1
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Abstract
In the final stages of apoptosis, apoptotic cells can generate a variety of membrane-bound vesicles known as apoptotic extracellular vesicles (ApoEVs). Apoptotic bodies (ApoBDs), a major subset of ApoEVs, are formed through a process termed apoptotic cell disassembly characterised by a series of tightly regulated morphological steps including plasma membrane blebbing, apoptotic membrane protrusion formation and fragmentation into ApoBDs. To better characterise the properties of ApoBDs and elucidate their function, a number of methods including differential centrifugation, filtration and fluorescence-activated cell sorting were developed to isolate ApoBDs. Furthermore, it has become increasingly clear that ApoBD formation can contribute to various biological processes such as apoptotic cell clearance and intercellular communication. Together, recent literature demonstrates that apoptotic cell disassembly and thus, ApoBD formation, is an important process downstream of apoptotic cell death. In this chapter, we discuss the current understandings of the molecular mechanisms involved in regulating apoptotic cell disassembly, techniques for ApoBD isolation, and the functional roles of ApoBDs in physiological and pathological settings.
Collapse
|
3
|
Kárpáti É, Papp A, Schneider AE, Hajnal D, Cserhalmi M, Csincsi ÁI, Uzonyi B, Józsi M. Interaction of the Factor H Family Proteins FHR-1 and FHR-5 With DNA and Dead Cells: Implications for the Regulation of Complement Activation and Opsonization. Front Immunol 2020; 11:1297. [PMID: 32765490 PMCID: PMC7378360 DOI: 10.3389/fimmu.2020.01297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Complement plays an essential role in the opsonophagocytic clearance of apoptotic/necrotic cells. Dysregulation of this process may lead to inflammatory and autoimmune diseases. Factor H (FH), a major soluble complement inhibitor, binds to dead cells and inhibits excessive complement activation on their surface, preventing lysis, and the release of intracellular material, including DNA. The FH-related (FHR) proteins share common ligands with FH, due to their homology with this complement regulator, but they lack the domains that mediate the complement inhibitory activity of FH. Because their roles in complement regulation is controversial and incompletely understood, we studied the interaction of FHR-1 and FHR-5 with DNA and dead cells and investigated whether they influence the regulatory role of FH and the complement activation on DNA and dead cells. FH, FHR-1, and FHR-5 bound to both plasmid DNA and human genomic DNA, where both FHR proteins inhibited FH-DNA interaction. The FH cofactor activity was inhibited by FHR-1 and FHR-5 due to the reduced binding of FH to DNA in the presence of the FHRs. Both FHRs caused increased complement activation on DNA. FHR-1 and FHR-5 bound to late apoptotic and necrotic cells and recruited monomeric C-reactive protein and pentraxin 3, and vice versa. Interactions of the FHRs with pentraxins resulted in enhanced activation of both the classical and the alternative complement pathways on dead cells when exposed to human serum. Altogether, our results demonstrate that FHR-1 and FHR-5 are competitive inhibitors of FH on DNA; moreover, FHR-pentraxin interactions promote opsonization of dead cells.
Collapse
Affiliation(s)
- Éva Kárpáti
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea E Schneider
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hajnal
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marcell Cserhalmi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám I Csincsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Tixeira R, Phan TK, Caruso S, Shi B, Atkin-Smith GK, Nedeva C, Chow JDY, Puthalakath H, Hulett MD, Herold MJ, Poon IKH. ROCK1 but not LIMK1 or PAK2 is a key regulator of apoptotic membrane blebbing and cell disassembly. Cell Death Differ 2019; 27:102-116. [PMID: 31043701 DOI: 10.1038/s41418-019-0342-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
Many cell types are known to undergo a series of morphological changes during the progression of apoptosis, leading to their disassembly into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs). In particular, the formation of circular bulges called membrane blebs on the surface of apoptotic cells is a key morphological step required for a number of cell types to generate ApoBDs. Although apoptotic membrane blebbing is thought to be regulated by kinases including ROCK1, PAK2 and LIMK1, it is unclear whether these kinases exhibit overlapping roles in the disassembly of apoptotic cells. Utilising both pharmacological and CRISPR/Cas9 gene editing based approaches, we identified ROCK1 but not PAK2 or LIMK1 as a key non-redundant positive regulator of apoptotic membrane blebbing as well as ApoBD formation. Functionally, we have established an experimental system to either inhibit or enhance ApoBD formation and demonstrated the importance of apoptotic cell disassembly in the efficient uptake of apoptotic materials by various phagocytes. Unexpectedly, we also noted that ROCK1 could play a role in regulating the onset of secondary necrosis. Together, these data shed light on both the mechanism and function of cell disassembly during apoptosis.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Bo Shi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jenny D Y Chow
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
5
|
Mahajan A, Herrmann M, Muñoz LE. Clearance Deficiency and Cell Death Pathways: A Model for the Pathogenesis of SLE. Front Immunol 2016; 7:35. [PMID: 26904025 PMCID: PMC4745266 DOI: 10.3389/fimmu.2016.00035] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/24/2016] [Indexed: 12/21/2022] Open
Abstract
Alterations of cell death pathways, including apoptosis and the neutrophil specific kind of death called NETosis, can represent a potential source of autoantigens. Defects in the clearance of apoptotic cells may be responsible for the initiation of systemic autoimmunity in several chronic inflammatory diseases, including systemic lupus erythematosus (SLE). Autoantigens are released mainly from secondary necrotic cells because of a defective clearance of apoptotic cells or an inefficient degradation of DNA-containing neutrophil extracellular traps (NETs). These modified autoantigens are presented by follicular dendritic cells to autoreactive B cells in germinal centers of secondary lymphoid organs. This results in the loss of self-tolerance and production of autoantibodies, a unifying feature of SLE. Immune complexes (IC) are formed from autoantibodies bound to uncleared cellular debris in blood or tissues. Clearance of IC by blood phagocytes, macrophages, and dendritic cells leads to proinflammatory cytokine secretion. In particular, plasmacytoid dendritic cells produce high amounts of interferon-α upon IC uptake, thereby contributing to the interferon signature of patients with SLE. The clearance of antinuclear IC via Fc-gamma receptors is considered a central event in amplifying inflammatory immune responses in SLE. Along with this, the accumulation of cell remnants represents an initiating event of the etiology, while the subsequent generation of autoantibodies against nuclear antigens (including NETs) results in the perpetuation of inflammation and tissue damage in patients with SLE. Here, we discuss the implications of defective clearance of apoptotic cells and NETs in the development of clinical manifestations in SLE.
Collapse
Affiliation(s)
- Aparna Mahajan
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology , Erlangen , Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology , Erlangen , Germany
| | - Luis E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology , Erlangen , Germany
| |
Collapse
|
6
|
Matatiele P, Tikly M, Tarr G, Gulumian M. DNA methylation similarities in genes of black South Africans with systemic lupus erythematosus and systemic sclerosis. J Biomed Sci 2015; 22:34. [PMID: 25986394 PMCID: PMC4437745 DOI: 10.1186/s12929-015-0142-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are systemic autoimmune connective tissue diseases that share overlapping clinico-pathological features. It is highly probable that there is an overlap in epigenetic landscapes of both diseases. This study aimed to identify similarities in DNA methylation changes in genes involved in SLE and SSc. Global DNA methylation and twelve genes selected on the basis of their involvement in inflammation, autoimmunity and/or fibrosis were analyzed using PCR arrays in three groups, each of 30 Black South Africans with SLE and SSc, plus 40 healthy control subjects. Results Global methylation in both diseases was significantly lower (<25 %) than in healthy subjects (>30 %, p = 0.0000001). In comparison to healthy controls, a similar gene-specific methylation pattern was observed in both SLE and SSc. Three genes, namely; PRF1, ITGAL and FOXP3 were consistently hypermethylated while CDKN2A and CD70 were hypomethylated in both diseases. The other genes (SOCS1, CTGF, THY1, CXCR4, MT1-G, FLI1, and DNMT1) were generally hypomethylated in SLE whereas they were neither hyper- nor hypo-methylated in SSc. Conclusions SSc and SLE patients have a higher global hypomethylation than healthy subjects with specific genes being hypomethylated and others hypermethylated. The majority of genes studied were hypomethylated in SLE compared to SSc. In addition to the commonly known hypomethylated genes in SLE and SSc, there are other hypomethylated genes (such as MT-1G and THY-1) that have not previously been investigated in SLE and SSc though are known to be hypermethylated in cancer.
Collapse
Affiliation(s)
- Puleng Matatiele
- Toxicology & Biochemistry Research Section, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa.
| | - Mohamed Tikly
- Division of Rheumatology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Gareth Tarr
- Division of Rheumatology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Toxicology & Biochemistry Research Section, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa. .,Division of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
7
|
Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol 2013; 49:741-56. [PMID: 24068616 DOI: 10.1007/s12035-013-8553-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
Abstract
The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.
Collapse
|
8
|
Yeung MY, McGrath MM, Nakayama M, Shimizu T, Boenisch O, Magee CN, Abdoli R, Akiba H, Ueno T, Turka LA, Najafian N. Interruption of dendritic cell-mediated TIM-4 signaling induces regulatory T cells and promotes skin allograft survival. THE JOURNAL OF IMMUNOLOGY 2013; 191:4447-55. [PMID: 24038092 DOI: 10.4049/jimmunol.1300992] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DCs) are the central architects of the immune response, inducing inflammatory or tolerogenic immunity, dependent on their activation status. As such, DCs are highly attractive therapeutic targets and may hold the potential to control detrimental immune responses. TIM-4, expressed on APCs, has complex functions in vivo, acting both as a costimulatory molecule and a phosphatidylserine receptor. The effect of TIM-4 costimulation on T cell activation remains unclear. In this study, we demonstrate that Ab blockade of DC-expressed TIM-4 leads to increased induction of induced regulatory T cells (iTregs) from naive CD4(+) T cells, both in vitro and in vivo. iTreg induction occurs through suppression of IL-4/STAT6/Gata3-induced Th2 differentiation. In addition, blockade of TIM-4 on previously activated DCs still leads to increased iTreg induction. iTregs induced under TIM-4 blockade have equivalent potency to control and, upon adoptive transfer, significantly prolong skin allograft survival in vivo. In RAG(-/-) recipients of skin allografts adoptively transferred with CD4(+) T cells, we show that TIM-4 blockade in vivo is associated with a 3-fold prolongation in allograft survival. Furthermore, in this mouse model of skin transplantation, increased induction of allospecific iTregs and a reduction in T effector responses were observed, with decreased Th1 and Th2 responses. This enhanced allograft survival and protolerogenic skewing of the alloresponse is critically dependent on conversion of naive CD4(+) to Tregs in vivo. Collectively, these studies identify blockade of DC-expressed TIM-4 as a novel strategy that holds the capacity to induce regulatory immunity in vivo.
Collapse
Affiliation(s)
- Melissa Y Yeung
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02445
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Integrins and small GTPases as modulators of phagocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:321-54. [PMID: 23351714 DOI: 10.1016/b978-0-12-407699-0.00006-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake.
Collapse
|
11
|
Viegas MS, Estronca LMBB, Vieira OV. Comparison of the kinetics of maturation of phagosomes containing apoptotic cells and IgG-opsonized particles. PLoS One 2012; 7:e48391. [PMID: 23119002 PMCID: PMC3485219 DOI: 10.1371/journal.pone.0048391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Defective clearance of apoptotic cells has emerged as an important contributing factor to the pathogenesis of many diseases. Although many efforts have been made to understand the machinery involved in the recognition between phagocytes and potential targets, little is known about the intracellular transport of phagosomes containing apoptotic cells within mammalian cells. We have, therefore, performed a detailed study on the maturation of phagosomes containing apoptotic cells in a non-professional phagocytic cell line. This process was compared with the maturation of IgG-opsonized particles, which are internalized via the Fcγ-receptor (Fcγ-R), one of the best characterized phagocytic receptor, in the same cell line stably expressing the Fcγ-RIIA. By comparing markers from different stages of phagosome maturation, we have found that phagosomes carrying apoptotic particles reach the lysosomes with a delay compared to those containing IgG-opsonized particles. Enrichment of the apoptotic particles in phosphatidylserine (PS) neither changed the kinetics of their engulfment nor the maturation process of the phagosome.
Collapse
Affiliation(s)
- Michelle S. Viegas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Luís M. B. B. Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Otília V. Vieira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
12
|
Ko CY, Chang LH, Lee YC, Sterneck E, Cheng CP, Chen SH, Huang AM, Tseng JT, Wang JM. CCAAT/enhancer binding protein delta (CEBPD) elevating PTX3 expression inhibits macrophage-mediated phagocytosis of dying neuron cells. Neurobiol Aging 2012; 33:422.e11-25. [PMID: 21112127 PMCID: PMC6309870 DOI: 10.1016/j.neurobiolaging.2010.09.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ, NF-IL6β) is induced in many inflammation-related diseases, suggesting that CEBPD and its downstream targets may play central roles in these conditions. Neuropathological studies show that a neuroinflammatory response parallels the early stages of Alzheimer's disease (AD). However, the precise mechanistic correlation between inflammation and AD pathogenesis remains unclear. CEBPD is upregulated in the astrocytes of AD patients. Therefore, we asked if activation of astrocytic CEBPD could contribute to AD pathogenesis. In this report, a novel role of CEBPD in attenuating macrophage-mediated phagocytosis of damaged neuron cells was found. By global gene expression profiling, we identified the inflammatory marker pentraxin-3 (PTX3, TNFAIP5, TSG-14) as a CEBPD target in astrocytes. Furthermore, we demonstrate that PTX3 participates in the attenuation of macrophage-mediated phagocytosis of damaged neuron cells. This study provides the first demonstration of a role for astrocytic CEBPD and the CEBPD-regulated molecule PTX3 in the accumulation of damaged neurons, which is a hallmark of AD pathogenesis.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Hua Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chao Lee
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Chun-Pei Cheng
- Institute of Bioinformatics, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - A-Mei Huang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joseph T. Tseng
- Institute of Bioinformatics, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan
- Institute of Bioinformatics, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 2011; 12:58-67. [PMID: 22158022 DOI: 10.1038/nrc3171] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of cancer involves mechanisms by which aberrant cells overcome normal regulatory pathways that limit their numbers and their migration. The evasion of programmed cell death is one of several key early events that need to be overcome in the progression from normal cellular homeostasis to malignant transformation. Recently, we provided evidence in mouse and human cancers that successful cancer clones must also overcome programmed cell removal. In this Opinion article, we explore the role of programmed cell removal in both normal and neoplastic cells, and we place this pathway in the context of the initiation of programmed cell death.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine and Cancer Institute, Division of Haematology, Stanford University School of Medicine, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, California 94305, USA.
| | | | | |
Collapse
|
14
|
Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 2010; 15:1007-28. [PMID: 20157780 DOI: 10.1007/s10495-010-0472-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue homeostasis in metazoa requires the rapid and efficient clearance of dying cells by professional or semi-professional phagocytes. Impairment of this finely regulated, fundamental process has been implicated in the development of autoimmune diseases, such as systemic lupus erythematosus. Various studies have provided us a detailed understanding of the interaction between dying cells and phagocytes as well as the current concept that apoptotic cell removal leads to a non- or anti-inflammatory response, whereas necrotic cell removal stimulates a pro-inflammatory reaction. In contrast, our knowledge about the soluble factors released from dying cells is rather limited, although meanwhile it is generally accepted that not only the dying cell itself but also the substances liberated during cell death contribute to the process of corpse clearance and the subsequent immune response. This review article is intended as an up-to-date survey over attraction and danger signals of apoptotic, primary and secondary necrotic cells, their function as chemoattractants in phagocyte recruitment, additional effects on the immune system, and the receptors, which are engaged in this scenario.
Collapse
|
15
|
Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. ACTA ACUST UNITED AC 2010; 189:1059-70. [PMID: 20584912 PMCID: PMC2894449 DOI: 10.1083/jcb.201004096] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in defining the molecular signaling pathways that regulate the phagocytosis of apoptotic cells have improved our understanding of this complex and evolutionarily conserved process. Studies in mice and humans suggest that the prompt removal of dying cells is crucial for immune tolerance and tissue homeostasis. Failed or defective clearance has emerged as an important contributing factor to a range of disease processes. This review addresses how specific molecular alterations of engulfment pathways are linked to pathogenic states. A better understanding of the apoptotic cell clearance process in healthy and diseased states could offer new therapeutic strategies.
Collapse
Affiliation(s)
- Michael R Elliott
- Center for Cell Clearance and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
16
|
A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells. Blood 2009; 114:3191-8. [PMID: 19667404 DOI: 10.1182/blood-2009-03-207522] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) play an instrumental role in regulating tolerance to self-antigens and preventing autoimmunity. One mechanism by which "tolerogenic" DCs are established is through the inhibitory effects of apoptotic cells (ACs). Immature DCs encountering ACs are resistant to stimuli that activate and mature DCs. We have shown that the Mer receptor tyrosine kinase (MerTK) plays a key role in transducing inhibitory signals upon binding of ACs, which in turn involve the phosphatidylinositol 3-kinase (PI3K) pathway. Nevertheless, the molecular basis for AC-induced inhibition of DCs is ill defined. In the current study, the proximal signaling events induced by MerTK after AC binding were studied. AC treatment of bone marrow-derived or splenic DCs established a complex consisting of MerTK, the nonreceptor tyrosine kinase c-Src, the transcription factor STAT3, and PI3K. In contrast, AC treatment of DCs lacking MerTK expression failed to increase c-Src and STAT3 activation. In addition, the inhibitory effects of ACs were blocked by treating DCs with pharmacologic inhibitors or siRNA specific for c-Src and STAT3. These findings demonstrate that AC-induced inhibition of DCs requires MerTK-dependent activation of c-Src and STAT3, and provide evidence for novel roles for c-Src and STAT3 in the immunoregulation of DCs.
Collapse
|
17
|
Seredkina N, Zykova SN, Rekvig OP. Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to up-regulated apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:97-106. [PMID: 19528352 DOI: 10.2353/ajpath.2009.080943] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The accumulation of apoptotic cells has been suggested as a possible mechanism of nucleosome conversion into self-antigens that may both initiate autoimmune responses and participate in immune complex deposition in lupus nephritis. In this study, we analyzed both the rate of transcription of apoptosis-related genes and the presence of activated apoptotic factors within kidneys of lupus-prone (NZBxNZW) F1 mice during disease progression. The results of this study demonstrated no activation of apoptotic pathways in kidneys of these lupus-prone mice at the time of appearance of anti-double standard DNA antibodies in serum, as well as the formation of mesangial immune deposits in glomeruli. In contrast, the transition of mesangial into membranoproliferative lupus nephritis coincided with an accumulation of activated caspase 3-positive cells in kidneys, in addition to a dramatic decrease in Dnase1 gene transcription. Highly reduced expression levels of the Dnase1 gene may be responsible for the accumulation of large chromatin-containing immune complexes in glomerular capillary membranes. Thus, the initiation of lupus nephritis is not linked to increased apoptotic activity in kidneys. The combined down-regulation of Dnase1 and the increased number of apoptotic cells, which is possibly due to their reduced clearance in affected kidneys, may together be responsible for the transformation of mild mesangial lupus nephritis into severe membranoproliferative, end-stage organ disease.
Collapse
Affiliation(s)
- Natalya Seredkina
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
18
|
Schulze C, Munoz L, Franz S, Sarter K, Chaurio R, Gaipl U, Herrmann M. Clearance deficiency—A potential link between infections and autoimmunity. Autoimmun Rev 2008; 8:5-8. [DOI: 10.1016/j.autrev.2008.07.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Berg CP, Stein GM, Keppeler H, Gregor M, Wesselborg S, Lauber K. Apoptosis-associated antigens recognized by autoantibodies in patients with the autoimmune liver disease primary biliary cirrhosis. Apoptosis 2008; 13:63-75. [PMID: 18060504 DOI: 10.1007/s10495-007-0157-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is growing evidence that the onset of autoimmune disorders can be linked to the inefficient removal of apoptotic cells. Since defects in the elimination of apoptotic cells lead to secondary necrosis and subsequent release of intracellular components, this might explain the generation of autoantibodies against intracellular antigens. Accordingly, we wanted to investigate, whether antibodies from patients with the autoimmune liver disease primary biliary cirrhosis (PBC) recognize self-proteins generated and released during apoptosis. Using Western blot analyses we could detect intracellular antigens with serum IgG from PBC patients but not with serum IgG from healthy donors in lysates of Jurkat T-leukemia, HepG2 hepatoma, and HT-29 colon-carcinoma cells. Interestingly, PBC serum IgG also recognized caspase substrates in cells undergoing apoptosis induced by staurosporine or TRAIL (TNF-related apoptosis inducing ligand). In addition to intracellular antigens, serum IgG from PBC patients detected caspase-dependent antigens in the supernatants of apoptotic (secondary necrotic) cells and antigens on the surface of apoptotic Jurkat cells. Among the caspase substrates recognized by PBC serum IgG we could identify the components PDC-E2 and -E1beta of the known autoantigen PDC (pyruvate dehydrogenase complex). Thus, caspase-mediated processing of intracellular proteins might generate de novo autoantigens that upon release contribute to the generation of autoantibodies and autoimmune diseases as PBC.
Collapse
Affiliation(s)
- Christoph Peter Berg
- Department of Internal Medicine I, Medical Clinic, Eberhard-Karls-University, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Wallet MA, Sen P, Flores RR, Wang Y, Yi Z, Huang Y, Mathews CE, Earp HS, Matsushima G, Wang B, Tisch R. MerTK is required for apoptotic cell-induced T cell tolerance. ACTA ACUST UNITED AC 2008; 205:219-32. [PMID: 18195070 PMCID: PMC2234377 DOI: 10.1084/jem.20062293] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Self-antigens expressed by apoptotic cells (ACs) may become targets for autoimmunity. Tolerance to these antigens is partly established by an ill-defined capacity of ACs to inhibit antigen-presenting cells such as dendritic cells (DCs). We present evidence that the receptor tyrosine kinase Mer (MerTK) has a key role in mediating AC-induced inhibition of DC activation/maturation. Pretreatment of DCs prepared from nonobese diabetic (NOD) mice with AC blocked secretion of proinflammatory cytokines, up-regulation of costimulatory molecule expression, and T cell activation. The effect of ACs on DCs was dependent on Gas6, which is a MerTK ligand. NOD DCs lacking MerTK expression (NOD.MerTK(KD/KD)) were resistant to AC-induced inhibition. Notably, autoimmune diabetes was exacerbated in NOD.MerTK(KD/KD) versus NOD mice expressing the transgenic BDC T cell receptor. In addition, beta cell-specific CD4(+) T cells adoptively transferred into NOD.MerTK(KD/KD) mice in which beta cell apoptosis was induced with streptozotocin exhibited increased expansion and differentiation into type 1 T cell effectors. In both models, the lack of MerTK expression was associated with an increased frequency of activated pancreatic CD11c(+)CD8alpha(+) DCs, which exhibited an enhanced T cell stimulatory capacity. These findings demonstrate that MerTK plays a critical role in regulating self-tolerance mediated between ACs, DCs, and T cells.
Collapse
Affiliation(s)
- Mark A Wallet
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S, Lauber K. Migration to apoptotic "find-me" signals is mediated via the phagocyte receptor G2A. J Biol Chem 2007; 283:5296-305. [PMID: 18089568 DOI: 10.1074/jbc.m706586200] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis of apoptotic cells is fundamentally important throughout life, because non-cleared cells become secondarily necrotic and release intracellular contents, thus instigating inflammatory and autoimmune responses. Secreted "find-me" and exposed "eat-me" signals displayed by the dying cell in concert with the phagocyte receptors comprise the phagocytic synapse of apoptotic cell clearance. In this scenario, lysophospholipids (lysoPLs) are assumed to act as find-me signals for the attraction of phagocytes. However, both the identity of the lyso-PLs released from apoptotic cells and the nature of the phagocyte receptor are largely unknown. By a detailed analysis of the structural requirements we show here that lysophosphatidylcholine (lysoPC), but none of the lysoPC metabolites or other lysoPLs, represents the essential apoptotic attraction signal able to trigger a phagocyte chemotactic response. Furthermore, using RNA interference and expression studies, we demonstrate that the G-protein-coupled receptor G2A, unlike its relative GPR4, is involved in the chemotaxis of monocytic cells. Thus, our study identifies lysoPC and G2A as the crucial receptor/ligand system for the attraction of phagocytes to apoptotic cells and the prevention of autoimmunity.
Collapse
Affiliation(s)
- Christoph Peter
- Department of Internal Medicine I, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Trouw LA, Bengtsson AA, Gelderman KA, Dahlbäck B, Sturfelt G, Blom AM. C4b-binding Protein and Factor H Compensate for the Loss of Membrane-bound Complement Inhibitors to Protect Apoptotic Cells against Excessive Complement Attack. J Biol Chem 2007; 282:28540-28548. [PMID: 17699521 DOI: 10.1074/jbc.m704354200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Apoptotic cells have been reported to down-regulate membrane-bound complement regulatory proteins (m-C-Reg) and to activate complement. Nonetheless, most apoptotic cells do not undergo complement-mediated lysis. Therefore, we hypothesized that fluid phase complement inhibitors would bind to apoptotic cells and compensate functionally for the loss of m-C-Reg. We observed that m-C-Reg are down-regulated rapidly upon apoptosis but that complement activation follows only after a gap of several hours. Coinciding with, but independent from, complement activation, fluid phase complement inhibitors C4b-binding protein (C4BP) and factor H (fH) bind to the cells. C4BP and fH do not entirely prevent complement activation but strongly limit C3 and C9 deposition. Late apoptotic cells, present in blood of healthy controls and systemic lupus erythematosus patients, are also positive for C4BP and fH. Upon culture, the percentage of late apoptotic cells increases, paralleled by increased C4BP binding. C4BP binds to dead cells mainly via phosphatidylserine, whereas fH binds via multiple interactions with CRP playing no major role for binding of C4BP or fH. In conclusion, during late apoptosis, cells acquire fluid phase complement inhibitors that compensate for the down-regulation of m-C-Reg and protect against excessive complement activation and lysis.
Collapse
Affiliation(s)
- Leendert A Trouw
- Department of Laboratory Medicine, University Hospital Malmö, 5-20502 Malmö, Sweden
| | - Anders A Bengtsson
- Department of Clinical Science, Rheumatology, Lund University, 5-22184 Lund, Sweden
| | - Kyra A Gelderman
- Unit for Medical Inflammation Research, Lund University, 5-22184 Lund, Sweden
| | - Björn Dahlbäck
- Department of Laboratory Medicine, University Hospital Malmö, 5-20502 Malmö, Sweden
| | - Gunnar Sturfelt
- Department of Clinical Science, Rheumatology, Lund University, 5-22184 Lund, Sweden
| | - Anna M Blom
- Department of Laboratory Medicine, University Hospital Malmö, 5-20502 Malmö, Sweden.
| |
Collapse
|
23
|
Bondanza A, Rovere-Querini P, Zimmermann VS, Balestrieri G, Tincani A, Sabbadini MG, Manfredi AA. Requirement for dendritic cells in the establishment of anti-phospholipid antibodies. Autoimmunity 2007; 40:302-6. [PMID: 17516215 DOI: 10.1080/08916930701356572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The cross-presentation of cell-associated autoantigens contributes to systemic autoimmune diseases, including systemic lupus erythematosus (SLE). Little is known about the regulation of the immune response against soluble autoantigens targeted in these diseases. METHODS We immunized the offspring of New Zealand Black and New Zealand White mice (NZB x NZW F(1)) with syngeneic dendritic cells (DC) that had macropinocytosed beta2-glycoprotein 1 (beta(2)GPI) during propagation in normal mouse serum or that had phagocytosed apoptotic thymocytes with syngeneic (murine) or xenogeneic (bovine) beta(2)GPI, which was associated to plasma membrane of the cells. Mice were in parallel immunized with apoptotic thymocytes that had associated the beta(2)GPI to their membranes in the absence of DC. The development of anti-beta(2)GPI antibodies and clinical features were monitored. RESULTS Apoptotic cells alone, opsonized with beta(2)GPI, failed to induce anti-beta(2)GPI autoantibodies or clinical disease. In contrast, autoimmunity developed in the presence of DC. Furthermore, the syngeneic beta(2)GPI was a more effective antigen than the xenogeneic protein in re-boosted animals. CONCLUSIONS DC effectively initiate in NZB x NZW F(1) mice self-sustaining autoimmunity against the beta(2)GPI, either associated to apoptotic cells or macropinocytosed from the serum.
Collapse
Affiliation(s)
- Attilio Bondanza
- H San Raffaele Scientific Institute, Università Vita-Salute, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Franz S, Gaipl US, Munoz LE, Sheriff A, Beer A, Kalden JR, Herrmann M. Apoptosis and autoimmunity: when apoptotic cells break their silence. Curr Rheumatol Rep 2006; 8:245-7. [PMID: 16839503 DOI: 10.1007/s11926-006-0001-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sandra Franz
- Department of Internal Medicine III, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Rovere-Querini P, Antonacci S, Dell'Antonio G, Angeli A, Almirante G, Cin ED, Valsecchi L, Lanzani C, Sabbadini MG, Doglioni C, Manfredi AA, Castiglioni MT. Plasma and tissue expression of the long pentraxin 3 during normal pregnancy and preeclampsia. Obstet Gynecol 2006; 108:148-55. [PMID: 16816069 DOI: 10.1097/01.aog.0000224607.46622.bc] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Cell death normally occurs during pregnancy and is critical during its common complication, preeclampsia. The long pentraxin 3 (PTX3) gene is generated in tissues that cope with excessive or deregulated cell death and inhibits the cross-presentation of cell-associated antigens. We examined whether PTX3 is expressed during pregnancy and possibly involved in the development of preeclampsia. METHODS Women with preeclampsia (n = 30), women with uncomplicated pregnancies (n = 66), age-matched healthy women (n = 50), women who developed acute bacterial infections (n = 20), and women with rheumatoid arthritis (n = 20) were studied. The concentrations of PTX3 were measured in the blood by a sandwich enzyme-linked immunosorbent assay (ELISA) and in placentas by immunohistochemistry. The concentrations of PTX3 and C-reactive protein in the various groups were compared by nonparametric tests (the Mann-Whitney U and the Kruskal-Wallis tests). The odds of developing preeclampsia were assessed using logistic regression. RESULTS PTX3 was expressed in amniotic epithelium and chorionic mesoderm, trophoblast terminal villi, and perivascular stroma in placentas from pregnancies of uncomplicated subjects. Circulating levels steadily rose during normal gestation and peaked during labor. Serum levels of PTX3 were strikingly higher in preeclampsia compared with normal control pregnancies (5.08 +/- 1.34 and 0.59 +/- 0.07 ng/mL, respectively, P < .001). Sites of higher expression in the placentas from preeclamptic patients include infarcts and fibrinoid zones. CONCLUSION Defects in the homeostatic response to cell death/remodeling events, revealed by enhanced levels of PTX3, could be implicated in preeclampsia. LEVEL OF EVIDENCE II-2.
Collapse
Affiliation(s)
- Patrizia Rovere-Querini
- Clinical Immunology Unit, Division of Pathology, H. San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cervera R, Font J, Tincani A, Boffa MC. V Meeting of the European Forum on Antiphospholipid Antibodies. Autoimmun Rev 2006; 5:499-507. [PMID: 16920577 DOI: 10.1016/j.autrev.2006.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The "V Meeting of the European Forum on Antiphospholipid Antibodies" was organized in Barcelona, Catalonia, Spain, on December 2-3, 2005. This biannual meeting becomes a real forum for the interchange of information on current research on the field antiphospholipid antibodies and the antiphospholipid syndrome, as well as a starting point for many new research projects. About 170 physicians and researchers from a great variety of medical specialities (internists, rheumatologists, hematologists, obstetricians, pediatricians, neurologists, cardiologists, immunologists, and biologists, among others) coming from 20 European countries attended the sessions. This report summarizes the main studies and new research projects presented during this Forum Meeting.
Collapse
Affiliation(s)
- Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Catalonia, Spain.
| | | | | | | |
Collapse
|
27
|
Napirei M, Gültekin A, Kloeckl T, Möröy T, Frostegård J, Mannherz HG. Systemic lupus-erythematosus: Deoxyribonuclease 1 in necrotic chromatin disposal. Int J Biochem Cell Biol 2006; 38:297-306. [PMID: 16352456 DOI: 10.1016/j.biocel.2005.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 07/20/2005] [Accepted: 10/27/2005] [Indexed: 11/17/2022]
Abstract
Systemic lupus-erythematosus is an auto-immune-disease characterized by pathogenic anti-nuclear auto-antibodies. These form immune-complexes that after deposition at basal membranes at various locations initiate inflammatory reactions. There is a clear genetic and gender predisposition (females are affected 10 times more frequently), but also infectious agents and further environmental factors have been shown to be causative for the initiation of the disease. It has been suggested that the auto-antibodies arise after release and/or inefficient removal of nuclear components during cell death (defective cellular "waste disposal" theory). So far, increased apoptotic cell death has been made responsible, but recent data suggest that defective cellular waste disposal during/after necrosis may also lead to the release and prolonged exposure of nuclear components. Here, we concentrate on chromatin disposal during necrosis and the involvement of Deoxyribonuclease 1 in this process with respect to its possible role in the prevention of anti-nuclear auto-immunity.
Collapse
Affiliation(s)
- Markus Napirei
- Abteilung für Anatomie und Embryologie, Medizinische Fakultät, Ruhr-Universität, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The paradigm of tolerogenic/immature versus inflammatory/mature dendritic cells has dominated the recent literature regarding the role of these antigen-presenting cells in mediating immune homeostasis or self-tolerance and response to pathogens, respectively. This issue is further complicated by the identification of distinct subtypes of dendritic cells that exhibit different antigen-presenting cell effector functions. The discovery of pathogen-associated molecular patterns and toll-like receptors provides the mechanistic basis for dendritic cell recognition of specific pathogens and induction of appropriate innate and adaptive immune responses. Only recently has insight been gained into how dendritic cells contribute to establishing and/or maintaining immunological tolerance to self. Soluble and cellular mediators have been reported to effectively regulate the function of dendritic cells by inducing several outcomes ranging from non-inflammatory dendritic cells that lack the ability to induce T lymphocyte activation to dendritic cells that actively suppress T lymphocyte responses. A thorough discussion of these stimuli and their outcomes is essential to understanding the potential for modulating dendritic cell function in the treatment of inflammatory disease conditions.
Collapse
Affiliation(s)
- Mark A Wallet
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB7290, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|