1
|
Singh SB, Kuniyal K, Rawat A, Bisht A, Shah V, Daverey A. Sophorolipids as anticancer agents: progress and challenges. Discov Oncol 2025; 16:507. [PMID: 40208440 PMCID: PMC11985733 DOI: 10.1007/s12672-025-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Sophorolipids (SLs) are considered effective biosurfactant for cancer treatment, which can efficiently inhibit the viability of various cancer types including breast, lung, liver, cervical and colon cancers. Their mechanism of action targets apoptosis and operates at the level of caspase enzymes, upregulation and downregulation of the B-cell lymphoma (Bcl)-family proteins, and changes in mitochondrial membrane permeability. The binding of SLs to the cancer cell receptors modulates the expression of Bax, APAF1, Bcl-2 and Bcl-x, and triggers the release of cytochrome c into the cytosol which further activates caspase-3/9 pathways leading to apoptosis. SLs also increase intracellular reactive oxygen species (ROS) level in cancer cells that activates pro-apoptotic JNK and p38 MAPK signaling pathways and induce apoptosis through the activation of caspase (3, 6 and 7) pathways. Recently, the integration of anticancer drugs like doxorubicin hydrochloride into SL based nanoparticles (SLNPs) enhanced stability, biocompatibility, bioavailability, pharmacokinetics and therapeutic efficacy. Besides, doxorubicin and resveratrol conjugated NPs induced apoptosis in resistant breast cancer cells by down-regulating the expression of Bcl-2, NF-kB and efflux transporters. However, several challenges exist regarding the stability of SLs under physiological conditions, targeting specific cancer cells, and their clinical applications. This study provides updated concepts on the formulations and properties of different types of SLs, their mechanism of anticancer action and applications in nanotechnology for targeted drug delivery system.
Collapse
Affiliation(s)
- Salam Bhopen Singh
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Kanupriya Kuniyal
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Ananya Rawat
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Ananya Bisht
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Vijendra Shah
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Achlesh Daverey
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
2
|
Lourenço M, Duarte N, Ribeiro IAC. Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals (Basel) 2024; 17:1239. [PMID: 39338401 PMCID: PMC11434949 DOI: 10.3390/ph17091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Antibacterial resistance is one of the most important global threats to human health. Several studies have been performed to overcome this problem and infection-preventive approaches appear as promising solutions. Novel antimicrobial preventive molecules are needed and microbial biosurfactants have been explored in that scope. Considering their structure, these biomolecules can be divided into different classes, glycolipids and lipopeptides being the most studied. Besides their antimicrobial activity, biosurfactants have the advantage of being biocompatible, biodegradable, and non-toxic, which favor their application in several areas, including the health sector. Often, the most difficult infections to fight are associated with biofilm formation, particularly in medical devices. Strategies to overcome micro-organism attachment are thus emergent, and it is possible to take advantage of the antimicrobial/antibiofilm properties of biosurfactants to produce surfaces that are more resistant to the deposition/attachment of bacteria. Approaches such as the covalent bond of biosurfactants to the medical device surface leading to repulsive physical-chemical interactions or contact killing can be selected. Simpler strategies such as the absorption of biosurfactants on surfaces are also possible, eliminating micro-organisms in the vicinity. This review will focus on the physical and chemical characteristics of biosurfactants, their antimicrobial activity, antimicrobial/antibiofilm approaches, and finally on their structure-activity relationship.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
3
|
Miceli R, Allen NG, Subramaniam B, Carmody L, Dordick JS, Corr DT, Cotten M, Gross RA. Synergistic Treatment of Breast Cancer by Combining the Antimicrobial Peptide Piscidin with a Modified Glycolipid. ACS OMEGA 2024; 9:33408-33424. [PMID: 39130564 PMCID: PMC11308023 DOI: 10.1021/acsomega.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/13/2024]
Abstract
Piscidin 3 (P3), a peptide produced by fish, and a hexyl ester-modified sophorolipid (SL-HE), have individually shown promise as antimicrobial and anticancer drugs. A recent report by our team revealed that combining P3 with SL-HE in a 1:8 molar ratio resulted in an 8-fold enhancement in peptide activity, while SL-HE improved by 25-fold its antimicrobial activity against the Gram-positive microorganism Bacillus cereus. Extending these findings, the same P3/SL-HE combination was assessed on two breast cancer cell lines: BT-474, a hormonally positive cell line, and MDA-MB-231, an aggressive triple-negative cell line. The results demonstrated that the 1:8 molar ratio of P3/SL-HE synergistically enhances the anticancer effects against both tumorigenic breast cell lines. Mechanistic studies indicate the activation of an intrinsic apoptotic cell death mechanism through an increase in reactive oxygen species and mitochondrial dysfunction and a secondary programmed necrotic pathway that involves pore formation in the plasma membrane. When a fibroblast cell line, CCD1065SK HDF, was utilized to determine selectivity, the synergistic SL-HE/P3 combination exhibited a protective property compared to the use of SL-HE alone and therefore afforded vastly improved selectivity indices. Given the promising results reported herein, the synergistic combination of P3/SL-HE constitutes a novel strategy that merits further study for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rebecca
T. Miceli
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Noah G. Allen
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bhagyashree Subramaniam
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Livia Carmody
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Jonathan S. Dordick
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T. Corr
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Myriam Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Richard A. Gross
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
4
|
Das S, Rao KVB. A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry. Arch Microbiol 2024; 206:60. [PMID: 38197951 DOI: 10.1007/s00203-023-03786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Biosurfactants are naturally occurring, surface-active chemicals generated by microorganisms and have attracted interest recently because of their numerous industrial uses. Compared to their chemical equivalents, they exhibit qualities that include lower toxic levels, increased biodegradable properties, and unique physiochemical properties. Due to these traits, biosurfactants have become attractive substitutes for synthetic surfactants in the pharmaceutical industry. In-depth research has been done in the last few decades, demonstrating their vast use in various industries. This review article includes a thorough description of the various types of biosurfactants and their production processes. The production process discussed here is from oil-contaminated waste, agro-industrial waste, dairy, and sugar industry waste, and also how biosurfactants can be produced from animal fat. Various purification methods such as ultrafiltration, liquid-liquid extraction, acid precipitation, foam fraction, and adsorption are required to acquire a purified product, which is necessary in the pharmaceutical industry, are also discussed here. Alternative ways for large-scale production of biosurfactants using different statistical experimental designs such as CCD, ANN, and RSM are described here. Several uses of biosurfactants, including drug delivery systems, antibacterial and antifungal agents, wound healing, and cancer therapy, are discussed. Additionally, in this review, the future challenges and aspects of biosurfactant utilization in the pharmaceutical industry and how to overcome them are also discussed.
Collapse
Affiliation(s)
- Sriya Das
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India.
| |
Collapse
|
5
|
Roberge CL, Miceli RT, Murphy LR, Kingsley DM, Gross RA, Corr DT. Sophorolipid Candidates Demonstrate Cytotoxic Efficacy against 2D and 3D Breast Cancer Models. JOURNAL OF NATURAL PRODUCTS 2023; 86:1159-1170. [PMID: 37104545 PMCID: PMC10760934 DOI: 10.1021/acs.jnatprod.2c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sophorolipids are biosurfactants derived from the nonpathogenic yeasts such as Starmerella bombicola with potential efficacy in anticancer applications. Simple and cost-effective synthesis of these drugs makes them a promising alternative to traditional chemotherapeutics, pending their success in preliminary drug-screening. Drug-screening typically utilizes 2D cell monolayers due to their simplicity and ease of high-throughput assessment. However, 2D assays fail to capture the complexity and 3D context of the tumor microenvironment and have consequently been implicated in the high percentage of drugs investigated in vitro that later fail in clinical trials. Herein, we screened two sophorolipid candidates and a clinically-used chemotherapeutic, doxorubicin, on in vitro breast cancer models ranging from 2D monolayers to 3D spheroids, employing optical coherence tomography to confirm these morphologies. We calculated corresponding IC50 values for these drugs and found one of the sophorolipids to have comparable toxicities to the chemotherapeutic control. Our findings show increased drug resistance associated with model dimensionality, such that all drugs tested showed that 3D spheroids exhibited higher IC50 values than their 2D counterparts. These findings demonstrate promising preliminary data to support the use of sophorolipids as a more affordable alternative to traditional clinical interventions and demonstrate the importance of 3D tumor models in assessing drug response.
Collapse
Affiliation(s)
- Cassandra L Roberge
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Rebecca T Miceli
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lillian R Murphy
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David M Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
6
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
7
|
Filipe GA, Silveira VAI, Gonçalves MC, Beltrame Machado RR, Nakamura CV, Baldo C, Mali S, Kobayashi RKT, Colabone Celligoi MAP. Bioactive films for the control of skin pathogens with sophorolipids from Starmerella bombicola. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Surface Functionalization of Piperine-Loaded Liposomes with Sophorolipids Improves Drug Loading and Stability. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Sophorolipids—Bio-Based Antimicrobial Formulating Agents for Applications in Food and Health. Molecules 2022; 27:molecules27175556. [PMID: 36080322 PMCID: PMC9457973 DOI: 10.3390/molecules27175556] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Sophorolipids are well-known glycolipid biosurfactants, produced mainly by non-pathogenic yeast species such as Candida bombicola with high yield. Its unique environmental compatibility and high biodegradable properties have made them a focus in the present review for their promising applications in diverse areas. This study aims to examine current research trends of sophorolipids and evaluate their applications in food and health. A literature search was conducted using different research databases including PubMed, ScienceDirect, EBSCOhost, and Wiley Online Library to identify studies on the fundamental mechanisms of sophorolipids and their applications in food and health. Studies have shown that various structural forms of sophorolipids exhibit different biological and physicochemical properties. Sophorolipids represent one of the most attractive biosurfactants in the industry due to their antimicrobial action against both Gram-positive and Gram-negative microorganisms for applications in food and health sectors. In this review, we have provided an overview on the fundamental properties of sophorolipids and detailed analysis of their applications in diverse areas such as food, agriculture, pharmaceutical, cosmetic, anticancer, and antimicrobial activities.
Collapse
|
10
|
Callaghan B, Twigg MS, Baccile N, Van Bogaert INA, Marchant R, Mitchell CA, Banat IM. Microbial sophorolipids inhibit colorectal tumour cell growth in vitro and restore haematocrit in Apc min+/- mice. Appl Microbiol Biotechnol 2022; 106:6003-6016. [PMID: 35965289 PMCID: PMC9467956 DOI: 10.1007/s00253-022-12115-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Sophorolipids are glycolipid biosurfactants consisting of a carbohydrate sophorose head with a fatty acid tail and exist in either an acidic or lactonic form. Sophorolipids are gaining interest as potential cancer chemotherapeutics due to their inhibitory effects on a range of tumour cell lines. Currently, most anti-cancer studies reporting the effects of sophorolipids have focused on lactonic preparations with the effects of acidic sophorolipids yet to be elucidated. We produced a 94% pure acidic sophorolipid preparation which proved to be non-toxic to normal human colonic and lung cells. In contrast, we observed a dose-dependent reduction in viability of colorectal cancer lines treated with the same preparation. Acidic sophorolipids induced apoptosis and necrosis, reduced migration, and inhibited colony formation in all cancer cell lines tested. Furthermore, oral administration of 50 mg kg−1 acidic sophorolipids over 70 days to Apcmin+/− mice was well tolerated and resulted in an increased haematocrit, as well as reducing splenic size and red pulp area. Oral feeding did not affect tumour numbers or sizes in this model. This is the first study to show that acidic sophorolipids dose-dependently and specifically reduces colon cancer cell viability in addition to reducing tumour-associated bleeding in the Apcmin+/− mouse model. Key points • Acidic sophorolipids are produced by yeast species such as Starmerella bombicola. • Acidic sophorolipids selectively killed colorectal cells with no effect on healthy gut epithelia. • Acidic sophorolipids reduced tumour-associated gut bleed in a colorectal mouse model. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12115-6.
Collapse
Affiliation(s)
- Breedge Callaghan
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Matthew S Twigg
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de La Matière Condensée de Paris, UMR 7574, 75005, Paris, France
| | - Inge N A Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | | | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
11
|
Miceli RT, Corr DT, Barroso M, Dogra N, Gross RA. Sophorolipids: Anti-cancer activities and mechanisms. Bioorg Med Chem 2022; 65:116787. [PMID: 35526504 DOI: 10.1016/j.bmc.2022.116787] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Sophorolipids (SLs) are biosurfactants synthesized as secondary metabolites by non-pathogenic yeasts and other microorganisms. They are members of glycolipid microbial surfactant family that consists of a sophorose polar head group and, most often, an ω-1 hydroxylated fatty acid glycosidically linked to the sophorose moiety. Since the fermentative production of SLs is high (>200 g/L), SLs have the potential to provide low-cost therapeutics. Natural and modified SLs possess anti-cancer activity against a wide range of cancer cell lines such as those derived from breast, cervical, colon, liver, brain, and the pancreas. Corresponding data on their cytotoxicity against noncancerous cell lines including human embryo kidney, umbilical vein, and mouse fibroblasts is also discussed. These results are compiled to elucidate trends in SL-structures that lead to higher efficacy against cancer cell lines and lower cytotoxicity for normal cell lines. While extrapolation of these results provides some insights into the design of SLs with optimal therapeutic indices, we also provide a critical assessment of gaps and inconsistencies in the literature as well as the lack of data connecting structure-to-anticancer and cytotoxicity on normal cells. Furthermore, SL-mechanism of action against cancer cell lines, that includes proliferation inhibition, induction of apoptosis, membrane disruption and mitochondria mediated pathways are discussed. Perspectives on future research to develop SL anticancer therapeutics is discussed.
Collapse
Affiliation(s)
- Rebecca T Miceli
- Center for Biotechnology and Interdisciplinary Sciences and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States; Department of Chemistry and Chemical Biology and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States
| | - Margardia Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States
| | - Navneet Dogra
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Richard A Gross
- Center for Biotechnology and Interdisciplinary Sciences and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States; Department of Chemistry and Chemical Biology and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States.
| |
Collapse
|
12
|
Ma X, Wang T, Yu Z, Shao J, Chu J, Zhu H, Yao R. Formulation and Physicochemical and Biological Characterization of Etoposide-Loaded Submicron Emulsions with Biosurfactant of Sophorolipids. AAPS PharmSciTech 2022; 23:181. [PMID: 35773548 DOI: 10.1208/s12249-022-02329-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Etoposide (ETO), a traditional anticancer chemotherapeutic agent, is commercialized in oral soft gelatin capsules and non-aqueous parenteral solutions form. Novel formulation application and new excipients exploration are needed to improve the water-solubility and comfort of the drug administration. In the present study, novel etoposide-loaded submicron emulsions (ESE) with the biosurfactants of acidic sophorolipid (ASL) and lactonic sophorolipid (LSL) instead of the chemical surfactant of Tween-80 were prepared and characterized. Firstly, parameters of medium-chain triglyceride: long-chain triglyceride (MCT:LCT), lecithin concentration, homogenization pressure and cycle, and type and concentration of surfactants were investigated to optimize the formation of ESEs. Then the physicochemical properties, antitumor activity, stability, and security of ESEs were compared. The results showed that ASL performed the best properties and activities than Tween-80 and LSL in ESE formation. ASL-ESE showed higher drug loading capacity, slower release rate, and significantly increased antitumor activity against ovarian cancer cell line A2780 via apoptosis than Tween-ESE and commercial ETO injection. Besides, both ASL-ESE and Tween-ESE caused no hemolysis, and the safe dose of ASL was 2.14-fold that of Tween-80 in the hemolysis test, making ASL more reliable for drug delivery applications. Furthermore, ASL-ESE exhibited equivalent long-term and autoclaving stability to Tween-ESE. These results thus suggested the excellent competences of ASL in ESE formation, efficacy enhancement, and safety improvement.
Collapse
Affiliation(s)
- Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, USA.
| | - Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Zequan Yu
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Junqian Shao
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Jun Chu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, USA.,Key Laboratory of Xin'An Medicine, Ministry of Education, Centre of Scientific Research Technology, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huixia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Risheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| |
Collapse
|
13
|
Filipe GA, Bigotto BG, Baldo C, Gonçalves MC, Kobayashi RKT, Lonni AASG, Celligoi MAPC. Development of a multifunctional and self-preserving cosmetic formulation using sophorolipids and palmarosa essential oil against acne-causing bacteria. J Appl Microbiol 2022; 133:1534-1542. [PMID: 35686654 DOI: 10.1111/jam.15659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022]
Abstract
AIMS The objective of this study was to evaluate the antibacterial effect of sophorolipids in combination with palmarosa essential oil and to develop a cosmetic formulation against acne-causing bacteria. METHODS AND RESULTS The antibacterial activity of sophorolipids, palmarosa oil and their combined effect was evaluated by broth microdilution and checkerboard methods. Antioxidant activity was determined by the DPPH method. The results showed that the compounds presented antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis. The combination of sophorolipid and palmarosa oil resulted in synergistic and additive interaction reducing the concentration needed for the effectiveness against S. aureus and S. epidermidis, to 98.4% and 50%, respectively. The compounds interaction showed an additive effect for antioxidant activity. The cosmetic formulation without any chemical preservative presents antibacterial activity against S. aureus, S. epidermidis and Cutibacterium acnes. The pH values and organoleptic characteristics of formulations remained stable under all conditions tested. CONCLUSIONS The association of sophorolipids and palmarosa oil resulted in a self-preserving cosmetic formulation with great stability, and effective antioxidant and antibacterial activities against acne-causing micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the development of an effective multifunctional cosmetic formulation with natural preservatives to treat acne vulgaris and other skin infections.
Collapse
Affiliation(s)
- Giovanna Amaral Filipe
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Briane Gisele Bigotto
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Cristiani Baldo
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | | | | | | | | |
Collapse
|
14
|
Biosurfactants as Anticancer Agents: Glycolipids Affect Skin Cells in a Differential Manner Dependent on Chemical Structure. Pharmaceutics 2022; 14:pharmaceutics14020360. [PMID: 35214090 PMCID: PMC8874633 DOI: 10.3390/pharmaceutics14020360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Melanomas account for 80% of skin cancer deaths. Due to the strong relationship between melanomas and U.V. radiation, sunscreens have been recommended for use as a primary preventative measure. However, there is a need for targeted, less invasive treatment strategies. Glycolipids such as sophorolipids and rhamnolipids are microbially derived biosurfactants possessing bioactive properties such as antimicrobial, immunomodulatory and anticancer effects. This study aimed to ascertain the differing effects of glycolipids on skin cells. Highly purified and fully characterized preparations of sophorolipids and rhamnolipids were used to treat spontaneously transformed human keratinocyte (HaCaT) and the human malignant melanocyte (SK-MEL-28) cell lines. Cell viability and morphological analyses revealed that glycolipids have differential effects on the skin cells dependent on their chemical structure. Lactonic sophorolipids and mono-rhamnolipids were shown to have a significantly detrimental effect on melanoma cell viability compared to healthy human keratinocytes. These glycolipids were shown to induce cell death via necrosis. Additionally, sophorolipids were shown to significantly inhibit SK-MEL-28 cell migration. These findings suggest that glycolipids could be used as bioactive agents with selective inhibitory effects. As such, glycolipids could be a substitute for synthetically derived surfactants in sunscreens to provide additional benefit and have the potential as novel anti-skin-cancer therapies.
Collapse
|
15
|
Mishra N, Rana K, Seelam SD, Kumar R, Pandey V, Salimath BP, Agsar D. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line. Front Bioeng Biotechnol 2021; 9:761266. [PMID: 34950641 PMCID: PMC8691732 DOI: 10.3389/fbioe.2021.761266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
A biosurfactant producing bacterium was identified as Pseudomonas aeruginosa DNM50 based on molecular characterization (NCBI accession no. MK351591). Structural characterization using MALDI-TOF revealed the presence of 12 different congeners of rhamnolipid such as Rha-C8-C8:1, Rha-C10-C8:1, Rha-C10-C10, Rha-C10-C12:1, Rha-C16:1, Rha-C16, Rha-C17:1, Rha-Rha-C10:1-C10:1, Rha-Rha-C10-C12, Rha-Rha-C10-C8, Rha-Rha-C10-C8:1, and Rha-Rha-C8-C8. The radical scavenging activity of rhamnolipid (DNM50RL) was determined by 2, 3-diphenyl-1-picrylhydrazyl (DPPH) assay which showed an IC50 value of 101.8 μg/ ml. The cytotoxic activity was investigated against MDA-MB-231 breast cancer cell line by MTT (4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide) assay which showed a very low IC50 of 0.05 μg/ ml at 72 h of treatment. Further, its activity was confirmed by resazurin and trypan blue assay with IC50 values of 0.01 μg/ml and 0.64 μg/ ml at 72 h of treatment, respectively. Thus, the DNM50RL would play a vital role in the treatment of breast cancer targeting inhibition of p38MAPK.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Microbiology, Gulbarga University, Gulbarga, India
| | - Kavita Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | | | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kadaganchi, India
| | - Vijyendra Pandey
- Department of Psychology, School of Social and Behavioural Sciences, Central University of Karnataka, Kadaganchi, India
| | - Bharathi P Salimath
- Department of Biotechnology, University of Mysore, Mysore, India.,Sanorva Biotech Pvt. Ltd., Mysuru, India
| | - Dayanand Agsar
- Department of Microbiology, Gulbarga University, Gulbarga, India
| |
Collapse
|
16
|
Daverey A, Dutta K, Joshi S, Daverey A. Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered 2021; 12:9550-9560. [PMID: 34709115 PMCID: PMC8810061 DOI: 10.1080/21655979.2021.1997261] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Biosurfactants are natural surfactants produced by a variety of microorganisms. In recent years, biosurfactants have garnered a lot of interest due to their biomedical and pharmaceutical applications. Sophorolipids are glycolipid types of biosurfactants produced by selected nonpathogenic yeasts. In addition to the detergent activity (reduction in surface and interfacial tension), which is commonly utilized by biomedical applications, sophorolipids have shown some unique properties such as, antiviral activity against enveloped viruses, immunomodulation, and anticancer activity. Considering their antiviral activity, the potential of sophorolipids as an antiviral therapy for the treatment of COVID-19 is discussed in this review. Being a surfactant molecule, sophorolipid could solubilize the lipid envelope of SARS-CoV-2 and inactivate it. As an immunomodulator, sophorolipid could attenuate the cytokine storm caused by the SARS-CoV-2 upon infection, and inhibit the progression of COVID-19 in patients. Sophorolipids could also be used as an effective treatment strategy for COVID-19 patients suffering from cancer. However, there is limited research on the use of sophorolipid as a therapeutic agent for the treatment of cancer and viral diseases, and to modulate the immune response. Nevertheless, the multitasking capabilities of sophorolipids make them potential therapeutic candidates for the bench-to-bedside research for the treatment of COVID-19.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, India
- School of Biological Sciences, Doon University, Dehradun, India
| |
Collapse
|
17
|
Silveira VAI, Kobayashi RKT, de Oliveira Junior AG, Mantovani MS, Nakazato G, Celligoi MAPC. Antimicrobial effects of sophorolipid in combination with lactic acid against poultry-relevant isolates. Braz J Microbiol 2021; 52:1769-1778. [PMID: 34173211 PMCID: PMC8578371 DOI: 10.1007/s42770-021-00545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to evaluate the antibacterial effect of sophorolipid in combination with lactic acid against relevant bacteria isolated from the poultry industry. Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli were isolated from chicken meat and antibacterial tests with sophorolipid and lactic acid were performed. Checkerboard, time-kill, and scanning electron microscopy analyses were used to confirm the antibacterial action and the combined effects. Although no inhibitory effects were observed for E. coli and Salmonella, these compounds presented antibacterial activity against L. monocytogenes and S. aureus. Additionally, sophorolipid and lactic acid were not cytotoxic at the concentrations used in the tests. The combination of sophorolipid and lactic acid resulted in an additive interaction, reducing the concentration of the active compounds needed for effectiveness against S. aureus and L. monocytogenes, to 50% and 75%, respectively. These findings lead to the possibility of developing a new, sustainable, and natural antimicrobial solution that is considered noncytotoxic and has wide applicability in the poultry industry to reduce substantial losses in this sector.
Collapse
Affiliation(s)
- Victória Akemi Itakura Silveira
- Department of Biochemistry and Biotechnology, State University of Londrina, Mailbox 10.011, Londrina, Paraná, 86057-970, Brazil
| | | | | | - Mario Sérgio Mantovani
- Department of General Biology, State University of Londrina, Mailbox 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Gerson Nakazato
- Department of Microbiology, State University of Londrina, Mailbox 10.011, Londrina, Paraná, 86057-970, Brazil
| | | |
Collapse
|
18
|
Franco Marcelino PR, Ortiz J, da Silva SS, Ortiz A. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes. Colloids Surf B Biointerfaces 2021; 207:112029. [PMID: 34399158 DOI: 10.1016/j.colsurfb.2021.112029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Sophorolipids (SLs) constitute a group of unique biosurfactants (BS) in the light of their outstanding properties, among which their antimicrobial activities stand out. SLs can exist mainly in an acidic and a lactonic form, both of which display inhibitory activity. Given the amphipathic nature of SLs it is feasible that these antimicrobial actions are the result of the perturbation of the physicochemical properties of targeted membranes. Thus, in this work we have carried out a biophysical study to unveil the molecular details of the interaction of an acidic SL with a model phospholipid membrane made of 1,2-dipalmitoy-sn-glycero-3-phosphocholine (DPPC). Using differential scanning calorimetry it was found that SL altered the phase behaviour of DPPC at low molar fractions, producing fluid phase immiscibility with the result of formation of biosurfactant-enriched domains within the phospholipid bilayer. Fourier-transform infrared spectroscopy showed that SL interacted with DPPC increasing ordering of the phospholipid acyl chain palisade and hydration of the lipid/water interface. Small angle X-ray scattering showed that SL did not modify bilayer thickness in the biologically relevant Lα fluid phase. SL was found to induce contents leakage in 1-palmitoy-2-oleoy-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes, at sublytic concentrations below the cmc. This SL-induced membrane permeabilization at concentrations below the onset for membrane solubilization can be the result of the formation of laterally segregated domains, which might contribute to provide a molecular basis for the reported antimicrobial actions of SLs.
Collapse
Affiliation(s)
- Paulo Ricardo Franco Marcelino
- Laboratório de Bioprocessos e Produtos Sustentáveis (LBios), Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Brazil
| | - Julia Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Spain
| | - Silvio Silvério da Silva
- Laboratório de Bioprocessos e Produtos Sustentáveis (LBios), Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Brazil
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Spain.
| |
Collapse
|
19
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
20
|
Lactonic sophorolipid-induced apoptosis in human HepG2 cells through the Caspase-3 pathway. Appl Microbiol Biotechnol 2021; 105:2033-2042. [PMID: 33582833 DOI: 10.1007/s00253-020-11045-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Liver cancer, one of the most common types of cancer in the world, is the second leading cause of death for cancer patients. For liver cancer, there is an urgent need for an effective treatment with no or less toxic side effects. Lactonic sophorolipids (LSL), as a potential anticancer drug, has attracted wide attention of pharmaceutical researchers with its good biological activities. The effects of LSL and cell death inhibitors were measured by MTT test on HepG2 cells. Meanwhile, the morphology of the cells was observed under a microscope. The apoptosis rate was detected by flow cytometry, and the expression levels of enzyme activity of Caspase-3 and Caspase-9 were measured by detection kits. Meanwhile, mRNA levels of Apaf-1, Caspase-3, Bax, and Bcl-2 were measured by quantitative real-time RT-PCR; protein levels of Caspase-3, Cleaved Caspase-3, Bax, and Bcl-2 were measured by western blot. LSL can inhibit the proliferation of cells, and it is possible to induce apoptosis in cells. The HepG2 cells with LSL co-culture exhibited typical apoptotic morphology, and the expression levels of enzyme activity of Caspase-3 and Caspase-9 increased (P< 0.05). We also found that LSL increases cell apoptosis rate and regulates the expression of genes and proteins associated with apoptosis through the Caspase-3 pathway. These results indicate that LSL may be one of the potential drug candidates to inhibit the proliferation and induce apoptosis in HepG2 cells.Key points• LSL, which is of good biological activities such as anti-bacterium, virus elimination, and inflammatory response elimination, has been firstly used to intervene in vitro to investigate its effect on HepG2 cell proliferation.• LSL can inhibit the proliferation of cells, and it is possible to induce apoptosis in HepG2 cells through the Caspase-3 pathway.• The mechanism of LSL action on HepG2 cell proliferation was firstly also discussed, which provides a certain experimental reference for the clinical treatment of liver cancer.
Collapse
|
21
|
Haggag Y, Elshikh M, El-Tanani M, Bannat IM, McCarron P, Tambuwala MM. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res 2020; 10:1353-1366. [PMID: 32239473 PMCID: PMC7447623 DOI: 10.1007/s13346-020-00750-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Poly(lactic-co-glycolic acid) nanocapsules containing amphiphilic biosurfactant sophorolipids were formulated using a dispersion-based procedure. Di-block copolymers were used to vary peripheral poly(ethylene glycol) density, and variation in the oil core was used to achieve efficient encapsulation of the sophorolipid payload. Particulate size, zeta potential, encapsulation efficiency, release and stability were characterised. A glyceryl monocaprate core composition had the lowest particulate size, maximum encapsulation efficiency and optimum shelf-life stability compared to other formulations. This core composition was used to deliver sophorolipid to both in vitro and in vivo model tumour cell lines (CT26 murine colon carcinoma) and the effect of peripheral hydrophilicity was evaluated. Formulations with 10% poly(ethylene glycol) density achieved more than 80% reduction in cancer cell viability after 72 h and enhanced cellular uptake in CT26 cells. These formulations exhibited higher tumour accumulation and a longer blood circulation profile when compared to the non-poly(ethylene glycol)-containing nanocapsules. Animals treated with sophorolipid-loaded nanocapsules showed a tumour growth inhibition of 57% when compared to controls. An assessment of tumour mass within the same study cohort showed the biggest reduction when compared control and free drug-treated cohorts. This study shows that hydrophilic poly(lactic-co-glycolic acid) nanocapsules loaded with sophorolipids can address the poor intracellular delivery associated with these biosurfactants and is a promising approach for the treatment of colon neoplasia. Graphical abstract.
Collapse
Affiliation(s)
- Yusuf Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed Elshikh
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Ibrahim M Bannat
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
| |
Collapse
|
22
|
Giri SS, Kim HJ, Kim SG, Kim SW, Kwon J, Lee SB, Park SC. Immunomodulatory Role of Microbial Surfactants, with Special Emphasis on Fish. Int J Mol Sci 2020; 21:ijms21197004. [PMID: 32977579 PMCID: PMC7582933 DOI: 10.3390/ijms21197004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Microbial surfactants (biosurfactants) are a broad category of surface-active biomolecules with multifunctional properties. They self-assemble in aqueous solutions and are adsorbed on various interfaces, causing a decrease in surface tension, as well as interfacial tension, solubilization of hydrophobic compounds, and low critical micellization concentrations. Microbial biosurfactants have been investigated and applied in several fields, including bioremediation, biodegradation, food industry, and cosmetics. Biosurfactants also exhibit anti-microbial, anti-biofilm, anti-cancer, anti-inflammatory, wound healing, and immunomodulatory activities. Recently, it has been reported that biosurfactants can increase the immune responses and disease resistance of fish. Among various microbial surfactants, lipopeptides, glycolipids, and phospholipids are predominantly investigated. This review presents the various immunological activities of biosurfactants, mainly glycolipids and lipopeptides. The applications of biosurfactants in aquaculture, as well as their immunomodulatory activities, that make them novel therapeutic candidates have been also discussed in this review.
Collapse
|
23
|
Singh PK, Bohr SSR, Hatzakis NS. Direct Observation of Sophorolipid Micelle Docking in Model Membranes and Cells by Single Particle Studies Reveals Optimal Fusion Conditions. Biomolecules 2020; 10:E1291. [PMID: 32906821 PMCID: PMC7564020 DOI: 10.3390/biom10091291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
Sophorolipids (SLs) are naturally produced glycolipids that acts as drug delivery for a spectrum of biomedical applications, including as an antibacterial antifungal and anticancer agent, where they induce apoptosis selectively in cancerous cells. Despite their utility, the mechanisms underlying their membrane interactions, and consequently cell entry, remains unknown. Here, we combined a single liposome assay to observe directly and quantify the kinetics of interaction of SL micelles with model membrane systems, and single particle studies on live cells to record their interaction with cell membranes and their cytotoxicity. Our single particle readouts revealed several repetitive docking events on individual liposomes and quantified how pH and membrane charges, which are known to vary in cancer cells, affect the docking of SL micelles on model membranes. Docking of sophorolipids micelles was found to be optimal at pH 6.5 and for membranes with -5% negatively charge lipids. Single particle studies on mammalian cells reveled a two-fold increased interaction on Hela cells as compared to HEK-293 cells. This is in line with our cell viability readouts recording an approximate two-fold increased cytotoxicity by SLs interactions for Hela cells as compared to HEK-293 cells. The combined in vitro and cell assays thus support the increased cytotoxicity of SLs on cancer cells to originate from optimal charge and pH interactions between membranes and SL assemblies. We anticipate studies combining quantitative single particle studies on model membranes and live cell may reveal hitherto unknown molecular insights on the interactions of sophorolipid and additional nanocarriers mechanism.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, C 1871 Frederiksberg, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Anestopoulos I, Kiousi DE, Klavaris A, Galanis A, Salek K, Euston SR, Pappa A, Panayiotidis MI. Surface Active Agents and Their Health-Promoting Properties: Molecules of Multifunctional Significance. Pharmaceutics 2020; 12:E688. [PMID: 32708243 PMCID: PMC7407150 DOI: 10.3390/pharmaceutics12070688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Surface active agents (SAAs) are molecules with the capacity to adsorb to solid surfaces and/or fluid interfaces, a property that allows them to act as multifunctional ingredients (e.g., wetting and dispersion agents, emulsifiers, foaming and anti-foaming agents, lubricants, etc.) in a widerange of the consumer products of various industrial sectors (e.g., pharmaceuticals, cosmetics, personal care, detergents, food, etc.). Given their widespread utilization, there is a continuously growing interest to explore their role in consumer products (relevant to promoting human health) and how such information can be utilized in order to synthesize better chemical derivatives. In this review article, weaimed to provide updated information on synthetic and biological (biosurfactants) SAAs and their health-promoting properties (e.g., anti-microbial, anti-oxidant, anti-viral, anti-inflammatory, anti-cancer and anti-aging) in an attempt to better define some of the underlying mechanism(s) by which they exert such properties.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Ariel Klavaris
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus;
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.E.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
25
|
Ma XJ, Zhang HM, Lu XF, Han J, Zhu HX, Wang H, Yao RS. Mutant breeding of Starmerella bombicola by atmospheric and room-temperature plasma (ARTP) for improved production of specific or total sophorolipids. Bioprocess Biosyst Eng 2020; 43:1869-1883. [PMID: 32447514 DOI: 10.1007/s00449-020-02377-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
To enhance specific or total sophorolipids (SLs) production by Starmerella bombicola for specific application, mutant library consisting of 106 mutants from 7 batches was constructed via atmospheric and room-temperature plasma (ARTP). When compared to the wild strain, 11, 36 and 12 mutants performed increases over 30% in lactonic, acidic or total SLs production. Genetic stability investigation showed that 8, 7, and 4 mutants could maintain the improved SLs production capacity. Mutants of A6-9 and A2-8 were selected out for enhanced specific SLs and total SLs production in fed-batch cultivation in flask. Without optimization, A6-9 obtained the highest reported lactonic SLs production of 51.95 g/l and A2-8 performed comparable acidic and total SLs production of 68.75 g/l and 100.33 g/l with all the reported stains. The structural composition of the obtained SLs was analyzed by HPLC and LC/MS, and the results confirmed the enhancement of SLs and certain SL components. These mutants would be important in industrial applications because the production and purification costs of SLs could be greatly reduced. Besides, the acquisition of these mutants also provided materials for the investigation of regulation mechanism of SLs biosynthesis for further genetic engineering of S. bombicola. Furthermore, critical micelle concentration (CMC), minimum surface tension (STmin) and hydrophilic-lipophilic balance (HLB) of the SLs obtained from the wild and mutant strains were also examined and compared. These results demonstrated the feasibility of obtaining SLs with different properties from different strains and the high efficiency of mutation breeding of S. bombicola by ARTP.
Collapse
Affiliation(s)
- Xiao-Jing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, USA.
| | - Hui-Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xu-Feng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jian Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui-Xia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei, 230009, China
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei, 230009, China.
| |
Collapse
|
26
|
Chen J, Lü Z, An Z, Ji P, Liu X. Antibacterial Activities of Sophorolipids and Nisin and Their Combination against Foodborne Pathogen
Staphylococcus aureus. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
- Department of Plant Pathology University of Georgia Tifton GA 31794 USA
| | - Zhifei Lü
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Pingsheng Ji
- Department of Plant Pathology University of Georgia Tifton GA 31794 USA
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| |
Collapse
|
27
|
Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 2019; 127:12-28. [PMID: 30828919 DOI: 10.1111/jam.14243] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.
Collapse
Affiliation(s)
- P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - R Marchant
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - V Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| | - I M Banat
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, County Londonderry, UK
| |
Collapse
|
28
|
Govindarajan M. Amphiphilic glycoconjugates as potential anti-cancer chemotherapeutics. Eur J Med Chem 2017; 143:1208-1253. [PMID: 29126728 DOI: 10.1016/j.ejmech.2017.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Amphiphilicity is one of the desirable features in the process of drug development which improves the biological as well as the pharmacokinetics profile of bioactive molecule. Carbohydrate moieties present in anti-cancer natural products and synthetic molecules influence the amphiphilicity and hence their bioactivity. This review focuses on natural and synthetic amphiphilic anti-cancer glycoconjugates. Different classes of molecules with varying degree of amphiphilicity are covered with discussions on their structure-activity relationship and mechanism of action.
Collapse
Affiliation(s)
- Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States.
| |
Collapse
|
29
|
Nawale L, Dubey P, Chaudhari B, Sarkar D, Prabhune A. Anti-proliferative effect of novel primary cetyl alcohol derived sophorolipids against human cervical cancer cells HeLa. PLoS One 2017; 12:e0174241. [PMID: 28419101 PMCID: PMC5395175 DOI: 10.1371/journal.pone.0174241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/06/2017] [Indexed: 11/29/2022] Open
Abstract
Sophorolipids (SLs) are glycolipid biosurfactants that have been shown to display anticancer activity. In the present study, we report anti-proliferative studies on purified forms of novel SLs synthesized using cetyl alcohol as the substrate (referred as SLCA) and their anticancer mechanism in human cervical cancer cells. Antiproliferative effect of column purified SLCA fractions (A, B, C, D, E and F) was examined in panel of human cancer cell lines as well as primary cells. Among these fractions, SLCA B and C significantly inhibited the survival of HeLa and HCT 116 cells without affecting the viability of normal human umbilical vein endothelial cells (HUVEC). The two fractions were identified as cetyl alcohol sophorolipids with non-hydroxylated tail differing in the degree of acetylation on sophorose head group. At an IC50 concentration SLCA B (16.32 μg ml-1) and SLCA C (14.14 μg ml-1) blocked the cell cycle progression of HeLa cells at G1/S phase in time-dependent manner. Moreover, SLCA B and SLCA C induced apoptosis in HeLa cells through an increase in intracellular Ca2+ leading to depolarization of mitochondrial membrane potential and increase in the caspase-3, -8 and -9 activity. All these findings suggest that these SLCAs could be explored for their chemopreventive potential in cervical cancer.
Collapse
Affiliation(s)
- Laxman Nawale
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, India
| | - Parul Dubey
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | - Bhushan Chaudhari
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | - Dhiman Sarkar
- Combichem-Bioresource Center, OCD, National Chemical Laboratory, Pune, India
- * E-mail: (AP); (DS)
| | - Asmita Prabhune
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
- * E-mail: (AP); (DS)
| |
Collapse
|