset for migraine.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Teresa Grzelak
- Department of Biology of Civilization-Linked Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Wypasek
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland.,The John Paul II Hospital, Krakow, Poland.,Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
22
|
Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol 2018; 14:655-663. [PMID: 29867144 PMCID: PMC6008210 DOI: 10.1038/s41589-018-0062-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
The unusually high demand for metals in the brain along with insufficient understanding of how their dysregulation contributes to neurological diseases motivates the study of how inorganic chemistry influences neural circuitry. We now report that the transition metal copper is essential for regulating rest–activity cycles and arousal. Copper imaging and gene expression analysis in zebrafish identifies the locus coeruleus-norepinephrine (LC-NE) system, a vertebrate-specific neuromodulatory circuit critical for regulating sleep, arousal, attention, memory and emotion, as a copper-enriched unit with high levels of copper transporters CTR1 and ATP7A and the copper enzyme dopamine beta-hydroxylase (DBH) that produces NE. Copper deficiency induced by genetic disruption of ATP7A, which loads copper into DBH, lowers NE levels and hinders LC function as manifested by disruption in rest–activity modulation. Moreover, LC dysfunction caused by copper deficiency from ATP7A disruption can be rescued by restoring synaptic levels of NE, establishing a molecular CTR1-ATP7A-DBH-NE axis for copper-dependent LC function.
Collapse
|
23
|
Laperchia C, Xu YZ, Mumba Ngoyi D, Cotrufo T, Bentivoglio M. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons. Front Neuroanat 2018. [PMID: 29535612 PMCID: PMC5835115 DOI: 10.3389/fnana.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuron populations of the lateral hypothalamus which synthesize the orexin (OX)/hypocretin or melanin-concentrating hormone (MCH) peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT), also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b.) parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction) and MCH neurons (about 54% reduction) was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively), which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN) region and the thalamic paraventricular nucleus (PVT), densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic neuroinflammatory signaling caused by the infection of human-pathogenic African trypanosomes.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Yuan-Zhong Xu
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Tiziana Cotrufo
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
24
|
Takekawa D, Kushikata T, Kitayama M, Hirota K. Anesthetic management of a patient with narcolepsy by combination of total intravenous and regional anesthesia: a case report. JA Clin Rep 2018; 3:37. [PMID: 29457081 PMCID: PMC5804620 DOI: 10.1186/s40981-017-0107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Narcolepsy is a neurological disease characterized by excessive daytime sleepiness, cataplexy, and/or a sudden loss of muscle tone due to malfunction of the orexinergic system, which may cause delayed emergence from general anesthesia. We report a successful anesthetic management of 24-year-old female narcoleptic patient undergoing left anterior cruciate ligament reconstruction. Anesthesia was induced and maintained with total intravenous anesthesia (TIVA) using propofol and remifentanil. Ultrasound-guided left femoral nerve block was also performed with 0.375% ropivacaine 20 ml. Acetaminophen 1000 mg was intravenously administered as part of a multimodal analgesia. After the surgery, the trachea was extubated 9 min after termination of TIVA, and then, the patient correctly responded to verbal commands. The postoperative course was uneventful without any narcoleptic symptoms.
Collapse
Affiliation(s)
- Daiki Takekawa
- 1Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Japan
| | - Tetsuya Kushikata
- 1Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Japan
| | - Masato Kitayama
- 2Division of Surgical Center, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, 036-8563 Japan
| | - Kazuyoshi Hirota
- 1Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Japan
| |
Collapse
|
25
|
Fan Z, Hou L, Wan D, Ao R, Zhao D, Yu S. Genetic association of HCRTR2, ADH4 and CLOCK genes with cluster headache: a Chinese population-based case-control study. J Headache Pain 2018; 19:1. [PMID: 29318394 PMCID: PMC5760492 DOI: 10.1186/s10194-017-0831-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cluster headache (CH), a rare primary headache disorder, is currently thought to be a genetic susceptibility which play a role in CH susceptibility. A large numbers of genetic association studies have confirmed that the HCRTR2 (Hypocretin Receptor 2) SNP rs2653349, and the ADH4 (Alcohol Dehydrogenase 4) SNP rs1126671 and rs1800759 polymorphisms are linked to CH. In addition, the CLOCK (Circadian Locomotor Output Cycles Kaput) gene is becoming a research hotspot for CH due to encoding a transcription factor that serves as a basic driving force for circadian rhythm in humans. The purpose of this study was to evaluate the association between CH and the HCRTR2, ADH4 and CLOCK genes in a Chinese CH case–control sample. Methods We genotyped polymorphisms of nine single nucleotide polymorphisms (SNPs) in the HCRTR2, ADH4 and CLOCK genes to perform an association study on a Chinese Han CH case-control sample (112 patients and 192 controls),using Sequenom MALDI-TOF mass spectrometry iPLEX platform. The frequencies and distributions of genotypes and haplotypes were statistically compared between the case and control groups to identify associations with CH. The effects of SNPs on CH were further investigated by multiple logistic regression. Results The frequency of the HCRTR2 SNP rs3800539 GA genotype was significantly higher in cases than in controls (48.2% vs.37.0%). The GA genotypes was associated with a higher CH risk (OR = 1.483, 95% CI: 0.564-3.387, p = 0.038), however, after Bonferroni correction, the association lost statistical significance. Haplotype analysis of the HCRTR2 SNPs showed that among eight haplotypes, only H1-GTGGGG was linked to a reduced CH risk (44.7% vs. 53.1%, OR = 0.689, 95% CI =0.491~0.966, p = 0.030). No significant association of ADH4, CLOCK SNPs with CH was statistically detected in the present study. Conclusions Association between HCRTR2, ADH4,CLOCK gene polymorphisms and CH was not significant in the present study, however, haplotype analysis indicated H1-GTGGGG was linked to a reduced CH risk. Electronic supplementary material The online version of this article (10.1186/s10194-017-0831-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiliang Fan
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.,The third department of Neurology, Affiliated Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, China
| | - Lei Hou
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Dongjun Wan
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Ran Ao
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Dengfa Zhao
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
26
|
Orexin-B modulates synaptic transmission of rod bipolar cells in rat retina. Neuropharmacology 2018; 133:38-50. [PMID: 29325900 DOI: 10.1016/j.neuropharm.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Orexin-A, -B play a crucial role in arousal and feeding by activating two G-protein-coupled receptors: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). Orexins, along with orexin receptors, are expressed in retinal neurons, and they have been shown to differentially modulate excitatory AMPA receptors of amacrine and ganglion cells in the inner retina. In this work we report that orexin-B modulates the activity of rod bipolar cells (RBCs) located in the outer retina of rat. Intravitreal injection of orexin-B increased the amplitude of the scotopic electroretinographic b-wave, a reflection of RBC activity, recorded in vivo. Patch clamp recordings in rat retinal slices showed that orexin-B did not change glutamatergic excitatory component of the RBC response driven by photoreceptors. Effects of orexin-B on GABA receptor-mediated synaptic transmission of RBCs were then examined. In retinal slice preparations orexin-B suppressed GABA receptor-mediated inhibitory postsynaptic currents of RBCs in the inner plexiform layer. Furthermore, using whole-cell recordings in isolated RBCs it was shown that orexin-B suppressed GABAC receptor-, but not GABAA receptor-, mediated currents of the RBCs, an effect that was blocked by OX1R and OX2R antagonists. The orexin-B-induced inhibition of GABAC currents was likely mediated by a Gi/o/PC-PLC/Ca2+-independent PKC signaling pathway, as such inhibition was absent when each step of the above-pathway was blocked with GDP-β-S/pertussis toxin (for Gi/o), D609 (for PLC), bisindolylmaleimide IV (for PKC)/rottlerin (for PKCδ), respectively. The orexin-B-induced potentiation of RBC activity may improve visual acuity and contrast sensitivity of the animal during the dark period (wake phase).
Collapse
|
27
|
Weydt P, Dupuis L, Petersen Å. Thermoregulatory disorders in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:761-775. [PMID: 30459039 DOI: 10.1016/b978-0-444-64074-1.00047-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a paradigmatic autosomal-dominant adult-onset neurodegenerative disease. Since the identification of an abnormal expansion of a trinucleotide repeat tract in the huntingtin gene as the underlying genetic defect, a broad range of transgenic animal models of the disease has become available and these have helped to unravel the relevant molecular pathways in unprecedented detail. Of note, some of the most informative of these models develop thermoregulatory defects such as hypothermia, problems with adaptive thermogenesis, and an altered circadian temperature rhythm. Both central, e.g., in the hypothalamus and peripheral, i.e., the brown adipose tissue and skeletal muscle, problems contribute to the phenotype. Importantly, these structures and pathways are also affected in human HD. Yet, currently the evidence for bona fide thermodysregulation in human HD patients remains anecdotal. This may be due to a lack of reliable tools for monitoring body temperature in an outpatient setting. Regardless, study of the temperature phenotype has contributed to the identification of unexpected molecular targets, such as the PGC-1α pathway.
Collapse
Affiliation(s)
- Patrick Weydt
- Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany.
| | - Luc Dupuis
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Åsa Petersen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. eLife 2017; 6:25727. [PMID: 29106375 PMCID: PMC5705210 DOI: 10.7554/elife.25727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and npvf-expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of npvf-expressing neurons induces neuronal activity levels consistent with normal sleep. These results identify NPVF signaling and npvf-expressing neurons as a novel vertebrate sleep-promoting system and suggest that RFamide neuropeptides participate in an ancient and central aspect of sleep control.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrey Andreev
- Department of Bioengineering, University of Southern California, Los Angeles, United States
| | - Thai V Truong
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Audrey Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrew J Hill
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Young K Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Steven Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Laura Glass
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Scott E Fraser
- Department of Bioengineering, University of Southern California, Los Angeles, United States.,Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
29
|
Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL. Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal. Front Neurosci 2017; 11:608. [PMID: 29163012 PMCID: PMC5672019 DOI: 10.3389/fnins.2017.00608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Targeting neuropeptide systems is important for future advancements in treatment of neurological and psychiatric illnesses. However, many of the peptides and their analogs do not cross the blood-brain barrier (BBB) efficiently. Nanoparticles such as iron oxide can cross the BBB, and here we describe a novel method for the conjugation of a peptide antisauvagine-30 (ASV-30) to iron oxide nanoparticles. Previous research has shown that direct infusion of ASV-30 into the brain reduces anxiety-like behavior in animal models via actions on corticotropin releasing factor type 2 (CRF2) receptors. Therefore, we tested whether iron oxide+ASV-30 complexes cross the BBB of rats and then determined whether iron oxide+ASV-30 nanoparticles are localized with CRF2-expressing neurons. Finally we tested the hypothesis that systemic infusion of iron oxide+ASV-30 can reduce anxiety-like behavior. First we describe the synthesis and demonstrate the stability of iron oxide-peptide nanoparticle complexes. Next, nanoparticles (87.7 μg/kg Fe2O3) with or without ASV-30 (200 μg/kg, ip) were injected into male rats 30 min prior to transcardial perfusion and brain fixation for immunohistochemical analysis, or before testing on the elevated plus maze (EPM) in an amphetamine withdrawal model of anxiety. Systemically administered iron oxide+ASV-30 particles were present in the brain and associated with neurons, including those that express CRF2 receptors, but did not localize with the iron storage protein ferritin. Furthermore, systemic administration of ironoxide+ASV-30 reduced amphetamine withdrawal-induced anxiety without affecting locomotion, suggesting that the anxiolytic effects of ASV-30 were preserved and the bioavailability of ASV-30 was sufficient. The findings demonstrate a novel approach to peptide delivery across the BBB and provide insight as to the neural distribution and efficacy of this nanotechnology.
Collapse
Affiliation(s)
- Nathan Vinzant
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Chia-Ming Wu
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Trevor Kindle
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Ranjit Koodali
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
30
|
Abstract
Narcolepsy type 1 (NT1) is a rare sleep disorder caused by the very specific loss of hypothalamic hypocretin (Hcrt)/orexin neurons. The exact underlying process leading to this destruction is yet unknown, but indirect evidence strongly supports an autoimmune origin. The association with immune-related genetic factors, in particular the strongest association ever reported in a disease with an allele of a human leukocyte antigen (HLA) gene, and with environmental factors (i.e., the H1N1 influenza infection and vaccination during the pandemic in 2009) are in favor of such a hypothesis. The loss of Hcrt neurons is irreversible, and NT1 is currently an incurable and disabling condition. Patients are managed with symptomatic medication, targeting the main symptoms (excessive daytime sleepiness, cataplexy, disturbed nocturnal sleep), and they require a lifelong treatment. Improved diagnostic tools, together with an increased understanding of the pathogenesis of NT1, may lead to new therapeutic and even preventive interventions. One future treatment could include Hcrt replacement, but this neuropeptide does not cross the blood-brain barrier. However, Hcrt receptor agonists may be promising candidates to treat NT1. Another option is immune-based therapies, administered at disease onset, with already some initiatives to slow down or stop the dysimmune process. Whether immune-based therapy could be beneficial in NT1 remains, however, to be proven.
Collapse
|
31
|
Qiao SN, Zhou W, Liu LL, Zhang DQ, Zhong YM. Orexin-A Suppresses Signal Transmission to Dopaminergic Amacrine Cells From Outer and Inner Retinal Photoreceptors. Invest Ophthalmol Vis Sci 2017; 58:4712-4721. [PMID: 28910447 PMCID: PMC5598320 DOI: 10.1167/iovs.17-21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The neuropeptides orexin-A and orexin-B are widely expressed in the vertebrate retina; however, their role in visual function is unclear. This study investigates whether and how orexins modulate signal transmission to dopaminergic amacrine cells (DACs) from both outer retinal photoreceptors (rods and cones) and inner retinal photoreceptors (melanopsin-expressing intrinsically photosensitive retinal ganglion cells [ipRGCs]). Methods A whole-cell voltage-clamp technique was used to record light-induced responses from genetically labeled DACs in flat-mount mouse retinas. Rod and cone signaling to DACs was confirmed pharmacologically (in wild-type retinas), whereas retrograde melanopsin signaling to DACs was isolated either pharmacologically (in wild-type retinas) or by genetic deletion of rod and cone function (in transgenic mice). Results Orexin-A attenuated rod/cone-mediated light responses in the majority of DACs and inhibited all DACs that exhibited melanopsin-based light responses, suggesting that exogenous orexin suppresses signal transmission from rods, cones, and ipRGCs to DACs. In addition, orexin receptor 1 antagonist SB334867 and orexin receptor 2 antagonist TCS OX229 enhanced melanopsin-based DAC responses, indicating that endogenous orexins inhibit signal transmission from ipRGCs to DACs. We further found that orexin-A inhibits melanopsin-based DAC responses via orexin receptors on DACs, whereas orexin-A may modulate signal transmission from rods and cones to DACs through activation of orexin receptors on DACs and their upstream neurons. Conclusions Our results suggest that orexins could influence visual function via the dopaminergic system in the mammalian retina.
Collapse
Affiliation(s)
- Sheng-Nan Qiao
- Institutes of Brain Science, Fudan University, Shanghai, China.,Eye Research Institute, Oakland University, Rochester, Michigan, United States
| | - Wei Zhou
- Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei-Lei Liu
- Eye Research Institute, Oakland University, Rochester, Michigan, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan, United States
| | - Yong-Mei Zhong
- Institutes of Brain Science, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Abstract
How the brain controls vigilance state transitions remains to be fully understood. The discovery of hypocretins, also known as orexins, and their link to narcolepsy has undoubtedly allowed us to advance our knowledge on key mechanisms controlling the boundaries and transitions between sleep and wakefulness. Lack of function of hypocretin neurons (a relatively simple and non-redundant neuronal system) results in inappropriate control of sleep states without affecting the total amount of sleep or homeostatic mechanisms. Anatomical and functional evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain and interact with major neuromodulator systems in order to regulate physiological processes underlying wakefulness, attention, and emotions. Here, we review the role of hypocretins/orexins in arousal state transitions, and discuss possible mechanisms by which such a relatively small population of neurons controls fundamental brain state dynamics.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA
| | - William J Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
34
|
Kobylinska L, Ghita MA, Caruntu C, Gabreanu G, Tataru CP, Badescu SV, Geicu O, Neagu M, Constantin C, Dobrescu I, Zagrean L. PRELIMINARY INSIGHTS IN OXYTOCIN ASSOCIATION WITH THE ONSET OF DIABETIC NEUROPATHY. ACTA ENDOCRINOLOGICA-BUCHAREST 2017; 13:249-253. [PMID: 31149183 DOI: 10.4183/aeb.2017.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes is one of the most prevalent chronic disorders, associating numerous somatic and behavioral modifications. Oxytocin has been widely studied for its involvement in social behavior and psychiatric disorders. This pilot study presents a series of 3 patients with type 1 diabetes and diabetic neuropathy in which the values of plasma oxytocin, neurotensin, β-endorphins, α-MSH, substance P and orexin A were measured in comparison to 3 healthy controls with matching ages. In the diabetic patients group, there was a strong negative correlation between the value of plasma glucose and oxytocin (r=-0.99, p=0.04), respectively neurotensin (r=-0.99, p=0.03). These values did not correlate in the control group. The results suggest that oxytocin, in conjunction with neurotensin, could be investigated as a potential early detection marker of diabetic neuropathy and, to our knowledge, this is the first report focusing on plasma oxytocin levels in patients with diabetic neuropathy.
Collapse
Affiliation(s)
- L Kobylinska
- "Prof. Dr. Al. Obregia" Clinical Psychiatry Hospital - Child and Adolescent Psychiatry Department, "Carol Davila" University of Medicine and Pharmacy - Bucharest, Romania.,Physiology and Fundamental Neuroscience Department - Bucharest, Romania
| | - M A Ghita
- Dermatology Research Laboratory - Bucharest, Romania
| | - C Caruntu
- Dermatology Research Laboratory - Bucharest, Romania.,"Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases - Dermatology, Bucharest, Romania
| | - G Gabreanu
- "Victor Babes" National Institute of Pathology - Immunology Department, Bucharest, Romania
| | - C P Tataru
- Division of Ophthalmology - Bucharest, Romania
| | - S V Badescu
- Physiology and Fundamental Neuroscience Department - Bucharest, Romania
| | - O Geicu
- University of Bucharest, Faculty of Biology - Biochemistry and Molecular Biology Department, Bucharest, Romania
| | - M Neagu
- "Victor Babes" National Institute of Pathology - Immunology Department, Bucharest, Romania
| | - C Constantin
- "Victor Babes" National Institute of Pathology - Immunology Department, Bucharest, Romania
| | - I Dobrescu
- "Prof. Dr. Al. Obregia" Clinical Psychiatry Hospital - Child and Adolescent Psychiatry Department, "Carol Davila" University of Medicine and Pharmacy - Bucharest, Romania.,Child and Adolescent Psychiatry Department, Bucharest, Romania
| | - L Zagrean
- Physiology and Fundamental Neuroscience Department - Bucharest, Romania
| |
Collapse
|
35
|
Mena W, Diegelmann S, Wegener C, Ewer J. Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators. eLife 2016; 5. [PMID: 27976997 PMCID: PMC5158135 DOI: 10.7554/elife.19686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.
Collapse
Affiliation(s)
- Wilson Mena
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaiso, Chile
| | - Sören Diegelmann
- Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | | | - John Ewer
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
36
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
37
|
Opperhuizen AL, Wang D, Foppen E, Jansen R, Boudzovitch-Surovtseva O, de Vries J, Fliers E, Kalsbeek A. Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats. Eur J Neurosci 2016; 44:2795-2806. [PMID: 27562056 DOI: 10.1111/ejn.13377] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
Shiftworkers run an increased risk of developing metabolic disorders, presumably as a result of disturbed circadian physiology. Eating at a time-of-day that is normally dedicated to resting and fasting, may contribute to this association. The hypothalamus is the key brain area that integrates different inputs, including environmental time information from the central biological clock in the suprachiasmatic nuclei, with peripheral information on energy status to maintain energy homeostasis. The orexin system within the lateral hypothalamus is an important output of the suprachiasmatic nuclei involved in the control of sleep/wake behavior and glucose homeostasis, among other functions. In this study, we tested the hypothesis that feeding during the rest period disturbs the orexin system as a possible underlying contributor to metabolic health problems. Male Wistar rats were exposed to an 8-week protocol in which food was available ad libitum for 24-h, for 12-h during the light phase (i.e., unnatural feeding time) or for 12-h during the dark phase (i.e., restricted feeding, but at the natural time-of-day). Animals forced to eat at an unnatural time, i.e., during the light period, showed no changes in orexin and orexin-receptor gene expression in the hypothalamus, but the rhythmic expression of clock genes in the lateral hypothalamus was absent in these animals. Light fed animals did show adverse changes in whole-body physiology and internal desynchronization of muscle and liver clock and metabolic gene expression. Eating at the 'wrong' time-of-day thus causes internal desynchronization at different levels, which in the long run may disrupt body physiology.
Collapse
Affiliation(s)
- Anne-Loes Opperhuizen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Dawei Wang
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Institute of Plant Protection (IPP), Chinese Academy of Agricultural Science (CAAS), Beijing, China
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Olga Boudzovitch-Surovtseva
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke de Vries
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016; 10:400. [PMID: 27625592 PMCID: PMC5004043 DOI: 10.3389/fnins.2016.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs) promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc) and anterior insular cortex (aINS) in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh) significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results suggest that OX1Rs within the mNAsh and mPFC, but not the aINS, play a central role in driving excessive alcohol drinking.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Ji Hwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Arisa Mototake
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Bing Hu
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Frederic W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
39
|
Garbarino S, Lanteri P, Durando P, Magnavita N, Sannita WG. Co-Morbidity, Mortality, Quality of Life and the Healthcare/Welfare/Social Costs of Disordered Sleep: A Rapid Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E831. [PMID: 27548196 PMCID: PMC4997517 DOI: 10.3390/ijerph13080831] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Sleep disorders are frequent (18%-23%) and constitute a major risk factor for psychiatric, cardiovascular, metabolic or hormonal co-morbidity and mortality. Low social status or income, unemployment, life events such as divorce, negative lifestyle habits, and professional requirements (e.g., shift work) are often associated with sleep problems. Sleep disorders affect the quality of life and impair both professional and non-professional activities. Excessive daytime drowsiness resulting from sleep disorders impairs efficiency and safety at work or on the road, and increases the risk of accidents. Poor sleep (either professional or voluntary) has detrimental effects comparable to those of major sleep disorders, but is often neglected. The high incidence and direct/indirect healthcare and welfare costs of sleep disorders and poor sleep currently constitute a major medical problem. Investigation, monitoring and strategies are needed in order to prevent/reduce the effects of these disorders.
Collapse
Affiliation(s)
- Sergio Garbarino
- Center of Sleep Medicine, Genoa 16132, Italy.
- Department of Neuroscience, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy.
| | - Paola Lanteri
- Child Neurology and Psychiatry Unit, Istituto Giannina Gaslini, Genoa 16148, Italy.
| | - Paolo Durando
- Department of Health Sciences, Postgraduate School in Occupational Medicine, University of Genoa and Occupational Medicine Unit, IRCCS AOU San Martino IST, Genoa 16132, Italy.
| | - Nicola Magnavita
- Department of Public Health, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Walter G Sannita
- Center of Sleep Medicine, Genoa 16132, Italy.
- Department of Neuroscience, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy.
| |
Collapse
|
40
|
Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016; 110:431-437. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023]
Abstract
Addiction is promoted by pathological motivation for addictive substances, and, despite extensive efforts, alcohol use disorders (AUDs) continue to extract a very high social, physical, and economic toll. Compulsive drinking of alcohol, where consumption persists even when alcohol is paired with negative consequences, is considered a particular obstacle for treating AUDs. Aversion-resistant alcohol intake in rodents, e.g. where rodents drink even when alcohol is paired with the bitter tastant quinine, has been considered to model some compulsive aspects of human alcohol consumption. However, the critical mechanisms that drive compulsive-like drinking are only beginning to be identified. The neuropeptide orexin has been linked to high motivation for cocaine, preferred foods, and alcohol. Thus, we investigated the role of orexin receptors in compulsive-like alcohol drinking, where C57BL/6 mice had 2-hr daily access to 15% alcohol with or without quinine (100 μM). We found that systemic administration of the widely used selective orexin-1 receptor (OX1R) blocker, SB-334867 (SB), significantly reduced compulsive-like consumption at doses lower than those reported to reduce quinine-free alcohol intake. The dose of 3-mg/kg SB, in particular, suppressed only compulsive-like drinking. Furthermore, SB did not reduce concurrent water intake during the alcohol drinking sessions, and did not alter saccharin + quinine consumption. In addition, the OX2R antagonist TCS-OX2-29 (3 or 10 mg/kg) did not alter intake of alcohol with or without quinine. Together, our results suggest that OX1R signaling is particularly important for promoting compulsive-like alcohol drinking, and that OX1Rs might represent a novel therapy to counteract compulsive aspects of human AUDs.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ji-Hwan Yu
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - F Woodward Hopf
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|