1
|
Du C, Hu H, Zhu G, Duan Z, Shen Y, Lin L, Lu J, Zheng Z. Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute. Food Chem 2025; 470:142654. [PMID: 39733619 DOI: 10.1016/j.foodchem.2024.142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.7 %) and solubility (>95 %). Moisture sorption isotherms indicated that the composite wall microcapsules demonstrated moisture resistance at a low-water activity (aw < 0.43) and superior hygroscopicity at a high-water activity (aw > 0.67). Accelerated oxidation tests revealed that the presence of curcumin and composite wall materials enhanced oxidative stability, demonstrating a low peroxide value (2.21 mmol/kg [34.4 %]) and TBARS content (97.8 μg/g [18.7 %]). Consequently, microencapsulated powders prepared with SPI-Cur-NPs and MD-TA-IN could potentially improve the limitation of plant-based milk substitutes.
Collapse
Affiliation(s)
- Chenxing Du
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Hanwen Hu
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Ge Zhu
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 102209, China..
| | - Yizhong Shen
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Lin Lin
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
2
|
Adeline D, Michel G, Ecaterina G. Cosmetic emulsions containing innovative complex coacervates: A cross-sectional study. Int J Cosmet Sci 2025; 47:383-397. [PMID: 39716398 PMCID: PMC11962682 DOI: 10.1111/ics.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Vitamin E, in the form of α-tocopherol (TOCO), is an essential lipophilic antioxidant widely used in topical formulations. However, incorporating pure TOCO into skincare products poses significant challenges due to its limited solubility and high sensitivity to heat, light and oxidation. The present cross-sectional study aimed to innovate by encapsulating TOCO using non-animal sustainable biopolymers through complex coacervation and to investigate the interaction of these coacervates with cosmetic emulsions, focusing on their impact on the emulsions' physicochemical properties and stability. METHODS TOCO was encapsulated using the complex coacervation technique by combining two biopolymers: fungal chitosan and gum Arabic. The designed microcapsules were incorporated into oil-in-water emulsions containing natural ingredients, and the physicochemical properties as well as the stability of the formulations were evaluated and compared to those of non-encapsulated TOCO emulsions. RESULTS Innovative coacervates of the non-animal TOCO complex of 86.8 ± 3.5 μm were developed, achieving a high encapsulation efficiency and loading of 87.0% and 27.2%, respectively. The microcapsules exhibited thermal stability up to a temperature of 220°C and showed improved storage stability of the active ingredient when encapsulated. In particular, 63% of TOCO was retained over 2 months at a temperature of 40°C. Emulsions containing microcapsules showed increased particle size distribution, higher viscosity, and enhanced viscoelastic properties, in accordance with their textural properties. Both emulsions remained stable for a 1-month storage period at a temperature of 40°C, and no noticeable effect of coacervates on the stability of TOCO in the emulsions was observed. CONCLUSION This study emphasises the potential of fungal chitosan-gum Arabic coacervates as a sustainable substitute for animal-derived coacervates, demonstrating promising outcomes for the encapsulation of lipophilic actives. When incorporated into cosmetic emulsions, these coacervates enhanced the textural and rheological properties while preserving the TOCO stability over time. These findings suggest that the developed microcapsules offer considerable potential for the development of future skin-care products with enhanced functional properties.
Collapse
Affiliation(s)
- Delaporte Adeline
- Normandie Univ, URCOM UR 3221Université Le Havre NormandiLe HavreFrance
| | - Grisel Michel
- Normandie Univ, URCOM UR 3221Université Le Havre NormandiLe HavreFrance
| | - Gore Ecaterina
- Normandie Univ, URCOM UR 3221Université Le Havre NormandiLe HavreFrance
| |
Collapse
|
3
|
Mannai F, Elhleli H, Abouzied R, Khiari R, Nacer SN, Belgacem MN, Moussaoui Y. Encapsulation of sunflower and flaxseed oils using Opuntia (Cactaceae) mucilage as a core-shell material through coacervation methods: A study on formulation, characterization, and in vitro digestion. Food Chem 2024; 459:140447. [PMID: 39024875 DOI: 10.1016/j.foodchem.2024.140447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Sunflower oil (SFO) and Flaxseed oil (FSO) were microencapsulated using simple and complex coacervation techniques with Opuntia (Cactaceae) mucilage (Mu) and with a combination of Mu with chitosan (Chit). The encapsulation efficiency (EE) of SFO and FSO in emulsions using Mu/Chit shells was 96.7% and 97.4%, respectively. Morphological studies indicated successful entrapment of oils in core shells with particle sizes ranging from 1396 ± 42.4 to 399.8 ± 42.3 nm. The thermogravimetric analyses demonstrated enhanced core protection with thermal stability noted for microcapsules regardless of encapsulation method. The stability of the microcapsules, during in vitro digestion was studied. The obtained results revealed that the microcapsules are intact in oral conditions and have a slow release of oil over stomach digestion and rapid release in the small intestine. The results showed that Mu and Mu/Chit coacervates can be used as effective carrier systems to encapsulate sensitive ingredients and functional oils.
Collapse
Affiliation(s)
- Faten Mannai
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Hanedi Elhleli
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Ragab Abouzied
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza 12622, Egypt
| | - Ramzi Khiari
- Higher Institute of Technological Studies of Ksar Hellal, Department of Textile, Tunisia; University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble, F-38000, France
| | - Salah Neghmouche Nacer
- El Oued University, Faculty of Exact Sciences, Chemistry Department, ElOued, 39000, Algeria
| | | | - Younes Moussaoui
- University of Gafsa, Faculty of Sciences of Gafsa, Tunisia; University of Sfax, Faculty of Sciences of Sfax, Organic Chemistry Laboratory (LR17ES08), Sfax, Tunisia.
| |
Collapse
|
4
|
Hassanvand E, Razavi SMA. Effect of chitosan molecular weight and protein to polysaccharide ratio on the rheological and physicochemical properties of milk proteins-chitosan complex coacervate. Int J Biol Macromol 2024; 282:137247. [PMID: 39500424 DOI: 10.1016/j.ijbiomac.2024.137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024]
Abstract
The small amplitude oscillatory shear (SAOS) rheological properties of complex coacervate of milk proteins with high (HMC), medium (MMC), and low (LMC) molecular weight chitosan in the optimal ratios of milk proteins to chitosan (15:1, 10:1, and 5:1, respectively) were measured. In addition, the morphological (SEM), structural (XRD), and thermal (DSC) properties of the complex coacervates were investigated in comparison with the milk protein concentrate. Complex coacervates showed the shear-thinning behavior due to a linear decrease of complex viscosity with increasing frequency. Furthermore, the highest complex modulus and the more compact structure under optimal conditions, in terms of the ratio of protein to chitosan and pH, revealed strong electrostatic bonding between proteins and chitosan. All coacervates showed a G' > G″ (Tanδ<1), indicating the formation of an interconnected gel-like structure that was described by the power law model. The maximum fracture stress was obtained at optimum conditions (R = 15:1, pH =6.7 for HMC; R = 10:1, pH =5.5 for MMC and R = 5:1, pH =4.6 for LMC), indicating the highest intermolecular interaction between milk proteins and chitosan. The coacervates had a completely amorphous structure similar to MPC, and according to DSC results, the ionic bonds between milk proteins and chitosan were not destroyed up to 300 °C. Coacervation leads to purified milk proteins at a low cost. In addition, the coacervates can be used for the encapsulation of heat-sensitive compounds, and also as a stabilizer to improve the texture of food.
Collapse
Affiliation(s)
- Elham Hassanvand
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
5
|
Fiallos-Núñez J, Cardero Y, Cabrera-Barjas G, García-Herrera CM, Inostroza M, Estevez M, España-Sánchez BL, Valenzuela LM. Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging. Polymers (Basel) 2024; 16:2471. [PMID: 39274104 PMCID: PMC11398076 DOI: 10.3390/polym16172471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 ± 0.003 mm thickness, 11.48 ± 1.42 mPa TS, and 2.6 ± 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 °C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 ± 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging.
Collapse
Affiliation(s)
- Johanna Fiallos-Núñez
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| | - Yaniel Cardero
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Lientur 1439 Región del Biobío, Concepción 4080871, Chile
| | | | - Matías Inostroza
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico
| | - Beatriz Liliana España-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ) S. C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico
| | - Loreto M Valenzuela
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
| |
Collapse
|
6
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
7
|
Stachowiak-Trojanowska N, Walendziak W, Douglas TEL, Kozlowska J. Whey Protein Isolate as a Substrate to Design Calendula officinalis Flower Extract Controlled-Release Materials. Int J Mol Sci 2024; 25:5325. [PMID: 38791364 PMCID: PMC11120854 DOI: 10.3390/ijms25105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.
Collapse
Affiliation(s)
| | - Weronika Walendziak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| | | | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| |
Collapse
|
8
|
Chen X, Zhang M, Tang T, Yu D. The color/shape/flavor of yam gel with double emulsified microcapsules changed synchronously in 4D printing induced by microwave. Int J Biol Macromol 2024; 260:129631. [PMID: 38253155 DOI: 10.1016/j.ijbiomac.2024.129631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
The feasibility of 3D printing the color, aroma and shape changes of yam gel with microwave heating as stimulus and soybean protein isolate-chitosan-maltodextrin complex coacervated microcapsules rich in water-soluble betacyanin and rose essence as stimulus-response materials was discussed. The morphology of microcapsules presented irregular spherical structure, and the surface was relatively smooth and slightly concave. Microwave heating led to the gradual destruction of microcapsules in yam gel, releasing internal pigments and essence, and enhancing the redness and flavor of printed samples. The release of the water phase and oil phase of the microcapsules and the hot-spot expansion effect of the models made the 3D printed bird models bend and deform, realizing the deformation effect of "spreading of wings", which realized a three-response synchronous change in color, shape, and flavor of the printed samples within 45 s. In this study, a variety of 4D printed foods with synchronous changes in sensory characteristics were created, which increased sensory enjoyment on the basis of ensuring the nutritional needs of food.
Collapse
Affiliation(s)
- Xiaohuan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Tiantian Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd., 266700 Qingdao, Shandong, China
| |
Collapse
|
9
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
10
|
Liang L, Cao W, Li L, Liu W, Wei X, Chen J, Ren G, Duan X. Effect of gum arabic and thermal modification of whey protein isolate on the characteristics of Cornus officinalis flavonoid microcapsules. J Food Sci 2024; 89:1012-1021. [PMID: 38174800 DOI: 10.1111/1750-3841.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Whey protein isolates (WPIs) were treated at 50, 60, 70, and 80°C to obtain thermally modified WPI. Gum arabic (GA) and thermal modification of WPI were used as novel wall materials to improve the quality of Cornus officinalis flavonoid (COF) microcapsules using microwave freeze-drying technique in this study. Results showed that all the thermal modification treatment decreased emulsifying activity index of WPI, whereas the solubility and emulsifying stability index (ESI) of WPI gradually increased with the increase of heating temperature. Compared to the untreated protein, the thermal modification treatment at 70°C increased the solubility and ESI of WPI by 14.91% ± 0.71% and 26.70% ± 0.94%, respectively. The microcapsules prepared with the modified protein at 60°C had the highest encapsulation efficiency (95.13% ± 2.36%), the lowest moisture content (1.42% ± 0.34%), and the highest solubility (84.41% ± 0.91). Scanning electron microscopy images showed that COF microcapsules were uniformly spherical, and the sizes of the microcapsules were in the following order: 12.42 ± 0.37 µm (80°C) > 11.7 ± 0.23 µm (untreated group) > 9.44 ± 0.33 µm (60°C) > 9.24 ± 0.14 µm (50°C) > 7.69 ± 0.29 µm (70°C). In the simulated in vitro digestion experiments, the release rate of COF microcapsules in the gastric digestion phase was less than that in the intestinal digestion phase, and it reached 66.46% at intestinal digestion phase. These results suggested that heated WPI and GA could be an effective nanocarrier to enhance the stability of COF.
Collapse
Affiliation(s)
- Luodan Liang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinyu Wei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
11
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
12
|
Soltani A, Haouel-Hamdi S, Sadraoui Ajmi I, Djebbi T, Ben Abada M, Yangui I, Chouachi N, Hassine K, Majdoub H, Messaoud C, Mediouni Ben Jemâa J. Insights for the control of dried-fruit beetle Carpophilus hemipterus (Nitidulidae) using rosemary essential oil loaded in chitosan nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1243-1253. [PMID: 35652908 DOI: 10.1080/09603123.2022.2083089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Natural insecticidal products, essentially essential oils and their bioactive compounds are available as an excellent alternative method to control insect pests as well as they are less toxic to human health. However, due to their volatile constituents, encapsulation could be considered as the most suitable solution for their practical application. Therefore, this study aims to explore the insecticidal toxicity of chitosan nanoparticles loaded with Rosmarinus officinalis essential oil against adults of Carpophilus hemipterus. Chitosan nanoparticles were prepared by ionic gelation method with an encapsulation efficiency 41.543.1% and loading capacity 5.24G0.28%. Results revealed that chitosan nanoparticles loaded rosemary oil exhibited interesting insecticidal toxicity towards C. hemipterus adults in stored dates with 50.73% mortality. Overall, this work pointed out that the innovative design method based on chitosan-nanoparticles loaded rosemary oil can be promoted in integrated pest management program for stored date pests.
Collapse
Affiliation(s)
- Abir Soltani
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Soumaya Haouel-Hamdi
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Insaf Sadraoui Ajmi
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Tasnim Djebbi
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Maha Ben Abada
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Islem Yangui
- Laboratory of Plant Biotechnology, National Institute of Applied Science and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Nahed Chouachi
- Faculty of Sciences of Bizerte, Zarzouna Bizerte, University of Carthage, Bizerte, Tunisia
| | - Khaoula Hassine
- Polymers, Biopolymers and Organic Materials Laboratory, Faculty of Sciences, Monastir, Monastir, Tunisia
| | - Hatem Majdoub
- Polymers, Biopolymers and Organic Materials Laboratory, Faculty of Sciences, Monastir, Monastir, Tunisia
| | - Chokri Messaoud
- Laboratory of Plant Biotechnology, National Institute of Applied Science and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Jouda Mediouni Ben Jemâa
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| |
Collapse
|
13
|
Napiórkowska A, Szpicer A, Wojtasik-Kalinowska I, Perez MDT, González HD, Kurek MA. Microencapsulation of Juniper and Black Pepper Essential Oil Using the Coacervation Method and Its Properties after Freeze-Drying. Foods 2023; 12:4345. [PMID: 38231792 DOI: 10.3390/foods12234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model of complex coacervation for the microencapsulation of essential oils. Black pepper (Piper nigrum) and juniper (Juniperus communis) essential oils were dissolved in grape seed (GSO) and soybean (SBO) oil to minimize their loss during the process, and formed the core material. Various mixing ratios of polymers (gelatin (G), gum Arabic (GA)) were tested: 1:1; 1:2, and 2:1. The oil content was 10%, and the essential oil content was 1%. The prepared coacervates were lyophilized and then screened to obtain a powder. The following analyses were determined: encapsulation efficiency (EE), Carr index (CI), Hausner ratio (HR), solubility, hygroscopicity, moisture content, and particle size. The highest encapsulation efficiency achieved was within the range of 64.09-59.89%. The mixing ratio G/GA = 2:1 allowed us to obtain powders that were characterized by the lowest solubility (6.55-11.20%). The smallest particle sizes, which did not exceed 6 μm, characterized the powders obtained by mixing G/GA = 1:1. All powder samples were characterized by high cohesiveness and thus poor or very poor flow (CI = 30.58-50.27, HR = 1.45-2.01).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Iwona Wojtasik-Kalinowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
14
|
Lobato-Guarnido I, Luzón G, Ríos F, Fernández-Serrano M. Synthesis and Characterization of Environmentally Friendly Chitosan-Arabic Gum Nanoparticles for Encapsulation of Oregano Essential Oil in Pickering Emulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2651. [PMID: 37836292 PMCID: PMC10574744 DOI: 10.3390/nano13192651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
The encapsulation of bioactive agents through the utilization of biodegradable nanoparticles is a topic of considerable scientific interest. In this study, microcapsules composed of chitosan (CS) and Arabic gum (GA) nanoparticles were synthesized, encapsulating oregano essential oil (OEO) through Pickering emulsions and subsequent spray drying. The optimization of hybrid chitosan and Arabic gum (CS-GA) nanoparticle formation was carried out via complex coacervation, followed by an assessment of their behavior during the formation of the emulsion. Measurements of the size, contact angle, and interfacial tension of the formed complexes were conducted to facilitate the development of Pickering emulsions for encapsulating the oil under the most favorable conditions. The chitosan-Arabic gum capsules were physically characterized using scanning electron microscopy and fitted to the Beerkan estimation of soil transfer (BEST) model to determine their size distribution. Finally, the OEO encapsulation efficiency was also determined. The optimum scenario was achieved with the CS-GA 1-2 capsules at a concentration of 2% wt, featuring a contact angle of 89.1 degrees, which is ideal for the formation of oil/water (O/W) emulsions. Capsules of approximately 2.5 μm were obtained, accompanied by an encapsulation efficiency of approximately 60%. In addition, the hybrid nanoparticles that were obtained showed high biodegradability. The data within our study will contribute fundamental insights into CS-GA nanoparticles, and the quantitatively analyzed outcomes presented in this study will hold utility for forthcoming applications in environmentally friendly detergent formulations.
Collapse
Affiliation(s)
- Ismael Lobato-Guarnido
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | - Germán Luzón
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | | | | |
Collapse
|
15
|
Kappa-carrageenan-poly(vinyl alcohol) electrospun fiber mats encapsulated with Prunus domestica anthocyanins and epigallocatechin gallate to monitor the freshness and enhance the shelf-life quality of minced beef meat. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Evaluation of Encapsulation of Residual Oil from Pressed Sesame Seed Cake by Coacervation and Subsequent Spray- and Freeze-Drying Method. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
17
|
Zong X, Li H, Tang Q, Wang X, Li Y, Li L. Preparation and characterization of glucoamylase microcapsules prepared by W/O/W type complex coacervation freeze drying. J Food Sci 2023; 88:795-809. [PMID: 36579464 DOI: 10.1111/1750-3841.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Glucoamylase was often used in the brewing industry but was unstable to several environmental factors and reacted quickly to produce fermentable sugar, which limited its applications. Microencapsulation could effectively overcome the drawbacks. This study evaluated the feasibility of the preparation of glucoamylase microcapsules (GM) using W/O/W complex coacervation-freeze-drying method. The parameters of the microcapsules were optimized by the response surface optimization design: core-wall ratio at 1:1, wall-material concentration at 8%, and coagulation time for 20 min. Under current condition, the final microencapsulation efficiency reached 85.64 ± 1.60%. Glucoamylase could be slowly released for more than 96 h in the liquid state, and could react slowly for more than 336 h in the solid state. The optimized GM were incubated for 1 h, and the relative enzyme activity was better than that of free glucoamylase under high temperature conditions. The water capacity, solubility, morphology, differential scanning calorimetry, and Fourier transform infrared spectroscopy were conducted. Glucoamylase exhibited good sustained release characteristics. The microcapsules were more resistant to environmental stimuli and showed stronger robustness after optimization. PRACTICAL APPLICATION: Saccharification enzymes are often used in the winemaking industry, and direct addition will cause the fermentation process to heat up too quickly, resulting in the inactivation of microorganisms and saccharification enzymes, affecting the efficiency of saccharification enzymes. Therefore, microcapsules are used to encapsulate the saccharification enzyme, and its efficacy is slowly released for a long time during the fermentation process.
Collapse
Affiliation(s)
- Xuyan Zong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Huan Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Qian Tang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Xiangyu Wang
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai, People's Republic of China
| | - Yuanyi Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| |
Collapse
|
18
|
Li S, Fan L, Li S, Sun X, Di Q, Zhang H, Li B, Liu X. Validation of Layer-By-Layer Coating as a Procedure to Enhance Lactobacillus plantarum Survival during In Vitro Digestion, Storage, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1701-1712. [PMID: 36622380 DOI: 10.1021/acs.jafc.2c07139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Probiotics are sensitive to phenolic antibacterial components and the extremely acidic environment of blueberry juices. Layer-by-layer (LbL) coating using whey protein isolate fibrils (WPIFs) and sodium alginate (ALG), carboxymethyl cellulose (CMC), or xanthan gum (XG) was developed to improve the survival rate of Lactobacillus plantarum 90 (LP90) in simulated digestion, storage, and fermented blueberry juices. The LbL-coated LP90 remained at 6.65 log CFU/mL after 48 h of fermentation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that dense and rough wall networks were formed on the surface of LP90, maintaining the integrity of LP90 cells after the coating. Stability evaluation showed that the LbL-coated LP90 had a much higher survival rate in the processes of simulated gastrointestinal digestion and storage. The formation mechanism of the LbL coating process was further explored, which indicated that electrostatic interactions and hydrogen bonding were involved. The LbL coating approach has great potential to protect and deliver probiotics in food systems.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Xiaochen Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Qingru Di
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Hui Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| |
Collapse
|
19
|
Bora AFM, Kouame KJEP, Li X, Liu L, Sun Y, Ma Q, Liu Y. Development, characterization and probiotic encapsulating ability of novel Momordica charantia bioactive polysaccharides/whey protein isolate composite gels. Int J Biol Macromol 2023; 225:454-466. [PMID: 36410535 DOI: 10.1016/j.ijbiomac.2022.11.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
In this study, a polysaccharide (MP1) with a molecular weight of 38 kDa was isolated from Momordica charantia which contains arabinose, galactose, xylose, and rhamnose. (MP1) was used to formulate composite gels with Whey Protein Isolate (WPI) that were characterized for their functional properties, microstructure, thermal resistance, probiotic encapsulating ability, and potential toward metabolic syndrome (MS). Results showed that the highest complex index was obtained at MP concentration of 2 %. MP-WPIs demonstrated superior (p < 0.05) water holding capacity and emulsifying properties than WPI gels. MP-WPIs also had higher (p < 0.05) thermal stability via TGA and DSC analysis. MP-WPI morphology was observed via SEM whereas protein structure as affected by MP concentration was studied using CLSM. Also, FTIR revealed that MP and WPI bonded mainly through electrostatic, hydrophobic and hydrogen interactions. More, MP-WPIs successfully enhanced probiotic Lactobacillus acidophilus (LA) survival upon freeze-drying with high encapsulation efficiency (98 %) and improved storage stability. MP-WPIs improved LA survival upon digestion suggesting a potential prebiotic activity. Finally, synbiotic formulation LA-MP-WPIs exhibited effective biological activity against MS. Therefore, MP-WPIs is a propitious strategy for effective probiotic gastrointestinal delivery with potential toward MS.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yue Sun
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
20
|
Ramalho R, de Souza NAA, Moreira TFM, De Oliveira A, Perini HF, Furlaneto MC, Leimann FV, Furlaneto-Maia L. Antibacterial efficacy of Enterococcus microencapsulated bacteriocin on Listeria monocytogenes, Listeria innocua and Listeria ivanovi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:262-271. [PMID: 36618045 PMCID: PMC9813327 DOI: 10.1007/s13197-022-05611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
This study focused on the microencapsulation of enterocin from Enterococcus durans (E. durans MF5) in whey powder (WP) using a spray-drying technique followed by the evaluation of how complexation can preserve the enterocin structure and antimicrobial activity against food-borne pathogens. Crude enterocin samples (1 and 5%) were microencapsulated in 10% WP. The antimicrobial activity of unencapsulated (crude) enterocin and microencapsulated enterocin was tested against the target bacteria Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes, Listeria innocua, and Listeria ivanovi. The microencapsulation yields were 31.66% and 34.16% for concentrations of 1 and 5% enterocin, respectively. There was no significant difference between these concentrations. Microencapsulated enterocin was efficient for up to 12 h of cocultivation with Listeria sp., and the concentration required to inhibit the growth of target bacteria presented values of 6400 AU/mL (arbitrary unit). Microencapsulated enterocin demonstrated enhanced efficacy against Listeria species and E. coli when compared with crude enterocin (p < 0.05). Fourier transform-infrared spectroscopy and differential scanning calorimetry results confirmed the presence of enterocin in the microparticles. Scanning electron microscopy showed cell damage of the target bacteria. The results showed that complexation with WP preserved enterocin antimicrobial activity during spray-drying, indicating its potential use as a food preservative.
Collapse
Affiliation(s)
- Regiane Ramalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | | | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Anielle De Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Hugo Felix Perini
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Luciana Furlaneto-Maia
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Londrina (UTFPR-LD), Av Dos Pioneiros 3131, Londrina, Paraná CEP 86036-370 Brazil
| |
Collapse
|
21
|
Abdelli N, Mekawi E, Ebrahim Abdel-Alim M, Salim NS, El-Nagar M, Al-Dalain SY, Adlan Abdalla R, Nagarajan G, Fadhal E, Ibrahim RIH, Afkar E, Morsy MK. QTRAP LC/MS/MS of Garlic Nanoparticles and Improving Sunflower Oil Stabilization during Accelerated Shelf Life Storage. Foods 2022; 11:foods11243962. [PMID: 36553704 PMCID: PMC9778114 DOI: 10.3390/foods11243962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The purpose of this research was to assess and utilize the bioactive compounds of garlic nanoparticles (Ga-NPs) as a natural antioxidant in sunflower oil (SFO) stored at 65 ± 1 °C for 24 days. The garlic nanoparticles (Ga-NPs) from the Balady cultivar were prepared, characterized, and added to SFO at three concentrations: 200, 600, and 1000 ppm (w/v), and they were compared with 600 ppm garlic lyophilized powder extract (Ga-LPE), 200 ppm BHT, 200 ppm α-tocopherol, and SFO without Ga-NPs (control). The QTRAP LC/MS/MS profile of Ga-NPs revealed the presence of four organosulfur compounds. Ga-NPs exhibited the highest capacity for phenolic, flavonoid, and antioxidant compounds. In Ga-NP SFO samples, the values of peroxide, p-anisidine, totox, conjugated dienes, and conjugated trienes were significantly lower than the control. The antioxidant indices of SFO samples containing Ga-NPs were higher than the control. The Ga-NPs enhanced the sensory acceptability of SFO treatments up to day 24 of storage. The shelf life of SFO treated with Ga-NPs was substantially increased (presuming a Q10 amount). The results show that Ga-NPs are a powerful antioxidant that improves SFO stability and extends the shelf life (~384 days at 25 °C).
Collapse
Affiliation(s)
- Nouara Abdelli
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (N.A.); (M.K.M.)
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Mohammed Ebrahim Abdel-Alim
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Nesreen Saad Salim
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Mahran El-Nagar
- Department of Horticulture, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Sati Y. Al-Dalain
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Salt P.O. Box 19117, Jordan
| | - Ridab Adlan Abdalla
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ganesan Nagarajan
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Emad Fadhal
- Department of Mathematics & Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Rashid I. H. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Botany, Faculty of Science, Khartoum University, P.O. Box 321, Khartoum 11115, Sudan
| | - Eman Afkar
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, College of Science, Bani-Suef University, Bani-Suef P.O. Box 52621, Egypt
| | - Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
- Correspondence: (N.A.); (M.K.M.)
| |
Collapse
|
22
|
Tan C, Xu QD, Chen N, He Q, Zeng WC. Cross-Linking Modifications of Different Phenolic Compounds on Myofibrillar Protein of Common Carp. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Microencapsulation of Rose Essential Oil Using Perilla Protein Isolate-Sodium Alginate Complex Coacervates and Application of Microcapsules to Preserve Ground Beef. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Meiguni MSM, Salami M, Rezaei K, Aliyari MA, Ghaffari SB, Emam-Djomeh Z, Kennedy JF, Ghasemi A. Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation. Int J Biol Macromol 2022; 224:170-180. [DOI: 10.1016/j.ijbiomac.2022.10.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
25
|
Namazzadeh G, Ehsani A, Ghasempour Z. Microencapsulation of red beet extract using
Chitosan‐Persian
Gum Complex Coacervates. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazal Namazzadeh
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
26
|
Prieto C, Talón E, Noreña CZ, Lagaron JM. Effect of Whey Protein Purity on the Characteristics of Algae Oil-Loaded Encapsulates Obtained by Electrospraying Assisted by Pressurized Gas. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3096. [PMID: 36144884 PMCID: PMC9504575 DOI: 10.3390/nano12183096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
In this paper, the effect of protein purity in three different whey protein grades on the characteristics of algae oil encapsulates obtained via room-temperature electrospraying assisted by pressurized gas (EAPG) encapsulation process was studied. Three different commercial grades of whey protein purity were evaluated, namely 35, 80, and 90 wt.%. Oil nanodroplets with an average size of 600 nm were homogeneously entrapped into whey protein microparticles 3 µm in size. However, the sphericity and the surface smoothness of the microparticles increased by increasing the protein purity in the grades of whey protein studied. The porosity of the microparticles was also dependent on protein purity as determined by nitrogen adsorption-desorption isotherms, being smaller for larger contents of protein. Interestingly, the lowest extractable oil was obtained with WP35, probably due to the high content of lactose. The peroxide values confirmed the superior protective effect of the protein, obtaining the smallest peroxide value for WP90, a result that is consistent with its reduced porosity and with its lower permeability to oxygen, as confirmed by the fluorescence decay-oxygen consumption method. The accelerated stability assay against oxidation confirmed the higher protection of the WP80 and WP90. In addition, the increased content in protein implied a higher thermal stability according to the thermogravimetric analysis. These results further confirm the importance of the adequate selection of the composition of wall materials together with the encapsulation method.
Collapse
Affiliation(s)
- Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Emma Talón
- Bioinicia R & D Department, Bioinicia S.L., Calle Algepser No. 65, Nave 3, Polígono Industrial Táctica, 46980 Paterna, Spain
| | - Caciano Zapata Noreña
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Golçalves, No. 9500, Porto Alegre CEP 91501-970, Brazil
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
27
|
Comparative Study of Food-Grade Pickering Stabilizers Obtained from Agri-Food Byproducts: Chemical Characterization and Emulsifying Capacity. Foods 2022; 11:foods11162514. [PMID: 36010516 PMCID: PMC9407277 DOI: 10.3390/foods11162514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Natural Pickering emulsions are gaining popularity in several industrial fields, especially in the food industry and plant-based alternative sector. Therefore, the objective of this study was to characterize and compare six agri-food wastes/byproducts (lupin hull, canola press-cake, lupin byproduct, camelina press-cake, linseed hull, and linseed press-cake) as potential sources of food-grade Pickering stabilizers. The results showed that all samples contained surface-active agents such as proteins (46.71-17.90 g/100 g) and dietary fiber (67.10-38.58 g/100 g). Canola press-cake, camelina press-cake, and linseed hull exhibited the highest concentrations of polyphenols: 2891, 2549, and 1672 mg GAE/100 g sample, respectively. Moreover, the agri-food byproduct particles presented a partial wettability with a water contact angle (WCA) between 77.5 and 42.2 degrees, and they were effective for stabilizing oil-in-water (O/W) emulsions. The emulsions stabilized by Camelina press-cake, lupin hull, and lupin by-product (≥3.5%, w/w) were highly stable against creaming during 45 days of storage. Furthermore, polarized and confocal microscopy revealed that the particles were anchored to the interfaces of oil droplets, which is a demonstration of the formation of a Pickering emulsion stabilized by solid particles. These results suggest that agri-food wastes/byproducts are good emulsifiers that can be applied to produce stable Pickering emulsions.
Collapse
|
28
|
Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SMA, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s ( Allium sativum L.) Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Sepordeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas—Fayetteville, Fayetteville, AR, USA
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
The Physicochemical Properties and Antioxidant Activity of Spirulina ( Artrhospira platensis) Chlorophylls Microencapsulated in Different Ratios of Gum Arabic and Whey Protein Isolate. Foods 2022; 11:foods11121809. [PMID: 35742007 PMCID: PMC9223014 DOI: 10.3390/foods11121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Collapse
|
30
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
31
|
Shavisi N, Shahbazi Y. Chitosan-gum Arabic nanofiber mats encapsulated with pH-sensitive Rosa damascena anthocyanins for freshness monitoring of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Amani F, Rezaei A, Damavandi MS, Doost AS, Jafari SM. Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chem 2022; 377:131998. [PMID: 34999451 DOI: 10.1016/j.foodchem.2021.131998] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
The potential of almond gum and gelatin complex coacervates as a colloidal carrier for rosemary essential oil (REO) was investigated along with in-vitro gastrointestinal release and cytotoxicity. The optimum formulation (1 gelatin:2 almond gum and 7% (w/w) REO) was selected based on encapsulation efficiency (43.6%) and encapsulation yield (99.3%). The particle size was 6.9 µm with a high negative zeta-potential (-37.3 mV). FTIR and XRD data revealed that REO was properly loaded within carriers and there were interactions between gelatin and almond gum. Thermal stability of REO was enhanced after complex coacervation according to TGA. REO released slowly from carriers under simulated gastrointestinal fluid. Cytotoxicity of pure REO and REO-loaded complexes was evaluated on 4 T1 cell lines. Encapsulation of REO caused a reduction in toxicity. Overall, coacervates of gelatin-almond gum could be a promising carrier to enhance the application of bioactives in the food and drug industry with low toxicity.
Collapse
Affiliation(s)
- Fateme Amani
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Mohammad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Seid Mahdi Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
33
|
Reverchon E, Scognamiglio M, Baldino L. The Nanostructure of Polymer-Active Principle Microparticles Produced by Supercritical CO 2 Assisted Processing. NANOMATERIALS 2022; 12:nano12091401. [PMID: 35564110 PMCID: PMC9105249 DOI: 10.3390/nano12091401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/22/2022]
Abstract
Traditional and supercritical CO2 assisted processes are frequently used to produce microparticles formed by a biopolymer containing an active principle to improve the bioavailability of the active principle. However, information about the internal organization of these microparticles is still scarce. In this work, a suspension of dextran + Fe3O4 nanoparticles (model system) and a solution of polyvinylpyrrolidone (PVP) + curcumin were used to produce spherical microparticles by supercritical CO2 processing. Periodic dynamic light scattering measurements were used to analyze the evolution of the microparticles dissolution, size, and size distribution of the guest active principle in the polymeric matrix. It was found that curcumin was dispersed in the form of nanoparticles in the PVP microparticles, whose size largely depended on its relative concentration. These results were validated by transmission electron microscopy and scanning electron microscopy of the PVP microparticles and curcumin nanoparticles, before and after the dissolution tests.
Collapse
|
34
|
Yudhistira B, Punthi F, Lin JA, Sulaimana AS, Chang CK, Hsieh CW. S-Allyl cysteine in garlic (Allium sativum): Formation, biofunction, and resistance to food processing for value-added product development. Compr Rev Food Sci Food Saf 2022; 21:2665-2687. [PMID: 35355410 DOI: 10.1111/1541-4337.12937] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 01/20/2023]
Abstract
S-allyl cysteine (SAC), which is the most abundant bioactive compound in black garlic (BG; Allium sativum), has been shown to have antioxidant, anti-apoptotic, anti-inflammatory, anti-obesity, cardioprotective, neuroprotective, and hepatoprotective activities. Sulfur compounds are the most distinctive bioactive elements in garlic. Previous studies have provided evidence that the concentration of SAC in fresh garlic is in the range of 19.0-1736.3 μg/g. Meanwhile, for processed garlic, such as frozen and thawed garlic, pickled garlic, fermented garlic extract, and BG, the SAC content increased to up to 8021.2 μg/g. BG is an SAC-containing product, with heat treatment being used in nearly all methods of BG production. Therefore, strategies to increase the SAC level in garlic are of great interest; however, further knowledge is required about the effect of processing factors and mechanistic changes. This review explains the formation of SAC in garlic, introduces its biological effects, and summarizes the recent advances in processing methods that can affect SAC levels in garlic, including heat treatment, enzymatic treatment, freezing, fermentation, ultrasonic treatment, and high hydrostatic pressure. Thus, the aim of this review was to summarize the outcomes of treatment aimed at maintaining or increasing SAC levels in BG. Therefore, publications from scientific databases in this field of study were examined. The effects of processing methods on SAC compounds were evaluated on the basis of the SAC content. This review provides information on the processing approaches that can assist food manufacturers in the development of value-added garlic products.
Collapse
Affiliation(s)
- Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret Univeristy, Surakarta City, Central Java, Indonesia
| | - Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | | | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan, Republic of China
| |
Collapse
|
35
|
Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N. Influence of Nanovesicle Type, Nanoliposome and Nanoniosome, on Antioxidant and Antimicrobial Activities of Encapsulated Myrtle Extract: A Comparative Study. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02747-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Tavares L, Noreña CPZ. Characterization of rheological properties of complex coacervates composed by whey protein isolate, chitosan and garlic essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Tavares L, Santos L, Zapata Noreña CP. Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Stachowiak N, Kowalonek J, Kozlowska J. Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3044. [PMID: 34204985 PMCID: PMC8199913 DOI: 10.3390/ma14113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Gelatin/polyvinylpyrrolidone/hydroxyethyl cellulose/glycerol porous matrices with microspheres made of sodium alginate or pectin and sodium alginate were produced. A surfactant was loaded into these microparticles. The microspheres were characterized using optical microscopy, scanning electron microscopy SEM, and laser diffraction particle size analyzer. For the matrices, the density, porosity, swelling capacity, dissolution in phosphate saline buffer were determined and SEM, mechanical, and thermogravimetric studies were applied. The results showed that the size of the two-component microspheres was slightly larger than that of single-ingredient microparticles. The images confirmed the spherical shape of the microparticles. The prepared matrices had high water uptake ability and porosity due to the presence of hydrophilic polymers. The presence of microparticles in the matrices caused a decrease in these parameters. Degradation of the composites with the microspheres was significantly faster than the matrix without them. The addition of microparticles increased the stiffness and toughness of the prepared materials. The efficiency of the thermal decomposition main stage was reduced in the samples with microspheres, whereas a char residue increased in these composites.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (J.K.); (J.K.)
| | | | | |
Collapse
|
40
|
Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106471] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Color/aroma changes of 3D-Printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106358] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix Against Aspergillus flavus in Food System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Tavares L, Noreña CPZ. Characterization of the physicochemical, structural and thermodynamic properties of encapsulated garlic extract in multilayer wall materials. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Ocak B. Gum arabic and collagen hydrolysate extracted from hide fleshing wastes as novel wall materials for microencapsulation of Origanum onites L. essential oil through complex coacervation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42727-42737. [PMID: 32720020 DOI: 10.1007/s11356-020-10201-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Renewable resource-based biodegradable materials attract more attention than petroleum-based biodegradable materials to support the sustainable development of ecology. Obtaining collagen hydrolysate (CH) from hide fleshing wastes of leather industry is an environmentally friendly way to develop multifunctional materials that can contribute to technological advances in different industries. In this study, 2:1, 1:1, and 1 2 ratios of gum arabic (GA) and CH extracted from hide fleshing waste were used as wall materials to encapsulate Origanum onites L. essential oil (OOEO) using the complex coacervation method. The encapsulation yield and efficiency, functional group composition, particle size, morphology, and thermal stability of the obtained OOEO microcapsules were characterized. The results showed that the obtained microcapsules had high encapsulation yield and efficiency, as well as good functional properties such as uniform morphology and low water activity. The best mass ratio for the biopolymers (GA:CH) was 1:1. Scanning electron microscopy analysis showed that OOEO microcapsule samples had a spherical shape. FTIR analysis was performed on obtained microcapsules, confirming the molecular interactions between GA and CH. These findings can be useful in designing an ideal wall material using GA and CH for microencapsulation of essential oils by the complex coacervation method.
Collapse
Affiliation(s)
- Bugra Ocak
- Faculty of Engineering, Department of Leather Engineering, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
48
|
Artiga-Artigas M, de Abreu-Martins HH, Zeeb B, Piccoli RH, Martín-Belloso O, Salvia-Trujillo L. Antimicrobial Kinetics of Nanoemulsions Stabilized with Protein:Pectin Electrostatic Complexes. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02531-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|