1
|
Richard PI, Baltosser WH, Williams PH, He Q. Phylogenetic analysis of microbial CP-lyase cluster genes for bioremediation of phosphonate. AMB Express 2025; 15:42. [PMID: 40064825 PMCID: PMC11893972 DOI: 10.1186/s13568-025-01856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The ever-increasing use of phosphonates and their derivatives has resulted in the discharge of large quantities of these materials into the ecosystem, causing pollution and harmful shifts in microbiome composition. We conducted an extensive phylogenetic analysis to address this mounting problem and to help determine suitable microbes for bioremediation in specific environments. The 84 microorganisms included in our study span the gamut of species and occupied habitats. They degrade phosphonates by expressing an enzyme complex; CP-Lyase transcribed from 14 cistrons. Of the organisms studied, 12, 39, and 25 are singularly suitable for mostly freshwater, marine, or terrestrial habitats, respectively. Others adapted to multihabitats include Calothrix sp. PCC 7507 (both freshwater and marine habitats), Escherichia coli, Kaistia soli, Limoniibacter endophyticus, Marivita sp. and Virgibacillus dokdonensis (both marine and terrestrial habitats), Acidithiobacillus ferrooxidans (both freshwater and terrestrial habitats), with Paenibacillus contaminans suitable for freshwater, marine, and terrestrial habitats. All organisms were statistically rooted to glutathione peroxidase for phylogenetic perspective with tree topology dependent upon 50% or greater support. Clustered genes have been shown to have co-evolved based on striking nucleotide similarity and clade groupings within the tree topologies generated.
Collapse
Affiliation(s)
- Precious I Richard
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - William H Baltosser
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Philip H Williams
- MidSouth Bioinformatics Center, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Qingfang He
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| |
Collapse
|
2
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
3
|
Wang Q, Boodry J, Maqbool T, Bukowski BC, Jiang D. Cathodic poised potential stimulated the electron-sensitive C-P lyase pathway in glyphosate biodegradation. WATER RESEARCH 2024; 266:122373. [PMID: 39265216 DOI: 10.1016/j.watres.2024.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Glyphosate, the most widely used herbicide globally, is accumulating in the environment and poses significant potential eco- and bio-toxicity risks. While natural attenuation of glyphosate has been reported, the efficacy varies considerably and the dominant metabolite, aminomethylphosphonic acid (AMPA), is potentially more persistent and toxic. This study investigated the bioelectrochemical system (BES) for glyphosate degradation under anaerobic, reductive conditions. Atomistic simulations using density functional theory (DFT) predicted increased thermodynamic favorability for the non-dominant C-P lyase degradation pathway under external charge, which suppressed AMPA production. Experimental results confirmed that cathodic poised potential (-0.4 V vs. Ag/AgCl) enhanced glyphosate degradation (75 % in BES vs. ∼40 % in the control conditions after 37 days), and lowered the AMPA yield (0.52 mol AMPA yield per mol glyphosate removed in BES vs. 0.77-0.86 mol mol-1 in the control conditions). Geobacter lovleyi was likely the active species driving the C-P lyase pathway, as evidenced by the increase of its relative abundance, the upregulation of its extracellular electron transfer genes (most notably mtr) and the up-regulation of its phnJ and hcp genes (encoding C-P layse and hydroxylamine reductase respectively).
Collapse
Affiliation(s)
- Qingshi Wang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jackson Boodry
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon C Bukowski
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
4
|
Masotti F, Krink N, Lencina N, Gottig N, Ottado J, Nikel PI. Disentangling the Regulatory Response of Agrobacterium tumefaciens CHLDO to Glyphosate for Engineering Whole-Cell Phosphonate Biosensors. ACS Synth Biol 2024; 13:3430-3445. [PMID: 39344999 PMCID: PMC11494704 DOI: 10.1021/acssynbio.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as a host and the source of genetic parts for constructing PHT biosensors. In this bacterial species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise genetic optimization of the transcriptional cascade, we created a whole-cell biosensor capable of detecting GP in the 0.25-50 μM range in various samples, including soil and water.
Collapse
Affiliation(s)
- Fiorella Masotti
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Nicolas Krink
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | - Nicolas Lencina
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Natalia Gottig
- Instituto
de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ-CONICET-UNR), Rosario, Santa Fe S2000RLK, Argentina
| | - Jorgelina Ottado
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Pablo I. Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| |
Collapse
|
5
|
Jin L, Huang Y, Ye L, Huang D, Liu X. Challenges and opportunities in the selective degradation of organophosphorus herbicide glyphosate. iScience 2024; 27:110870. [PMID: 39381744 PMCID: PMC11459065 DOI: 10.1016/j.isci.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The wide and continuous usage of glyphosate in the environment poses a serious threat to biological systems. Besides the accumulation of glyphosate in vivo, a growing body of research has revealed that aminomethylphosphonic acid (AMPA), the main degradation intermediate of glyphosate, has significant environmental and biological influences by inducing chromosome aberration of fish and canceration of human erythrocyte. Therefore, the development of new strategies avoiding the generation of the toxic AMPA intermediate during the full degradation of glyphosate is becoming of high importance. Herein, we provide a mini-review that includes the most recent advances in the selective degradation of glyphosate avoiding the generation of AMPA in the last several years from 2018. The developments of the selective degradation of glyphosate, highlighting its synthesis and selective degradation mechanism, are summarized here. This review intends to attract more attention from researchers toward this area and to emphasize the recent developments of selective degradation of glyphosate in highlighting future challenges.
Collapse
Affiliation(s)
- Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
6
|
Waggoner EM, Djaoudi K, Diaz JM, Duhamel S. Dissolved organic phosphorus bond-class utilization by Synechococcus. FEMS Microbiol Ecol 2024; 100:fiae099. [PMID: 39003239 PMCID: PMC11319936 DOI: 10.1093/femsec/fiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
Collapse
Affiliation(s)
- Emily M Waggoner
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Kahina Djaoudi
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Julia M Diaz
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| |
Collapse
|
7
|
Riedel R, Commichau FM, Benndorf D, Hertel R, Holzer K, Hoelzle LE, Mardoukhi MSY, Noack LE, Martienssen M. Biodegradation of selected aminophosphonates by the bacterial isolate Ochrobactrum sp. BTU1. Microbiol Res 2024; 280:127600. [PMID: 38211497 DOI: 10.1016/j.micres.2024.127600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Aminophosphonates, like glyphosate (GS) or metal chelators such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP), are released on a large scale worldwide. Here, we have characterized a bacterial strain capable of degrading synthetic aminophosphonates. The strain was isolated from LC/MS standard solution. Genome sequencing indicated that the strain belongs to the genus Ochrobactrum. Whole-genome classification using pyANI software to compute a pairwise ANI and other metrics between Brucella assemblies and Ochrobactrum contigs revealed that the bacterial strain is designated as Ochrobactrum sp. BTU1. Degradation batch tests with Ochrobactrum sp. BTU1 and the selected aminophosphonates GS, EDTMP, aminomethylphosphonic acid (AMPA), iminodi(methylene-phosphonic) (IDMP) and ethylaminobis(methylenephosphonic) acid (EABMP) showed that the strain can use all phosphonates as sole phosphorus source during phosphorus starvation. The highest growth rate was achieved with AMPA, while EDTMP and GS were least supportive for growth. Proteome analysis revealed that GS degradation is promoted by C-P lyase via the sarcosine pathway, i.e., initial cleavage at the C-P bond. We also identified C-P lyase to be responsible for degradation of EDTMP, EABMP, IDMP and AMPA. However, the identification of the metabolite ethylenediaminetri(methylenephosphonic acid) via LC/MS analysis in the test medium during EDTMP degradation indicates a different initial cleavage step as compared to GS. For EDTMP, it is evident that the initial cleavage occurs at the C-N bond. The detection of different key enzymes at regulated levels, form the bacterial proteoms during EDTMP exposure, further supports this finding. This study illustrates that widely used and structurally more complex aminophosphonates can be degraded by Ochrobactrum sp. BTU1 via the well-known degradation pathways but with different initial cleavage strategy compared to GS.
Collapse
Affiliation(s)
- Ramona Riedel
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany.
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Dirk Benndorf
- Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany; Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Katharina Holzer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ludwig E Hoelzle
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Mohammad Saba Yousef Mardoukhi
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany; FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Emelie Noack
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany
| | - Marion Martienssen
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
8
|
Furtak A, Szafranek-Nakonieczna A, Furtak K, Pytlak A. A review of organophosphonates, their natural and anthropogenic sources, environmental fate and impact on microbial greenhouse gases emissions - Identifying knowledge gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120453. [PMID: 38430886 DOI: 10.1016/j.jenvman.2024.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Organophosphonates (OPs) are a unique group of natural and synthetic compounds, characterised by the presence of a stable, hard-to-cleave bond between the carbon and phosphorus atoms. OPs exhibit high resistance to abiotic degradation, excellent chelating properties and high biological activity. Despite the huge and increasing scale of OP production and use worldwide, little is known about their transportation and fate in the environment. Available data are dominated by information concerning the most recognised organophosphonate - the herbicide glyphosate - while other OPs have received little attention. In this paper, a comprehensive review of the current state of knowledge about natural and artificial OPs is presented (including glyphosate). Based on the available literature, a number of knowledge gaps have been identified that need to be filled in order to understand the environmental effects of these abundant compounds. Special attention has been given to GHG-related processes, with a particular focus on CH4. This stems from the recent discovery of OP-dependent CH4 production in aqueous environments under aerobic conditions. The process has changed the perception of the biogeochemical cycle of CH4, since it was previously thought that biological methane formation was only possible under anaerobic conditions. However, there is a lack of knowledge on whether OP-associated methane is also formed in soils. Moreover, it remains unclear whether anthropogenic OPs affect the CH4 cycle, a concern of significant importance in the context of the increasing rate of global warming. The literature examined in this review also calls for additional research into the date of OPs in waste and sewage and in their impact on environmental microbiomes.
Collapse
Affiliation(s)
- Adam Furtak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Anna Szafranek-Nakonieczna
- Department of Biology and Biotechnology of Microorganisms, Institute of Medical Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708, Lublin, Poland
| | - Karolina Furtak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation - State Research Institute, Krańcowa 8, INCBR Centre, 24-100, Puławy, Poland
| | - Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
9
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
10
|
Carvalho CR, Souza BCE, Bieluczyk W, Feitosa YB, Delbaje E, Camargo PB, Tsai SM, Fiore MF. Phosphonate consumers potentially contributing to methane production in Brazilian soda lakes. Extremophiles 2023; 28:4. [PMID: 37987855 DOI: 10.1007/s00792-023-01318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Oxic methane production (OMP) has been reported to significantly contribute to methane emissions from oxic surface waters. Demethylation of organic compounds, photosynthesis-associated methane production, and (bacterio)chlorophyll reduction activity are some of the investigated mechanisms as potential OMP sources related to photosynthetic organisms. Recently, cyanobacteria have often been correlated with methane accumulation and emission in freshwater, marine, and saline systems. The Brazilian Pantanal is the world's largest wetland system, with approximately 10,000 shallow lakes, most of which are highly alkaline and saline extreme environments. We initiated this study with an overall investigation using genetic markers, from which we explored metagenomic and limnological data from the Pantanal soda for five potential OMP pathways. Our results showed a strong positive correlation between dissolved methane concentrations and bloom events. Metagenomic data and nutrients, mainly orthophosphate, nitrogen, iron, and methane concentrations, suggest that the organic phosphorous demethylation pathway has the most potential to drive OMP in lakes with blooms. A specialized bacterial community was identified, including the Cyanobacteria Raphidiopsis, although the bloom does not contain the genes to carry out this process. These data showed enough evidence to infer the occurrence of an OMP pathway at Pantanal soda lakes, including the microbial sources and their relation to the cyanobacterial blooms.
Collapse
Affiliation(s)
- C R Carvalho
- College of Agriculture 'Luiz de Queiroz', University of São Paulo, Piracicaba, São Paulo, Brazil
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - B C E Souza
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - W Bieluczyk
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Y B Feitosa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - E Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - P B Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - S M Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
11
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
12
|
Ruffolo F, Dinhof T, Murray L, Zangelmi E, Chin JP, Pallitsch K, Peracchi A. The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 2023; 28:6863. [PMID: 37836707 PMCID: PMC10574752 DOI: 10.3390/molecules28196863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphonates are compounds containing a direct carbon-phosphorus (C-P) bond, which is particularly resistant to chemical and enzymatic degradation. They are environmentally ubiquitous: some of them are produced by microorganisms and invertebrates, whereas others derive from anthropogenic activities. Because of their chemical stability and potential toxicity, man-made phosphonates pose pollution problems, and many studies have tried to identify biocompatible systems for their elimination. On the other hand, phosphonates are a resource for microorganisms living in environments where the availability of phosphate is limited; thus, bacteria in particular have evolved systems to uptake and catabolize phosphonates. Such systems can be either selective for a narrow subset of compounds or show a broader specificity. The role, distribution, and evolution of microbial genes and enzymes dedicated to phosphonate degradation, as well as their regulation, have been the subjects of substantial studies. At least three enzyme systems have been identified so far, schematically distinguished based on the mechanism by which the C-P bond is ultimately cleaved-i.e., through either a hydrolytic, radical, or oxidative reaction. This review summarizes our current understanding of the molecular systems and pathways that serve to catabolize phosphonates, as well as the regulatory mechanisms that govern their activity.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, A-1090 Vienna, Austria
| | - Leanne Murray
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| |
Collapse
|
13
|
Chao H, Balcazar JL, Wu Y, Cai A, Ye M, Sun M, Hu F. Phages in vermicomposts enrich functional gene content and facilitate pesticide degradation in soil. ENVIRONMENT INTERNATIONAL 2023; 179:108175. [PMID: 37683504 DOI: 10.1016/j.envint.2023.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Organic fertilizer microbiomes play substantial roles in soil ecological functions, including improving soil structure, crop yield, and pollutant dissipation. However, limited information is available about the ecological functions of phages and phage-encoded auxiliary metabolic genes (AMGs) in orga9nic fertilizers. Here we used a combination of metagenomics and phage transplantation trials to investigate the phage profiles and their potential roles in pesticide degradation in four organic fertilizers from different sources. Phage annotation results indicate that the two vermicomposts made from swine (PV) and cattle (CV) dung had more similar phage community structures than the swine (P) and cattle (C) manures. After vermicomposting, the organic fertilizers (PV and CV) exhibited enriched phage-host pairings and phage AMG diversity in relative to the two organic fertilizers (P and C) without composting. In addition, the number of broad-host-range phages in the vermicomposts (182) was higher than that in swine (153) and cattle (103) manures. Notably, phage AMGs associated with metabolism and pesticide biodegradation were detected across the four organic fertilizers. The phage transplantation demonstrated that vermicompost phages were most effective at facilitating the degradation of pesticide precursor p-nitrochlorobenzene (p-NCB) in soil, as compared to swine and cattle manures (P < 0.05). Taken together, our findings highlight the significance of phages in vermicompost for biogeochemical cycling and biodegradation of pesticide-associated chemicals in contaminated soils.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona 17003, Spain; University of Girona, Girona 17004, Spain
| | - Yunling Wu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| | - Anjuan Cai
- Jiangsu Environmental Engineering Technology Co., Ltd., 210019, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| |
Collapse
|
14
|
The functional importance of bacterial oxidative phosphonate pathways. Biochem Soc Trans 2023; 51:487-499. [PMID: 36892197 DOI: 10.1042/bst20220479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Organophosphonates (Pns) are a unique class of natural products characterized by a highly stable C-P bond. Pns exhibit a wide array of interesting structures as well as useful bioactivities ranging from antibacterial to herbicidal. More structurally simple Pns are scavenged and catabolized by bacteria as a source of phosphorus. Despite their environmental and industrial importance, the pathways involved in the metabolism of Pns are far from being fully elucidated. Pathways that have been characterized often reveal unusual chemical transformations and new enzyme mechanisms. Among these, oxidative enzymes play an outstanding role during the biosynthesis and degradation of Pns. They are to a high extent responsible for the structural diversity of Pn secondary metabolites and for the break-down of both man-made and biogenic Pns. Here, we review our current understanding of the importance of oxidative enzymes for microbial Pn metabolism, discuss the underlying mechanistic principles, similarities, and differences between pathways. This review illustrates Pn biochemistry to involve a mix of classical redox biochemistry and unique oxidative reactions, including ring formations, rearrangements, and desaturations. Many of these reactions are mediated by specialized iron-dependent oxygenases and oxidases. Such enzymes are the key to both early pathway diversification and late-stage functionalization of complex Pns.
Collapse
|
15
|
Jahdauti L, Muggeo A, Paturel V, Jaisson S, Luczka E, Coraux C, Guillard T. [Involvement of inorganic phosphate starvation in Pseudomonas aeruginosa bacterial virulence]. Rev Mal Respir 2023; 40:243-246. [PMID: 36828680 DOI: 10.1016/j.rmr.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Pseudomonas aeruginosa is a bacterium causing a wide spectrum of nosocomial and opportunistic respiratory infections. As an element essential for bacterial metabolism , phosphorus is incorporated as an inorganic phosphate and regulated by a two-component PhoB-PhoR system. Recently, it has been shown that as a result of overexpression of virulence factors, including the PhoB transcription factor, P. aeruginosa exhibited increased virulence in phosphate-deficient conditions. Exploration of the relationship between phosphate homeostasis and P. aeruginosa virulence could effectively contribute to the development of new, simple and innovative therapeutic strategies.
Collapse
Affiliation(s)
- L Jahdauti
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France.
| | - A Muggeo
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - V Paturel
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - S Jaisson
- Laboratoire de biochimie, CHU de Reims, Reims, France
| | - E Luczka
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - C Coraux
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| | - T Guillard
- Université de Reims Champagne-Ardenne, Inserm UMR-S 1250, P3Cell, Reims, France
| |
Collapse
|
16
|
Lockwood S, Greening C, Baltar F, Morales SE. Global and seasonal variation of marine phosphonate metabolism. THE ISME JOURNAL 2022; 16:2198-2212. [PMID: 35739297 PMCID: PMC9381506 DOI: 10.1038/s41396-022-01266-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Marine microbial communities rely on dissolved organic phosphorus (DOP) remineralisation to meet phosphorus (P) requirements. We extensively surveyed the genomic and metagenomic distribution of genes directing phosphonate biosynthesis, substrate-specific catabolism of 2-aminoethylphosphonate (2-AEP, the most abundant phosphonate in the marine environment), and broad-specificity catabolism of phosphonates by the C-P lyase (including methylphosphonate, a major source of methane). We developed comprehensive enzyme databases by curating publicly available sequences and then screened metagenomes from TARA Oceans and Munida Microbial Observatory Time Series (MOTS) to assess spatial and seasonal variation in phosphonate metabolism pathways. Phosphonate cycling genes were encoded in diverse gene clusters by 35 marine bacterial and archaeal classes. More than 65% of marine phosphonate cycling genes mapped to Proteobacteria with production demonstrating wider taxonomic diversity than catabolism. Hydrolysis of 2-AEP was the dominant phosphonate catabolism strategy, enabling microbes to assimilate carbon and nitrogen alongside P. Genes for broad-specificity catabolism by the C-P lyase were far less widespread, though enriched in the extremely P-deplete environment of the Mediterranean Sea. Phosphonate cycling genes were abundant in marine metagenomes, particularly from the mesopelagic zone and winter sampling dates. Disparity between prevalence of substrate-specific and broad-specificity catabolism may be due to higher resource expenditure from the cell to build and retain the C-P lyase. This study is the most comprehensive metagenomic survey of marine microbial phosphonate cycling to date and provides curated databases for 14 genes involved in phosphonate cycling.
Collapse
Affiliation(s)
- Scott Lockwood
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Federico Baltar
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
17
|
Cooper ZS, Rapp JZ, Shoemaker AMD, Anderson RE, Zhong ZP, Deming JW. Evolutionary Divergence of Marinobacter Strains in Cryopeg Brines as Revealed by Pangenomics. Front Microbiol 2022; 13:879116. [PMID: 35733954 PMCID: PMC9207381 DOI: 10.3389/fmicb.2022.879116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Marinobacter spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of Marinobacter genomes, composed of novel isolates and in silico assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of Marinobacter spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that Marinobacter spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner–Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling Marinobacter spp. that diverged genotypically and phylogenetically from all other Marinobacter members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other Marinobacter clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation via vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus Marinobacter, particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
Collapse
Affiliation(s)
- Zachary S. Cooper
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Zachary S. Cooper, , orcid.org/0000-0001-6515-7971
| | - Josephine Z. Rapp
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
- Institute of Integrative Biology and Systems (IBIS), Université Laval, Québec, QC, Canada
| | - Anna M. D. Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, United States
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Wang X, Browning TJ, Achterberg EP, Gledhill M. Phosphorus Limitation Enhances Diazotroph Zinc Quotas. Front Microbiol 2022; 13:853519. [PMID: 35531286 PMCID: PMC9069106 DOI: 10.3389/fmicb.2022.853519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
Trichodesmium spp. is a colonial diazotrophic cyanobacterium found in the oligotrophic (sub)tropical oceans, where dissolved inorganic phosphorus (DIP) can be depleted. To cope with low P concentrations, P can be scavenged from the dissolved organic P (DOP) pool. This requires the deployment of multiple enzymes activated by trace metals, potentially enhancing metal requirements under stronger P limitations. To test this, we grew Trichodesmium under trace-metal-controlled conditions, where P was supplied as either DIP or DOP (methylphosphonic acid). Mean steady-state biomass under the DOP treatment was only 40% of that grown under equivalent DIP supply, carbon normalized alkaline phosphorus activity was elevated 4-fold, and the zinc (Zn)–carbon ratio was elevated 3.5-fold. Our finding matches the known, dominant Zn requirement across a diversity of enzymes involved in P stress responses and supports an important interaction in the oceanic cycles of these two nutrients.
Collapse
|
19
|
Hernández-Alomia F, Ballesteros I, Castillejo P. Bioremediation potential of glyphosate-degrading microorganisms in eutrophicated Ecuadorian water bodies. Saudi J Biol Sci 2022; 29:1550-1558. [PMID: 35280549 PMCID: PMC8913404 DOI: 10.1016/j.sjbs.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphonate compounds are the basis of many xenobiotic pollutants, such as Glyphosate (N-(phosphonomethyl-glycine). Only procaryotic microorganisms and the lower eukaryotes are capable of phosphonate biodegradation through C–P lyase pathways. Thus, the aim of this study was to determine the presence of C–P lyase genes in Ecuadorian freshwater systems as a first step towards assessing the presence of putative glyphosate degraders. To that end, two Nested PCR assays were designed to target the gene that codifies for the subunit J (phnJ), which breaks the C-P bond that is critical for glyphosate mineralization. The assays designed in this study led to the detection of phnJ genes in 7 out of 8 tested water bodies. The amplified fragments presented 85–100% sequence similarity with phnJ genes that belong to glyphosate-degrading microorganisms. Nine sequences were not reported previously in the GenBank. The presence of phosphonate degraders was confirmed by isolating three strains able to grow using glyphosate as a unique carbon source. According to the 16S sequence, these strains belong to the Pantoea, Pseudomonas, and Klebsiella genera. Performing a Nested PCR amplification of phnJ genes isolated from eutrophicated water bodies, prior to isolation, may be a cost-effective strategy for the bioprospection of new species and/or genes that might have new properties for biotech industries, laying the groundwork for additional research.
Collapse
Affiliation(s)
- Fernanda Hernández-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Isabel Ballesteros
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
20
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Hagström Å, Zweifel UL, Sundh J, Osbeck CMG, Bunse C, Sjöstedt J, Müller-Karulis B, Pinhassi J. Composition and Seasonality of Membrane Transporters in Marine Picoplankton. Front Microbiol 2021; 12:714732. [PMID: 34650527 PMCID: PMC8507841 DOI: 10.3389/fmicb.2021.714732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we examined transporter genes in metagenomic and metatranscriptomic data from a time-series survey in the temperate marine environment of the Baltic Sea. We analyzed the abundance and taxonomic distribution of transporters in the 3μm–0.2μm size fraction comprising prokaryotes and some picoeukaryotes. The presence of specific transporter traits was shown to be guiding the succession of these microorganisms. A limited number of taxa were associated with the dominant transporter proteins that were identified for the nine key substrate categories for microbial growth. Throughout the year, the microbial taxa at the level of order showed highly similar patterns in terms of transporter traits. The distribution of transporters stayed the same, irrespective of the abundance of each taxon. This would suggest that the distribution pattern of transporters depends on the bacterial groups being dominant at a given time of the year. Also, we find notable numbers of secretion proteins that may allow marine bacteria to infect and kill prey organisms thus releasing nutrients. Finally, we demonstrate that transporter proteins may provide clues to the relative importance of biogeochemical processes, and we suggest that virtual transporter functionalities may become important components in future population dynamics models.
Collapse
Affiliation(s)
- Åke Hagström
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Ulla Li Zweifel
- Swedish Institute for the Marine Environment, Gothenburg University, Gothenburg, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Christofer M G Osbeck
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Johanna Sjöstedt
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden.,Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden
| | | | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
22
|
Rossi F, Carles L, Donnadieu F, Batisson I, Artigas J. Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126651. [PMID: 34329075 DOI: 10.1016/j.jhazmat.2021.126651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The present study investigates the individual degrading behavior of bacterial strains isolated from glyphosate-degrading stream biofilms. In this aim, biofilms were subjected to enrichment experiments using glyphosate or its metabolite AMPA (aminomethyl phosphonic acid) as the sole phosphorus source. Five bacterial strains were isolated and taxonomically affiliated to Ensifer sp. CNII15, Acidovorax sp. CNI26, Agrobacterium tumefaciens CNI28, Novosphingobium sp. CNI35 and Ochrobactrum pituitosum CNI52. All strains were capable of completely dissipating glyphosate after 125-400 h and AMPA after 30-120 h, except for Ensifer sp. CNII15 that was not able to dissipate glyphosate but entirely dissipated AMPA after 200 h. AMPA dissipation was overall faster than glyphosate dissipation. The five strains degraded AMPA completely since formaldehyde and/or glycine accumulation was observed. During glyphosate degradation, the strain CNI26 used the C-P lyase degradation pathway since sarcosine was quantitatively produced, and C-P lyase gene expression was enhanced 30× compared to the control treatment. However, strains CNI28, CNI35 and CNI52 accumulated both formaldehyde and glycine after glyphosate transformation suggesting that both C-P lyase and/or glyphosate oxidase degradation pathways took place. Our study shows different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms.
Collapse
Affiliation(s)
- Florent Rossi
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Louis Carles
- Department of Environmental Toxicology (Utox), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Florence Donnadieu
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Joan Artigas
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
23
|
Massot F, Gkorezis P, Van Hamme J, Marino D, Trifunovic BS, Vukovic G, d'Haen J, Pintelon I, Giulietti AM, Merini L, Vangronsveld J, Thijs S. Isolation, Biochemical and Genomic Characterization of Glyphosate Tolerant Bacteria to Perform Microbe-Assisted Phytoremediation. Front Microbiol 2021; 11:598507. [PMID: 33519737 PMCID: PMC7840833 DOI: 10.3389/fmicb.2020.598507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.
Collapse
Affiliation(s)
- Francisco Massot
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | - Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Damian Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | | | - Gorica Vukovic
- Department of Phytomedicine, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jan d'Haen
- Institute for Materials Research (IMO-IMEC), Hasselt University, Diepenbeek, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ana María Giulietti
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | | | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
24
|
Salam LB, Obayori OS. Remarkable shift in structural and functional properties of an animal charcoal-polluted soil accentuated by inorganic nutrient amendment. J Genet Eng Biotechnol 2020; 18:70. [PMID: 33175233 PMCID: PMC7658278 DOI: 10.1186/s43141-020-00089-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022]
Abstract
Background Soils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and thus require a bio-based eco-friendly strategy for their depuration. The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal-polluted soil was monitored for 6 weeks in field moist microcosms consisting of CFMM-treated soil (FN4) and an untreated control (FN1). Hydrocarbon degradation was monitored using gas chromatography-flame ionization detector (GC-FID), and changes in microbial community structure were monitored using Kraken, while functional annotation of putative open reading frames (ORFs) was done using KEGG KofamKOALA and NCBI’s conserved domain database (CDD). Results Gas chromatographic analysis of hydrocarbon fractions revealed the removal of 84.02% and 82.38% aliphatic and 70.09% and 70.14% aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure. In the FN4 metagenome, 92.97% of the population belong to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%), Actinobacteria (23.79%) and Firmicutes (11.20%), and the genera Xanthobacter (9.73%), Rhizobium (7.49%) and Corynebacterium (7.35%), were preponderant. Functional annotation of putative ORFs from the two metagenomes revealed the detection of degradation genes for aromatic hydrocarbons, benzoate, xylene, chlorocyclohexane/chlorobenzene, toluene and several others in FN1 metagenome. In the FN4 metagenome, only seven hydrocarbon degradation genes were detected. Conclusion This study revealed that though CFMM amendment slightly increases the rate of hydrocarbon degradation, it negatively impacts the structural and functional properties of the animal charcoal-polluted soil. It also revealed that intrinsic bioremediation of the polluted soil could be enhanced via addition of water and aeration. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-020-00089-9.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Summit University, Offa, Kwara, Nigeria.
| | | |
Collapse
|