1
|
Cabo-Araoz SD, Cerda-Cristerna BI, Escobar-García DM, Gutiérrez-Hernández JM, Gutiérrez-Sánchez M, Pozos-Guillén A, Flores H. Synthesis and Characterization of a Novel Cassava Starch-Based Scaffold Biofunctionalized with Decellularized Extracellular Matrix and Isosorbide Dinitrate. Polymers (Basel) 2025; 17:1307. [PMID: 40430603 PMCID: PMC12114721 DOI: 10.3390/polym17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
This study aimed to synthesize and characterize cassava starch-based (S) scaffolds functionalized with decellularized extracellular matrix (dECM) and isosorbide dinitrate (ISDN) for wound healing. The scaffolds were synthesized via the casting method and evaluated for physicochemical, mechanical, and morphological properties, as well as ISDN release and hemocompatibility. Swelling and degradation tests revealed a biphasic behavior, with high water absorption followed by controlled degradation. The ISDN release followed a biphasic pattern, fitting the Korsmeyer-Peppas model. Hemolysis tests confirmed biocompatibility, with hemolysis levels below 2%. Among the formulations, the scaffold containing 12.5% ECM and 40 mg ISDN exhibited optimal mechanical stability, controlled drug release, and biocompatibility. These findings suggest that starch/ECM/ISDN scaffolds hold potential for wound healing applications. Further studies should focus on in vivo evaluation and cytotoxicity assessments to confirm their clinical applicability.
Collapse
Affiliation(s)
- Samantha Dení Cabo-Araoz
- Basic Science Laboratory, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico; (S.D.C.-A.); (D.M.E.-G.); (J.M.G.-H.); (H.F.)
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico
| | | | - Diana María Escobar-García
- Basic Science Laboratory, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico; (S.D.C.-A.); (D.M.E.-G.); (J.M.G.-H.); (H.F.)
| | - José Manuel Gutiérrez-Hernández
- Basic Science Laboratory, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico; (S.D.C.-A.); (D.M.E.-G.); (J.M.G.-H.); (H.F.)
| | - Mariana Gutiérrez-Sánchez
- Endodontics Postgraduate Program, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico;
| | - Amaury Pozos-Guillén
- Basic Science Laboratory, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico; (S.D.C.-A.); (D.M.E.-G.); (J.M.G.-H.); (H.F.)
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico
| | - Héctor Flores
- Basic Science Laboratory, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico; (S.D.C.-A.); (D.M.E.-G.); (J.M.G.-H.); (H.F.)
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Faculty of Dentistry, University of San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí 78290, SLP, Mexico
| |
Collapse
|
2
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Enhancing the Biodegradability, Water Solubility, and Thermal Properties of Polyvinyl Alcohol through Natural Polymer Blending: An Approach toward Sustainable Polymer Applications. Polymers (Basel) 2024; 16:2141. [PMID: 39125167 PMCID: PMC11314078 DOI: 10.3390/polym16152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The escalating environmental crisis posed by single-use plastics underscores the urgent need for sustainable alternatives. This study provides an approach to introduce biodegradable polymer blends by blending synthetic polyvinyl alcohol (PVA) with natural polymers-corn starch (CS) and hydroxypropyl methylcellulose (HPMC)-to address this challenge. Through a comprehensive analysis, including of the structure, mechanical strength, water solubility, biodegradability, and thermal properties, we investigated the enhanced performance of PVA-CS and PVA-HPMC blends over conventional polymers. Scanning electron microscopy (SEM) findings of pure PVA and its blends were studied, and we found a complete homogeneity between the PVA and both types of natural polymers in the case of a high concentration of PVA, whereas at lower concentration of PVA, some granules of CS and HMPC appear in the SEM. Blending corn starch (CS) with PVA significantly boosts its biodegradability in soil environments, since adding starch of 50 w/w duplicates the rate of PVA biodegradation. Incorporating hydroxypropyl methylcellulose (HPMC) with PVA not only improves water solubility but also enhances biodegradation rates, as the addition of HPMC increases the biodegradation of pure PVA from 10 to 100% and raises the water solubility from 80 to 100%, highlighting the significant acceleration of the biodegradation process and water solubility caused by HPMC addition, making these blends suitable for a wide range of applications, from packaging and agricultural films to biomedical engineering. The thermal properties of pure PVA and its blends with natural were studied using diffraction scanning calorimetry (DSC). It is found that the glass transition temperature (Tg) increases after adding natural polymers to PVA, referring to an improvement in the molecular weight and intermolecular interactions between blend molecules. Moreover, the amorphous structure of natural polymers makes the melting temperature ™ lessen after adding natural polymer, so the blends require lower temperature to remelt and be recycled again. For the mechanical properties, both types of natural polymer decrease the tensile strength and elongation at break, which overall weakens the mechanical properties of PVA. Our findings offer a promising pathway for the development of environmentally friendly polymers that do not compromise on performance, marking a significant step forward in polymer science's contribution to sustainability. This work presents detailed experimental and theoretical insights into novel polymerization methods and the utilization of biological strategies for advanced material design.
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
3
|
García G, Moreno-Serna V, Saavedra M, Cordoba A, Canales D, Alfaro A, Guzmán-Soria A, Orihuela P, Zapata S, Grande-Tovar CD, Valencia-Llano CH, Zapata PA. Electrospun scaffolds based on a PCL/starch blend reinforced with CaO nanoparticles for bone tissue engineering. Int J Biol Macromol 2024; 273:132891. [PMID: 38848852 DOI: 10.1016/j.ijbiomac.2024.132891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.
Collapse
Affiliation(s)
- Gabriel García
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros, Chile
| | - Viviana Moreno-Serna
- Laboratorio de Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Marcela Saavedra
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros, Chile
| | - Alexander Cordoba
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros, Chile
| | - Daniel Canales
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Manuel Montt 948, Santiago 7500975, Chile
| | - Aline Alfaro
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| | - Aldo Guzmán-Soria
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros, Chile; Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| | - Sebastián Zapata
- Universidad EIA, Escuela de Ingeniería y Ciencias Básicas. Departamento de Ingeniería de Sistemas y Computación, Grupo GIICA, Envigado, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 # 8-49, Puerto Colombia 081008, Colombia
| | | | - Paula A Zapata
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros, Chile
| |
Collapse
|
4
|
Kenawy ER, Moharram YI, Abouharga FS, Elfiky M. Electrospun network based on polyacrylonitrile-polyphenyl/titanium oxide nanofibers for high-performance supercapacitor device. Sci Rep 2024; 14:6683. [PMID: 38509116 PMCID: PMC10954625 DOI: 10.1038/s41598-024-56545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Nanofibers and mat-like polyacrylonitrile-polyphenyl/titanium oxide (PAN-Pph./TiO2) with proper electrochemical properties were fabricated via a single-step electrospinning technique for supercapacitor application. Scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), thermogravimetry (TGA), fourier transform infrared (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were conducted to characterize the morphological and chemical composition of all fabricated nanofibers. Furthermore, the electrochemical activity of the fabricated nanofibers for energy storage applications (supercapacitor) was probed by cyclic voltammetry (CV), charge-discharge (CD), and electrochemical impedance spectroscopy (EIS). The PAN-PPh./TiO2 nanofiber electrode revealed a proper specific capacitance of 484 F g-1 at a current density of 11.0 A g-1 compared with PAN (198 F g-1), and PAN-PPh. (352 F g-1) nanofibers using the charge-discharge technique. Furthermore, the PAN-PPh./TiO2 nanofiber electrode displayed a proper energy density of 16.8 Wh kg-1 at a power density (P) of 2749.1 Wkg-1. Moreover, the PAN-PPh./TiO2 nanofiber electrode has a low electrical resistance of 23.72 Ω, and outstanding cycling stability of 79.38% capacitance retention after 3000 cycles.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Youssef I Moharram
- Analytical and Electrochemistry Research UNIT, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Fatma S Abouharga
- Analytical and Electrochemistry Research UNIT, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona Elfiky
- Analytical and Electrochemistry Research UNIT, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
5
|
Li C, Guo Y, Chen M, Wang S, Gong H, Zuo J, Zhang J, Dai L. Recent preparation, modification and application progress of starch nanocrystals: A review. Int J Biol Macromol 2023; 250:126122. [PMID: 37541469 DOI: 10.1016/j.ijbiomac.2023.126122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Due to the advantages of wide sources, high biocompatibility and favorable biodegradability, starch nanocrystals (SNCs) have gradually attracted attention and have bright development prospects in food, agriculture, materials, medicine and other fields. However, the traditional preparation method of SNCs is time-consuming and inefficient, and the physicochemical properties cannot fully meet the needs of multiple applications. Fortunately, the unique onion-like structure of starch granules and the large number of hydroxyl groups present on the surface entitle SNCs to efficient preparation and modification. This paper comprehensively reviewed the improvement methods of SNCs preparation process in recent years, and the advantages and disadvantages of the two improvement strategies were compared. Besides, the importance of introducing different pretreatment methods into the SNCs preparation process was emphasized. It also focused on the different modification treatment and application progress of SNCs, especially in the starch-based surface coating of fruits and vegetables. The information will contribute to further improve the preparation efficiency and physicochemical properties of SNCs, and ultimately expand the application field.
Collapse
Affiliation(s)
- Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yifan Guo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Min Chen
- Ningbo Fotile Kitchen Ware Company, Ningbo 315336, Zhejiang, China
| | - Shuhan Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongtong Gong
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jingmin Zuo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Zhang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, Zhejiang, China
| | - Limin Dai
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Carriles J, Nguewa P, González-Gaitano G. Advances in Biomedical Applications of Solution Blow Spinning. Int J Mol Sci 2023; 24:14757. [PMID: 37834204 PMCID: PMC10572924 DOI: 10.3390/ijms241914757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Javier Carriles
- Department of Chemistry, Facultad de Ciencias, University of Navarra, 31080 Pamplona, Spain;
| | - Paul Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| | | |
Collapse
|
7
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
8
|
Song C, Hu Z, Xu D, Bian H, Lv J, Zhu X, Zhang Q, Su L, Yin H, Lu T, Li Y. STING signaling in inflammaging: a new target against musculoskeletal diseases. Front Immunol 2023; 14:1227364. [PMID: 37492580 PMCID: PMC10363987 DOI: 10.3389/fimmu.2023.1227364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Stimulator of Interferon Gene (STING) is a critical signaling linker protein that plays a crucial role in the intrinsic immune response, particularly in the cytoplasmic DNA-mediated immune response in both pathogens and hosts. It is also involved in various signaling processes in vivo. The musculoskeletal system provides humans with morphology, support, stability, and movement. However, its aging can result in various diseases and negatively impact people's lives. While many studies have reported that cellular aging is a leading cause of musculoskeletal disorders, it also offers insight into potential treatments. Under pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and muscle fibers exhibit persistent senescence-associated secretory phenotype (SASP), metabolic disturbances, and cell cycle arrest, which are closely linked to abnormal STING activation. The accumulation of cytoplasmic DNA due to chromatin escape from the nucleus following DNA damage or telomere shortening activates the cGAS-STING signaling pathway. Moreover, STING activation is also linked to mitochondrial dysfunction, epigenetic modifications, and impaired cytoplasmic DNA degradation. STING activation upregulates SASP and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING may be involved in the onset and development of various age-related musculoskeletal disorders and represents a potential therapeutic target. In recent years, many STING modulators have been developed and used in the study of musculoskeletal disorders. Therefore, this paper summarizes the effects of STING signaling on the musculoskeletal system at the molecular level and current understanding of the mechanisms of endogenous active ligand production and accumulation. We also discuss the relationship between some age-related musculoskeletal disorders and STING, as well as the current status of STING modulator development.
Collapse
Affiliation(s)
- Chenyu Song
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhuoyi Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Dingjun Xu
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tong Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
10
|
Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr Polym 2023; 307:120627. [PMID: 36781278 DOI: 10.1016/j.carbpol.2023.120627] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Starch is regarded as one of the most promising sustainable materials due to its abundant yield and excellent biodegradability. From the perspective of practical engineering applications, this paper systematically describes the development of starch-based bio-composites in the past decade. Packaging properties, processing characteristics, and current challenges for the efficient processing of starch-based bio-composites are reviewed in industrial packaging. Green coatings, binders, adsorbents, flocculants, flame retardants, and emulsifiers are used as examples to illustrate the versatility of starch-based bio-composites in chemical agent applications. In addition, the work compares the application of starch-based bio-composites in conventional spinning with emerging spinning technologies and describes the challenges of electrostatic spinning for preparing nanoscale starch-based fibers. In terms of flexible electronics, the starch-based bio-composites are regard as a solid polymer electrolyte and easily modified porous material. Moreover, we describe the applications of the starch-based gels in tissue engineering, controlled drug release, and medical dressings. Finally, the theoretical input and technical guidance in the advanced sustainable engineering application of the starch-based bio-composites are provided in the work.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Junru Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 2023; 305:120537. [PMID: 36737189 DOI: 10.1016/j.carbpol.2023.120537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Both inorganic and polymeric membranes have been widely applied for antimicrobial applications. However, these membranes exhibit low biocompatibility, weak biodegradability, and potential toxicity to human being and environment. Biomass materials serve as excellent candidates for fabricating functional membranes to address these problems due to their unique physical, chemical, and biological properties. Here we present recent progress in the fabrication, functional regulation, and antimicrobial applications of various biomass-based membranes. We first introduce the types of biomass membranes and their fabrication methods, including the phase inversion, vacuum filtration, electrospinning, layer-by-layer self-assembly, and coating. Then, the strategies on functional regulation of biomass membranes by adding 0D, 1D, and 2D nanomaterials are presented and analyzed. In addition, antibacterial, antifungal, and antiviral applications of biomass-based functional membranes are summarized. Finally, potential development aspects of biomass membranes are discussed and prospected. This comprehensive review is valuable for guiding the design, synthesis, structural/functional tailoring, and sustainable utilization of biomass membranes.
Collapse
|
12
|
Rodrigues JFB, Azevedo VS, Medeiros RP, Barreto GBDC, Pinto MRDO, Fook MVL, Montazerian M. Physicochemical, Morphological, and Cytotoxic Properties of Brazilian Jackfruit (Artocarpus heterophyllus) Starch Scaffold Loaded with Silver Nanoparticles. J Funct Biomater 2023; 14:jfb14030143. [PMID: 36976067 PMCID: PMC10056764 DOI: 10.3390/jfb14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Due to the physical, thermal, and biological properties of silver nanoparticles (AgNPs), as well as the biocompatibility and environmental safety of the naturally occurring polymeric component, polysaccharide-based composites containing AgNPs are a promising choice for the development of biomaterials. Starch is a low-cost, non-toxic, biocompatible, and tissue-healing natural polymer. The application of starch in various forms and its combination with metallic nanoparticles have contributed to the advancement of biomaterials. Few investigations into jackfruit starch with silver nanoparticle biocomposites exist. This research intends to explore the physicochemical, morphological, and cytotoxic properties of a Brazilian jackfruit starch-based scaffold loaded with AgNPs. The AgNPs were synthesized by chemical reduction and the scaffold was produced by gelatinization. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FTIR) were used to study the scaffold. The findings supported the development of stable, monodispersed, and triangular AgNPs. XRD and EDS analyses demonstrated the incorporation of silver nanoparticles. AgNPs could alter the scaffold’s crystallinity, roughness, and thermal stability without affecting its chemistry or physics. Triangular anisotropic AgNPs exhibited no toxicity against L929 cells at concentrations ranging from 6.25 × 10−5 to 1 × 10−3 mol·L−1, implying that the scaffolds might have had no adverse effects on the cells. The scaffolds prepared with jackfruit starch showed greater crystallinity and thermal stability, and absence of toxicity after the incorporation of triangular AgNPs. These findings indicate that jackfruit is a promising starch source for developing biomaterials.
Collapse
|
13
|
Pan W, Liang Q, Gao Q. Preparation of hydroxypropyl starch/polyvinyl alcohol composite nanofibers films and improvement of hydrophobic properties. Int J Biol Macromol 2022; 223:1297-1307. [PMID: 36395934 DOI: 10.1016/j.ijbiomac.2022.11.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/19/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Starch-derived edible films have great potential as biodegradable food packaging and biomedical materials, in this study, we adopted a green method to prepare starch-based composite electrospun nanofibers films. The hydroxypropyl starches (HPS) were prepared to improve native starch solubility and properties, and a series of blend solutions were prepared with different HPS/polyvinyl alcohol (PVA) weight ratios. The comparison of the properties of HPS/PVA (HPA) nanofibers with different amylose contents were evaluated, and the fibers fabricated from hydroxypropyl high amylose starch (HP-HAS) had more continuous and homogeneous morphologies compared to the other starch fibers, it was also found that the addition of HP-HAS in the film has better mechanical properties than pure PVA film. Thus, to improve the hydrophobicity of the film, the HP-HAS/PVA (HPA(H)) nanofiber was selected for the hydrophobic study by the citric acid (CA) treatment. The hydrophobic surface was formed on the HPA(H) film by CA self-assembled coating with a water contact angle changed from 30.95° up to 100.74°. This study successfully prepared the modified starch/PVA composite nanofibers and established a simple method of self-assembled hydrophobic modification to improve water stability. Therefore, this green strategy is an alternative candidate in further study for food packaging and relative areas.
Collapse
Affiliation(s)
- Wenli Pan
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qian Liang
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China.
| |
Collapse
|
14
|
Buchveitz Pires J, Martins Fonseca L, Jéssica Siebeneichler T, Lopes Crizel R, Nardo dos Santos F, Cristina dos Santos Hackbart H, Hüttner Kringel D, Dillenburg Meinhart A, da Rosa Zavareze E, Renato Guerra Dias A. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: thermal resistance and antioxidant activity. Food Res Int 2022; 162:112111. [DOI: 10.1016/j.foodres.2022.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
15
|
Movahedi M, Karbasi S. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. Int J Biol Macromol 2022; 214:301-311. [PMID: 35714870 DOI: 10.1016/j.ijbiomac.2022.06.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Articular cartilage is a connective load-bearing tissue with a low rate of regeneration due to slow metabolism. Fabricating tissue-like structure modified based on natural features can improve healing process. Fibrous scaffolds based on the composition of hydrophobic polyhydroxybutyrate (PHB) and hydrophilic starch reinforced using halloysite nanotubes (HNTs) with appropriate physico-chemical and biological properties was produced via electrospinning technique for long-term applications like cartilage regeneration. Textural properties were analyzed through SEM imaging that showed incorporating HNTs up to 2 wt% decreased mean fiber diameter to 158 ± 48 nm with larger pore size and appropriate porosity percentage. Moreover, the tensile strength was improved up to 4.21 ± 0.31 MPa after HNTs incorporation support chondrocyte cell growth. Furthermore, incorporating HNTs induced surface hydrophilicity and in vitro degradation. The biological assays both MTT assay and cell attachment of chondrocyte cells on 2 wt% HNTs incorporated into PHB-starch fibers indicated that HNTs incorporation can support cell growth and attachment without any toxicity for biomedical applications. To conclude, the obtained results demonstrated PHB-starch/HNTs fibrous scaffold could be potential for further experimental studies for tissue engineering applications like cartilage.
Collapse
Affiliation(s)
- Mehdi Movahedi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Effects of amylose and amylopectin molecular structures on starch electrospinning. Carbohydr Polym 2022; 296:119959. [DOI: 10.1016/j.carbpol.2022.119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
|
17
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
18
|
Encapsulation of Caffeic Acid in Carob Bean Flour and Whey Protein-Based Nanofibers via Electrospinning. Foods 2022; 11:foods11131860. [PMID: 35804674 PMCID: PMC9265943 DOI: 10.3390/foods11131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to introduce caffeic acid (CA) into electrospun nanofibers made of carob flour, whey protein concentrate (WPC), and polyethylene oxide (PEO). The effects of WPC concentration (1% and 3%) and CA additions (1% and 10%) on the characteristics of solutions and nanofibers were investigated. The viscosity and electrical conductivity of the solutions were examined to determine characteristics of solutions. Scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), water vapor permeability (WVP), and Fourier transform infrared (FTIR) analysis were used to characterize the nanofibers. According to the SEM results, the inclusion of CA into nanofibers resulted in thinner nanofibers. All nanofibers exhibited uniform morphology. CA was efficiently loaded into nanofibers. When CA concentrations were 1% and 10%, loading efficiencies were 76.4% and 94%, respectively. Nanofibers containing 10% CA demonstrated 92.95% antioxidant activity. The results indicate that encapsulating CA into carob flour–WPC-based nanofibers via electrospinning is a suitable method for active packaging applications.
Collapse
|
19
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
20
|
A Novel Glucose-Sensitive Scaffold Accelerates Osteogenesis in Diabetic Conditions. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4133562. [PMID: 35342759 PMCID: PMC8956406 DOI: 10.1155/2022/4133562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Mandibular bone regeneration is still a big challenge in those diabetic patients with poorly controlled blood glucose. In this study, we prepared a novel glucose-sensitive controlled-release fiber scaffold (PVA-HTCC/PEO-rhBMP2-glucose oxidase (PHPB-G)), which contained the recombinant human bone morphogenetic protein 2 (rhBMP2) by coaxial cospinning and grafted with glucose oxidase (GOD). We presented evidence that PHPB-G could undergo a series of structural changes with the blood glucose and promoted bone regeneration in diabetic rat. PHPB-G expanded the voids in nanofibers when blood glucose levels elevated. More importantly, its slow-release rhBMP2 effectively promoted the healing of bone defects. These data suggested that the PHPB-G delivery system may provide a potential treatment strategy for patients with severe diabetic alveolar bone defects.
Collapse
|
21
|
Costa PRA, Menezes LR, Dias ML, Silva EO. Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics—Mini‐review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela Roberta Alves Costa
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Lívia Rodrigues Menezes
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Emerson Oliveira Silva
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| |
Collapse
|
22
|
El-Aassar MR, Ibrahim OM, Al-Oanzi ZH. Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers (Basel) 2021; 13:3734. [PMID: 34771291 PMCID: PMC8586957 DOI: 10.3390/polym13213734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
This review article highlights the critical research and formative works relating to nanofiber composites loaded with bioactive materials for diverse applications, and discusses the recent research on the use of electrospun nanofiber incorporating bioactive compounds such as essential oils, herbal bioactive components, plant extracts, and metallic nanoparticles. Inevitably, with the common advantages of bioactive components and polymer nanofibers, electrospun nanofibers containing bioactive components have attracted intense interests for their applications in biomedicine and cancer treatment. Many studies have only concentrated on the production and performance of electrospun nanofiber loaded with bioactive components; in this regard, the features of different types of electrospun nanofiber incorporating a wide variety of bioactive compounds and their developing trends are summarized and assessed in the present article, as is the feasible use of nanofiber technology to produce products on an industrial scale in different applications.
Collapse
Affiliation(s)
- M. R. El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 75471, Saudi Arabia
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Omar M. Ibrahim
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Ziad H. Al-Oanzi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Saudi Arabia
| |
Collapse
|
23
|
Dierings de Souza EJ, Kringel DH, Guerra Dias AR, da Rosa Zavareze E. Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr Polym 2021; 265:118068. [PMID: 33966832 DOI: 10.1016/j.carbpol.2021.118068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Electrospinning is a versatile, inexpensive and reliable technique for the synthesis of nanometric fibers or particles from polymeric solutions, under a high voltage electric field. The use of natural polysaccharides such as starch, chitosan, pectin, alginate, pullulan, cellulose and dextran as polymeric materials allows the formation of biodegradable fibers and capsules. Bioactive compounds extracted from natural sources, such as essential oils, have been widely studied due to their antioxidant, antimicrobial and antifungal properties. The combination of natural polymers and the electrospinning technique allows the production of structures capable of incorporating these bioactive compounds, which are highly sensitive to degradation reactions. This review describes several approaches to the development of nanofibers and nanocapsules from polysaccharides and the possibility of incorporating hydrophobic compounds, such as essential oils. The review also discusses the use of electrosprayed products incorporated with essential oils for direct application in food or for use as active food packaging.
Collapse
Affiliation(s)
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
24
|
Ashraf R, Maqbool T, Beigh MA, Jadhav AH, Sofi HS, Sheikh FA. Synthesis, characterization, and cell viability of bifunctional medical‐grade polyurethane nanofiber: Functionalization by bone inducing and bacteria ablating materials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Roqia Ashraf
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Tariq Maqbool
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Mushtaq A. Beigh
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Arvind H. Jadhav
- Centre for Nano and Material Science (CNMS) Jain University Bangalore India
| | - Hasham S. Sofi
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Faheem A. Sheikh
- Department of Nanotechnology University of Kashmir Srinagar India
| |
Collapse
|
25
|
Alves MJDS, Chacon WDC, Gagliardi TR, Agudelo Henao AC, Monteiro AR, Ayala Valencia G. Food Applications of Starch Nanomaterials: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Jaízia dos Santos Alves
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Talita Ribeiro Gagliardi
- Department of Cell Biology, Embryology and Genetics Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Ana C. Agudelo Henao
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| |
Collapse
|
26
|
Review on Spinning of Biopolymer Fibers from Starch. Polymers (Basel) 2021; 13:polym13071121. [PMID: 33915955 PMCID: PMC8036305 DOI: 10.3390/polym13071121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing interest in bio-based polymers and fibers has led to the development of several alternatives to conventional plastics and fibers made of these materials. Biopolymer fibers can be made from renewable, environmentally friendly resources and can be fully biodegradable. Biogenic resources with a high content of carbohydrates such as starch-containing plants have huge potentials to substitute conventional synthetic plastics in a number of applications. Much literature is available on the production and modification of starch-based fibers and blends of starch with other polymers. Chemistry and structure–property relationships of starch show that it can be used as an attractive source of raw material which can be exploited for conversion into a number of high-value bio-based products. In this review, possible spinning techniques for the development of virgin starch or starch/polymer blend fibers and their products are discussed. Beneficiation of starch for the development of bio-based fibers can result in the sustainable replacement of oil-based high-value materials with cost-effective, environmentally friendly, and abundant products.
Collapse
|
27
|
Culenova M, Birova I, Alexy P, Galfyova P, Nicodemou A, Moncmanova B, Plavec R, Tomanova K, Mencik P, Ziaran S, Danisovic L. In Vitro Characterization of Poly(Lactic Acid)/ Poly(Hydroxybutyrate)/ Thermoplastic Starch Blends for Tissue Engineering Application. Cell Transplant 2021; 30:9636897211021003. [PMID: 34053231 PMCID: PMC8182627 DOI: 10.1177/09636897211021003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/15/2023] Open
Abstract
Complex in vitro characterization of a blended material based on Poly(Lactic Acid), Poly(Hydroxybutyrate), and Thermoplastic Starch (PLA/PHB/TPS) was performed in order to evaluate its potential for application in the field of tissue engineering. We focused on the biological behavior of the material as well as its mechanical and morphological properties. We also focused on the potential of the blend to be processed by the 3D printer which would allow the fabrication of the custom-made scaffold. Several blends recipes were prepared and characterized. This material was then studied in the context of scaffold fabrication. Scaffold porosity, wettability, and cell-scaffold interaction were evaluated as well. MTT test and the direct contact cytotoxicity test were applied in order to evaluate the toxic potential of the blended material. Biocompatibility studies were performed on the human chondrocytes. According to our results, we assume that material had no toxic effect on the cell culture and therefore could be considered as biocompatible. Moreover, PLA/PHB/TPS blend is applicable for 3D printing. Printed scaffolds had highly porous morphology and were able to absorb water as well. In addition, cells could adhere and proliferate on the scaffold surface. We conclude that this blend has potential for scaffold engineering.
Collapse
Affiliation(s)
- Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
| | - Ivana Birova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Paulina Galfyova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Roderik Plavec
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Katarina Tomanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | - Premysl Mencik
- Institute of Materials Science, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovak Republic
- Regenmed Ltd., 811 02 Bratislava, Slovak Republic
| |
Collapse
|
28
|
Phan DN, Khan MQ, Nguyen NT, Phan TT, Ullah A, Khatri M, Kien NN, Kim IS. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr Polym 2021; 252:117175. [DOI: 10.1016/j.carbpol.2020.117175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
|
29
|
Premasudha M, Bhumi Reddy SR, Lee Y, Panigrahi BB, Cho K, Nagireddy Gari SR. Using artificial neural networks to model and interpret electrospun polysaccharide (Hylon
VII
starch) nanofiber diameter. J Appl Polym Sci 2020. [DOI: 10.1002/app.50014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mookala Premasudha
- Department of Materials Engineering and Convergence Technology and RIGET Gyeongsang National University Jinju South Korea
| | - Srinivasulu Reddy Bhumi Reddy
- Department of Materials Engineering and Convergence Technology and RIGET Gyeongsang National University Jinju South Korea
| | - Yeon‐Ju Lee
- Department of Materials Engineering and Convergence Technology and RIGET Gyeongsang National University Jinju South Korea
| | - Bharat B. Panigrahi
- Department of Materials Science and Metallurgical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Kwon‐Koo Cho
- Department of Materials Engineering and Convergence Technology and RIGET Gyeongsang National University Jinju South Korea
| | - Subba Reddy Nagireddy Gari
- Virtual Materials Lab, School of Materials Science and Engineering Gyeongsang National University Jinju South Korea
| |
Collapse
|
30
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Duru Kamaci U, Peksel A. Enhanced Catalytic Activity of Immobilized Phytase into Polyvinyl Alcohol-Sodium Alginate Based Electrospun Nanofibers. Catal Letters 2020. [DOI: 10.1007/s10562-020-03339-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Ashraf R, Sofi HS, Sheikh FA. Experimental Protocol of MSC Differentiation into Neural Lineage for Nerve Tissue Regeneration Using Polymeric Scaffolds. Methods Mol Biol 2020; 2125:109-117. [PMID: 31020638 DOI: 10.1007/7651_2019_229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The treatment of neurodegenerative diseases is still a challenging grindstone in reconstructive surgeries and regenerative medicine. The retention of mesenchymal stem cells (MSCs) to retain remarkable properties of differentiating into motor neuron-like cells and Schwann cells can prove to be effective in repairing disorders. Moreover, the ultrafine electrospun nanofibers provide a favorable and conducive platform for proliferation and differentiation of MSCs. The development of new 3D culture methods with electrospun scaffolds that closely mimic the physiological niche of cells will help us to understand the functional benefits of MSCs in regeneration process. This article highlights the protocols for isolation of MSCs from rat bone marrow and their subsequent culture on nanofiber scaffolds. Furthermore, this chapter summarizes the various procedures including isolation of the MSCs, their seeding on electrospun nanofibrous scaffolds, and their proliferation and differentiation into neural lineage upon appropriate induction. The materials and preparation of various reagents used at different steps of the protocol are also summarized in detail.
Collapse
Affiliation(s)
- Roqia Ashraf
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
34
|
Sofi HS, Akram T, Tamboli AH, Majeed A, Shabir N, Sheikh FA. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm 2019; 569:118590. [PMID: 31381988 DOI: 10.1016/j.ijpharm.2019.118590] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Synthetic polymers, especially those with biocompatible and biodegradable characteristics, may offer effective alternatives for the treatment of severe wounds and burn injuries. Ideally, the scaffold material should induce as little pain as possible, enable quick healing, and direct the growth of defect-free epidermal cells. The best material with this multifunctionality, such as self-healing dressings, should be hydrophilic and have uninterrupted and direct contact with the damaged tissue. In addition, the ideal biomaterial should have some antibacterial properties. In this study, a novel technique was used to fabricate composite electrospun wound-dressing nanofibers composed of polyurethane encasing lavender oil and silver (Ag) nanoparticles (NPs). After electrospinning, the fabricated nanofibers were identified using various techniques, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An abundance of Ag NPs in the fibers decreased the diameter of the fibers while increased concentration of the lavender oil increased the diameter. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) studies showed the presence of the lavender oil and Ag NPs in the fiber dressings. The Ag NPs and lavender oil improved the hydrophilicity of the nanofibers and ensured the proliferation of chicken embryo fibroblasts cultured in-vitro on these fiber dressings. The antibacterial efficiency of the nanofiber dressings was investigated using E. coli and S. aureus, which yielded zones of inhibition of 16.2 ± 0.8 and 5.9 ± 0.5 mm, respectively, indicating excellent bactericidal properties of the dressings. The composite nanofiber dressings have great potential to be used as multifunctional wound dressings; offering protection against external agents as well as promoting the regeneration of new tissue.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Towseef Akram
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Ashif H Tamboli
- Department of Physics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India
| | - Aasiya Majeed
- Department of Biochemistry, Division of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology-Jammu, Chatha 180009, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190006, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
35
|
Shamsipour M, Mansouri AM, Moradipour P. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release. AAPS PharmSciTech 2019; 20:259. [PMID: 31332574 DOI: 10.1208/s12249-019-1466-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
The local delivery of chemotherapy drugs using implantable drug delivery systems is a promising strategy to the treatment of malignant brain tumors. In this study, core/shell chitosan-poly ethylene oxide-carbon quantum dots/carboxymethyl cellulose-polyvinyl alcohol (CS-PEO-CQDs/CMC-PVA) nanofibers were successfully prepared through coaxial electrospinning as a biodegradable polymeric implant for the local delivery of temozolomide (TMZ). Fluorescent carbon dots with carboxyl-rich surface were used as a trackable drug delivery agent for the localized cancer treatment. The effects of several preparation parameters such as voltage, shell to core flow rate, CS/PEO ratio, and PVA/CMC ratio on the structure of nanofibers were investigated. The best nanofibers were obtained in the condition of CS/PEO ratio of 80:20, CMC/PVA ratio of 20:80, shell to core flow rate of 3, and voltage of 25 V. SEM images showed that such nanofibers possess a smooth surface and bead-less structures. The results obtained by DSC indicated that TMZ trapped in the nanofibers existed in an amorphous or disordered crystalline status. In vitro release profile of TMZ from core-shell nanofibers had biphasic patterns. After an initial burst, a continuous drug release was observed for up to 28 days. The in vitro antitumor activity of CQDs-TMZ was tested against the tumor U251 cell lines than the free drug. It has been found that the cytotoxicity of TMZ to U251 cancer cells is enhanced when TMZ is conjugated with CQDs.
Collapse
|
36
|
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1308-1355. [DOI: 10.1080/09205063.2019.1630699] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sugandha Chahal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | | |
Collapse
|
37
|
Recent trends in peripheral nervous regeneration using 3D biomaterials. Tissue Cell 2019; 59:70-81. [PMID: 31383291 DOI: 10.1016/j.tice.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) owing their multipotency are known as progenitors for the regeneration of adult tissues including that of neuronal tissue. The repair and/or regeneration of traumatic nerves is still a challenging task for neurosurgeons. It is also a well-established fact that the microenvironment plays a primary role in determining the fate of stem cells to a specific lineage. In recent years, with the advent of nanotechnology and its positive influence on designing and fabrication of various 3D biomaterials have progressed to a greater extent. The production of 3D biomaterials such as nanofibers, conduits and hydrogels are providing a suitable environment for mimicking physiological niche of stem cells. These 3D biomaterials in combination with MSCs have been successfully analyzed for their potential in the regeneration of degenerative neurological disorders. This review primarily highlights the combinatorial effect of multipotent MSCs seeded on various 3D polymeric scaffolds in repair and regeneration of nervous tissue. The elaboration of MSCs from distinct sources reported so far in literature are summarized to understand their role in regeneration processes. Furthermore, we accentuate the application of 3D biomaterials especially the nanofibers, polymeric conduits, hydrogels infiltrated with MSCs harvested from distinct sources in the field of peripheral nerve regeneration studies.
Collapse
|
38
|
Advances in chemical modifications of starches and their applications. Carbohydr Res 2019; 476:12-35. [DOI: 10.1016/j.carres.2019.02.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
|
39
|
Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds. Appl Biochem Biotechnol 2019; 188:750-768. [DOI: 10.1007/s12010-019-02958-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|