1
|
Meng J, Wen C, Lu Y, Fan X, Dang R, Chu J, Jiang P, Han W, Feng L. Alliin from garlic as a neuroprotective agent attenuates ferroptosis in vitro and in vivo via inhibiting ALOX15. Food Funct 2025. [PMID: 40396992 DOI: 10.1039/d5fo00425j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Alliin, a precursor active compound of sulfur-containing organic compounds such as allicin in garlic, is recognized as an important bioactive substance in garlic. Allicin has been shown to have significant neuroprotective effects and promote functional recovery in intracerebral hemorrhage (ICH). As a precursor of many active compounds, alliin may have broader therapeutic effects. Therefore, the aim of this study was to investigate the molecular mechanisms underlying the neuroprotective effects of alliin. In this study, we found that alliin inhibits ferroptosis, thereby exerting neuroprotective effects in ICH. However, the neuroprotective effects of alliin and its pharmacological mechanisms in ferroptosis have not been fully explored. The results showed that alliin significantly inhibited erastin-induced ferroptosis in HT22 cells and suppressed ferroptosis in the brain tissue of collagenase-induced ICH mice, alleviating neurological dysfunction and pathological damage. Mechanistically, alliin downregulated the expression of 15-lipoxygenase (ALOX15), which inhibits phospholipid peroxidation and ferroptosis. Moreover, gene knockout of ALOX15 produced effects similar to those of alliin, and comparable results were obtained using the ferroptosis inhibitor ferrostatin-1. This study is the first to demonstrate that alliin regulates ferroptosis both in vitro and in vivo. In conclusion, our study highlights ALOX15 as a critical factor in ferroptosis associated with ICH, and shows that alliin exerts neuroprotective effects by inhibiting ALOX15-dependent ferroptosis.
Collapse
Affiliation(s)
- Junjun Meng
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jiankang Road, Jining 272000, China
- Shandong Provincial Key Medical and Health Laboratory of Neuroinjury and Repair, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Chengquan Wen
- Department of Pharmacy, Qingdao Eighth People's Hospital, China
| | - Yang Lu
- Clinical College of Jining Medical University, China
| | - Xiaofan Fan
- Shandong Provincial Key Medical and Health Laboratory of Neuroinjury and Repair, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Ruili Dang
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jiankang Road, Jining 272000, China
- Shandong Provincial Key Medical and Health Laboratory of Neuroinjury and Repair, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Jianfeng Chu
- Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jiankang Road, Jining 272000, China
- Shandong Provincial Key Medical and Health Laboratory of Neuroinjury and Repair, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Wenxiu Han
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jiankang Road, Jining 272000, China
- Shandong Provincial Key Medical and Health Laboratory of Neuroinjury and Repair, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining NO.1 People's Hospital, Jining, China.
| |
Collapse
|
2
|
Guo C, Ma Z, Tao X, Gao K, Zhang W, Wen A, Ding Y, Wang J. Therapeutic time window of Sodium of Danshensu on cerebral ischemia and its mechanism of inhibiting oxidative stress and ferroptosis through Nrf2 pathway. Brain Res Bull 2025; 227:111396. [PMID: 40403934 DOI: 10.1016/j.brainresbull.2025.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/09/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Sodium of Danshensu (SDSS), extract of salvia miltiorrhiza root, has been shown to have neuroprotective effects on ischemic stroke (IS) in our previous studies. However, its therapeutic time window and mechanism of action remain unclear. Ferroptosis exerts a crucial feature in the development and progression of IS. Nuclear factor-E2-related factor 2 (Nrf2) can positively regulate the transcription of Recombinant Solute Carrier Family 7, member 11 (SLC7A11) and glutathione peroxidase (GPX4) genes that combat lipid peroxidation in ferroptosis. PURPOSE The current study aimed to assess therapeutic time window of SDSS and the pharmacological mechanism involved in Nrf2-mediated oxidative stress and ferroptosis. METHODS Mice with transient middle cerebral artery occlusion (MCAO) and HT22 cells with oxygen-glucose deprivation / reoxygenation (OGD/R) were induced to simulate IS. Mice were administered SDSS at 1, 3, 6 or 9h after MCAO to determine the therapeutic time window of SDSS. MicroRNA-seq was conducted to analyze differentially expressed genes in both the MCAO and the SDSS treatment group. The interaction between SDSS and Nrf2 was also investigated using molecular docking, molecular dynamics (MD) simulations, and surface plasmon resonance (SPR) experiments. Furthermore, the neuroprotection of SDSS was investigated in Nrf2-deficient mice to assess the activation mechanism of the Nrf2/GPX4 axis by SDSS. The biomarkers (Fe2+ content, ROS, MDA, GSH, GSH/GSSG), mitochondrial structure, these proteins (Nrf2, SLC7A11, GPX4, FTH1, HO-1, ACSL4 and TFRC) expression were detected by commercial kits, transmission electron microscope (TEM) and Western blotting, respectively. RESULTS The therapeutic time window of SDSS should be within 6hours after MCAO, beyond which SDSS cannot play a therapeutic role. SDSS played a neuroprotective affection in mice and HT22 cells by restraining ROS, MDA and Fe2+ content, elevating GSH level and GSH/GSSG ratio. At the molecular mechanism, SDSS can bind to Nrf2, improve Nrf2 activity and nuclear expression, further enhance SLC7A11, GPX4, FTH1, HO-1 expression and reduce ACSL4 and TFRC expression. However, the neuroprotective effects of SDSS and its effect on ferroptosis-related proteins were partially reversed in Nrf2-deficient mice. CONCLUSION The therapeutic time window of SDSS for ischemic stroke is relatively wide. The administration of SDSS can potentially mitigate brain damage through the inhibition of oxidative damage and ferroptosis, which is partly regulated by the Nrf2/GPX4 axis. Therefore, SDSS is a promising candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Zhang W, Li R, Lu D, Wang X, Wang Q, Feng X, Qi S, Zhang X. Phospholipids and peroxisomes in ferroptosis: the therapeutic target of acupuncture regulating vascular cognitive impairment and dementia. Front Aging Neurosci 2025; 17:1512980. [PMID: 40365351 PMCID: PMC12070441 DOI: 10.3389/fnagi.2025.1512980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Ferroptosis, since its conceptualization in 2012, has witnessed an exponential growth in research interest over recent years. It is regulated by various cellular metabolic pathways during chronic cerebral ischemia and hypoxia, including reactive oxygen species (ROS) generation, iron accumulation, abnormalities in glutathione metabolism, and disruptions in lipid and glucose metabolism. With the deepening and widespread research, ferroptosis has emerged as a critical pathway in the pathogenesis of vascular cognitive impairment and dementia (VCID). This unique cell death pathway caused by iron-dependent phospholipid peroxidation is strongly related to VICD. We examine the impact of phospholipid composition on neuronal susceptibility to ferroptosis, with a particular focus on the critical role of polyunsaturated fatty acids (PUFAs) in this process. Intriguingly, peroxisomes, as key regulators of lipid metabolism and oxidative stress, influence the susceptibility of neuronal cells to ferroptosis through the synthesis of plasmalogens and other lipid species. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of acupuncture for ferroptosis, the potential functions of acupuncture in peroxisomal functions and phospholipid metabolism, and its neuroprotective effects in VCID, together with a potential for therapeutic targeting. As such, this highlights the theoretical basis for the application of acupuncture in VCID through multi-target regulation of ferroptosis. This review underscores the potential of acupuncture as a non-pharmacological therapeutic approach in VCID, offering new insights into its role in modulating ferroptosis and associated metabolic pathways for neuroprotection.
Collapse
Affiliation(s)
- Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Li
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Donglei Lu
- Sports Training Academy of Tianjin University of Sport, Tianjin, China
| | - Xinliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sai Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X, Gu L. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res 2024; 19:611-618. [PMID: 37721292 PMCID: PMC10581588 DOI: 10.4103/1673-5374.380870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Ferroptosis is a form of non-apoptotic programmed cell death, and its mechanisms mainly involve the accumulation of lipid peroxides, imbalance in the amino acid antioxidant system, and disordered iron metabolism. The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum, and the progression of inflammatory diseases can trigger endoplasmic reticulum stress. Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival. Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke. However, there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke. This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke, aiming to provide a reference for developing treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingyang Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Guo L, Zhang D, Ren X, Liu D. SYVN1 attenuates ferroptosis and alleviates spinal cord ischemia-reperfusion injury in rats by regulating the HMGB1/NRF2/HO-1 axis. Int Immunopharmacol 2023; 123:110802. [PMID: 37591122 DOI: 10.1016/j.intimp.2023.110802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The ferroptosis of neurons is an important pathological mechanism of spinal cord ischemia reperfusion injury (SCIRI). Previous studies showed that synoviolin 1 (SYVN1) is a good prognostic marker of neurodegenerative diseases, but its mechanism is still unclear. This study aims to explore the role of SYVN1 in the ferroptosis of neurons and to clarify its internal mechanism. METHODS Rat primary spinal cord neurons were treated with oxygen-glucose deprivation (OGD) for 1, 4 or 8 h, and then cell viability, ROS and MDA levels, glutathione peroxidase (GSH-Px) activity, and the expression of ferroptosis-related proteins GPX4, FTH1 and PTGS2 were detected. OGD/R-induced neurons were transfected with pcDNA-SYVN1 or si-HMGB1, and then cell functions were detected. Transmission electron microscope (TEM) was used to detect cell ferroptosis. The interplay between SYVN1 and high mobility group box 1 (HMGB1) was confirmed with Co-immunoprecipitation (Co-IP) assay. The stability of HMGB1 was measured by ubiquitination assay. Also, cells were treated with pcDNA-SYVN1 or together with ubiquitination inhibitor MG132, as well as treated with pcDNA-SYVN1 and pcDNA-HMGB1 or together with NRF2 activator dimethyl fumarate (DMF), and then Western blotting was used to detect the expression of HMGB1, nuclear NRF2 and HO-1 proteins. In addition, SD rats were occluded left common carotid artery and aortic arch to establish a SCIRI rat model. And rats were injected intrathecal with adenovirus-mediated SYVN1 overexpression vector (Ad-SYVN1, 2 μL, virus titer 5 × 1013 transduction unit [TU]/mL) to overexpress SYVN1. The motion function of rats was quantified using the Basso Rat Scale (BMS) for Locomotion. The ferroptosis and the number of neurons in the spinal cord tissue of rats were detected. RESULTS SYVN1 overexpression inhibited ferroptosis of SCIRI rats and OGD/R-treated primary spinal cord neurons, and down-regulated the expression of HMGB1. In terms of mechanism, the binding of SYVN1 and HMGB1 promoted the ubiquitination and degradation of HMGB1, and negatively regulated the expression of HMGB1. Moreover, under OGD/R conditions, MG132 treatment or HMGB1 overexpression eliminated the inhibitory effect of SYVN1 overexpression on the ferroptosis of neurons and the activation of the NRF2/HO-1 pathway, and DMF treatment abolished the inhibition of HMGB1 overexpression on the NRF2/HO-1 pathway. Finally, in vivo experiments showed that SYVN1 overexpression could alleviate the spinal cord ischemia-reperfusion injury in rats by down-regulating HMGB1 and promoting the activation of the NRF2/HO-1 pathway. CONCLUSION SYVN1 regulates ferroptosis through the HMGB1/NRF2/HO-1 axis to prevent spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoyan Ren
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
6
|
Karaaslan F, Demir F, Yılmaz R, Akıl E. Total oxidant/antioxidant status, copper and zinc levels in acute ischemic stroke patients after mechanical thrombectomy. Clin Neurol Neurosurg 2023; 229:107718. [PMID: 37121029 DOI: 10.1016/j.clineuro.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND PURPOSE We aimed to identify the relationship of total antioxidant status, total oxidant status, and copper (Cu) and zinc (Zn) situations with the short-term prognostic and stroke severity in acute ischemic stroke cases who were successfully recanalized by mechanical thrombectomy. METHODS A study of 36 acute ischemic stroke patients and 22 controls were prospectively studied. Tube samples were attained at admission and 24 h after recanalization. In patients who were successfully recanalized (thrombolysis in cerebral infarction ≥ 2b), a 3-month modified Rankin scale (mRS) score of 0-2 was considered a good prognosis, and a score of 3-6 was considered a poor prognosis. RESULTS Admission Cu levels were significantly higher in the poor prognosis group (p = 0.031). In the multivariate logistic regression analysis, Cu was not associated with poor prognosis (p = 0.357). Cu and Zn levels were lower in the patients group compared to controls (p = 0.014 and p = 0.010, respectively). There was no correlation between National Institute of Health Stroke Scale and biomarkers (p > 0.05). The temporal variation of biomarkers did not differ significantly between the good prognosis and poor prognosis groups (p interaction > 0.05). CONCLUSIONS High admission Cu levels were associated with poor prognosis, but this association was limited. In addition, Cu and Zn levels were statistically lower in patients. There was no relationship between total antioxidant/oxidant status and short-term prognosis or stroke severity.
Collapse
Affiliation(s)
- Fırat Karaaslan
- Department of Neurology, Diyarbakır Dağkapı State Hospital, Diyarbakır, Turkey.
| | - Fidel Demir
- Department of Neurology, Silopi State Hospital, Şırnak, Turkey
| | - Reşit Yılmaz
- Department of Neurology, Gazi Yaşargil Training and Research Hospital, Diyarbakir, Turkey
| | - Eşref Akıl
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
7
|
Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed Pharmacother 2023; 161:114534. [PMID: 36933376 DOI: 10.1016/j.biopha.2023.114534] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chrysin is a natural flavonoid compound that has antioxidant and neuroprotective effects. Cerebral ischemia reperfusion (CIR) is closely connected with increased oxidative stress in the hippocampal CA1 region and homeostasis disorder of transition elements such as iron (Fe), copper (Cu) and zinc (Zn). This exploration was conducted to elucidate the antioxidant and neuroprotective effects of chrysin based on transient middle cerebral artery occlusion (tMCAO) in rats. Experimentally, sham group, model group, chrysin (50.0 mg/kg) group, Ginaton (21.6 mg/kg) group, Dimethyloxallyl Glycine (DMOG, 20.0 mg/kg) + chrysin group and DMOG group were devised. The rats in each group were performed to behavioral evaluation, histological staining, biochemical kit detection, and molecular biological detection. The results indicated that chrysin restrained oxidative stress and the rise of transition element levels, and regulated transition element transporter levels in tMCAO rats. DMOG activated hypoxia-inducible factor-1 subunit alpha (HIF-1α), reversed the antioxidant and neuroprotective effects of chrysin, and increased transition element levels. In a word, our findings emphasize that chrysin plays a critical role in protecting CIR injury via inhibiting HIF-1α against enhancive oxidative stress and raised transition metal levels.
Collapse
|
8
|
Zhao Y, Liu Y, Xu Y, Li K, Zhou L, Qiao H, Xu Q, Zhao J. The Role of Ferroptosis in Blood-Brain Barrier Injury. Cell Mol Neurobiol 2023; 43:223-236. [PMID: 35106665 PMCID: PMC11415168 DOI: 10.1007/s10571-022-01197-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Dai Y, Hu L. HSPB1 overexpression improves hypoxic-ischemic brain damage by attenuating ferroptosis in rats through promoting G6PD expression. J Neurophysiol 2022; 128:1507-1517. [PMID: 36321738 DOI: 10.1152/jn.00306.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Heat-shock protein B (HSPB1) has a neuroprotective effect on brain injury and is a negative regulator of ferroptosis. Therefore, we infer that HSPB1 plays a protective role in hypoxic-ischemic (HI) brain damage by inhibiting ferroptosis. A neonatal rat model of hypoxic-ischemic (HI) brain damage was established. HSPB1 overexpression plasmid and the negative control were injected into the lateral ventricle of rats 48 h before HI brain damage surgery. HSPB1 and glucose-6-phosphate dehydrogenase (G6PD) levels, infarction rate, iron accumulation, apoptosis, and ferroptosis-related markers were estimated with the assistance of qRT-PCR, 2,3,5-triphenyl tetrazolium chloride (TTC) staining, Prussian blue staining, iron assay kit, TUNEL staining, and Western blot. In vitro, after transfection, HSPB1 and G6PD levels, oxygen-glucose deprivation (OGD)-mediated hippocampal neuron cell viability, apoptosis, iron content, and ferroptosis-related markers were assessed using qRT-PCR, MTT, flow cytometry, iron assay kit, and Western blot. HSPB1 and G6PD were overexpressed in the hippocampus tissues of HI rats. High expression of HSPB1 in HI rats lessened infarction rate and ferritin level, hindered iron accumulation and apoptosis, and promoted GPX4, SLC7A11, and TFR1 levels. In OGD-mediated hippocampal neuron cells, HSPB1 upregulation intensified the viability and repressed apoptosis and ferroptosis, whereas G6PD silencing reversed the effects of HSPB1 upregulation. We documented that HSPB1 overexpression unleashes neuroprotective effects via modulating G6PD expression, which offers a novel target for the prevention and treatment of HI brain damage.NEW & NOTEWORTHY HSPB1 and G6PD were overexpressed in the hippocampus tissues of HI rats. High expression of HSPB1 in HI rats mitigated infarction rate and iron accumulation. HSPB1 overexpression reduced ferritin level, attenuated apoptosis, yet augmented GPX4, SLC7A11, and TFR1 levels in the hippocampus tissues of HI rats. G6PD deletion impaired the protective role of HSPB1 overexpression against HI brain damage-induced ferroptosis.
Collapse
Affiliation(s)
- Yi Dai
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Lan Hu
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Hojjati Fard F, Sabzi F, Marefati N, Vafaee F, Beheshti F, Hashemzadeh A, Darroudi M, Hosseini M. Nanoselenium improved learning, memory, and brain-derived neurotrophic factor and attenuated nitric oxide, and oxidative stress in the brain of juvenile hypothyroid rats. Metab Brain Dis 2022; 37:2719-2733. [PMID: 36083424 DOI: 10.1007/s11011-022-01073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nanoselenium (Nan S) is a form of selenium element that acts with high absorption and low toxicity. However, few studies have examined the effects of Nan S on cognitive impairment. On the other hand, hypothyroidism is a common disease that causes cognitive disorders. Therefore, this study aimed to investigate the effect of Nan S on memory impairment in rats due to propylthiouracil (PTU) - induced hypothyroidism. The roles of brain-derived neurotrophic factor (BDNF), nitric oxide (NO), and oxidative stress were also challenged. MATERIALS AND METHODS The animals were randomly divided into 4 groups: (1) Control group (normal saline), (2) hypothyroid (Hypo) group: where 0.05% PTU was added to drinking water, (3) and (4) Hypo-Nan S 50, Hypo-Nan S 100 in which 50 or 100 µg/ kg of Nan S were injected respectively. After 6 weeks, spatial and avoidance memory was measured by Morris water maze (MWM) and passive avoidance (PA) tests. The animals then underwent deep anesthesia and the serum samples and the hippocampus and cortex were collected to be used for thyroxin and biochemical measurements including malondialdehyde (MDA), NO, thiol, superoxide dismutase (SOD), catalase (CAT), and BDNF. RESULTS The rats showed an increase in the escape latency and traveled path in MWM in the Hypo group compare with the Control group and these parameters were decreased in both Hypo-Nan S 50 and Hypo-Nan S 100 groups compared to the Hypo group. The rats of both Hypo-Nan S 50 and Hypo-Nan S 100 groups spent longer time and traveled longer distances in the target area during the probe trial of MWM than the Hypo group. In addition, the latency to enter the dark box in the PA test was lower in the Hypo group than in the Control group, which was significantly improved after Nan S treatment. Furthermore, the hippocampal and cortical lipid peroxide marker (MDA) levels and NO metabolites of the Hypo group were significantly increased and the antioxidant markers (total thiol, SOD, and CAT) were significantly inhibited compared to the Control group. Compared with the Hypo group, Nan S administration could significantly decrease the oxidant factors and increase the activities antioxidant system and concentration of BDNF. CONCLUSION It is concluded that Nan S might be able to enhance endogenous antioxidant proteins due to its antioxidant activity, thereby improving BDNF and spatial and avoidance memory in the hypothyroidism-induced memory impairment model however, more studies are still necessary to elucidate the exact mechanism(s).
Collapse
Affiliation(s)
- Fatemeh Hojjati Fard
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Sabzi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Hashemzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Liu C, Li Z, Xi H. Bioinformatics analysis and in vivo validation of ferroptosis-related genes in ischemic stroke. Front Pharmacol 2022; 13:940260. [PMID: 36506580 PMCID: PMC9729703 DOI: 10.3389/fphar.2022.940260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke (IS) is a neurological condition associated with high mortality and disability rates. Although the molecular mechanisms underlying IS remain unclear, ferroptosis was shown to play an important role in its pathogenesis. Hence, we applied bioinformatics analysis to identify ferroptosis-related therapeutic targets in IS. IS-related microarray data from the GSE61616 dataset were downloaded from the Gene Expression Omnibus (GEO) database and intersected with the FerrDb database. In total, 33 differentially expressed genes (DEGs) were obtained and subjected to functional enrichment and protein-protein interaction (PPI) network analyses. Four candidate genes enriched in the HIF-1 signaling pathway (HMOX1, STAT3, CYBB, and TLR4) were selected based on the hierarchical clustering of the PPI dataset. We also downloaded the IR-related GSE35338 dataset and GSE58294 dataset from the GEO database to verify the expression levels of these four genes. ROC monofactor analysis demonstrated a good performance of HMOX1, STAT3, CYBB, and TLR4 in the diagnosis of ischemic stroke. Transcriptional levels of the above four genes, and translational level of GPX4, the central regulator of ferroptosis, were verified in a mouse model of middle cerebral artery occlusion (MCAO)-induced IS by qRT-PCR and western blotting. Considering the regulation of the HIF-1 signaling pathway, dexmedetomidine was applied to the MCAO mice. We found that expression of these four genes and GPX4 in MCAO mice were significantly reduced, while dexmedetomidine reversed these changes. In addition, dexmedetomidine significantly reduced MCAO-induced cell death, improved neurobehavioral deficits, and reduced the serum and brain levels of inflammatory factors (TNF-α and IL-6) and oxidative stress mediators (MDA and GSSG). Further, we constructed an mRNA-miRNA-lncRNA network based on the four candidate genes and predicted possible transcription factors. In conclusion, we identified four ferroptosis-related candidate genes in IS and proposed, for the first time, a possible mechanism for dexmedetomidine-mediated inhibition of ferroptosis during IS. These findings may help design novel therapeutic strategies for the treatment of IS.
Collapse
Affiliation(s)
- Chang Liu
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhixi Li
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjie Xi
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China,Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Hongjie Xi,
| |
Collapse
|
12
|
Chen C, Chen W, Zhou X, Li Y, Pan X, Chen X. Hyperbaric oxygen protects HT22 cells and PC12 cells from damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of Nrf2/System Xc-/GPX4 axis-mediated ferroptosis. PLoS One 2022; 17:e0276083. [PMID: 36355759 PMCID: PMC9648730 DOI: 10.1371/journal.pone.0276083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022] Open
Abstract
This study was to investigate the protective effect of hyperbaric oxygen (HBO) on HT22 and PC12 cell damage caused by oxygen-glucose deprivation/reperfusion-induced ferroptosis. A 2-h oxygen-glucose deprivation and 24-h reperfusion model on HT22 and PC12 cells was used to simulate cerebral ischemia-reperfusion injury. Cell viabilities were detected by Cell Counting Kit-8 (CCK-8) method. The levels of reactive oxygen species (ROS) and lipid reactive oxygen species (Lipid ROS) were detected by fluorescent probes Dihydroethidium (DHE) and C11 BODIPY 581/591. Iron Colorimetric Assay Kit, malondialdehyde (MDA) and glutathione (GSH) activity assay kits were used to detect intracellular iron ion, MDA and GSHcontent. Cell ferroptosis-related ultrastructures were visualized using transmission electron microscopy (TEM). Furthermore, PCR and Western blot analyses were used to detect the expressions of ferroptosis-related genes and proteins. After receiving oxygen-glucose deprivation/reperfusion, the viabilities of HT22 and PC12 cells were significantly decreased; ROS, Lipid ROS, iron ions and MDA accumulation occurred in the cells; GSH contents decreased; TEM showed that cells were ruptured and blebbed, mitochondria atrophied and became smaller, mitochondrial ridges were reduced or even disappeared, and apoptotic bodies appeared. And the expressions of Nrf2, SLC7A11 and GPX4 genes were reduced; the expressions of p-Nrf2/Nrf2, xCT and GPX4 proteins were reduced. Notably, these parameters were significantly reversed by HBO, indicating that HBO can protect HT22 cells and PC12 cells from damage caused by oxygen-glucosedeprivation/reperfusion via the inhibition of Nrf2/System Xc-/GPX4 axis-mediated ferroptosis.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Wan Chen
- Department of Emergency, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xing Zhou
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Yaoxuan Li
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiaorong Pan
- Department of Hyperbaric Oxygen, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xiaoyu Chen
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| |
Collapse
|
13
|
The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed Pharmacother 2022; 154:113611. [PMID: 36081288 DOI: 10.1016/j.biopha.2022.113611] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cerebrovascular diseases, such as ischemic stroke, pose serious medical challenges worldwide due to their high morbidity and mortality and limitations in clinical treatment strategies. Studies have shown that reactive oxygen species (ROS)-mediated inflammation, excitotoxicity, and programmed cell death of each neurovascular unit during post-stroke hypoxia and reperfusion play an important role in the pathological cascade. Ferroptosis, a programmed cell death characterized by iron-regulated accumulation of lipid peroxidation, is caused by abnormal metabolism of lipids, glutathione (GSH), and iron, and can accelerate acute central nervous system injury. Recent studies have gradually uncovered the pathological process of ferroptosis in the neurovascular unit of acute stroke. Some drugs such as iron chelators, ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) can protect nerves after neurovascular unit injury in acute stroke by inhibiting ferroptosis. In addition, combined with our previous studies on ferroptosis mediated by natural compounds in ischemic stroke, this review summarized the progress in the regulation mechanism of natural chemical components and herbal chemical components on ferroptosis in recent years, in order to provide reference information for future research on ferroptosis and lead compounds for the development of ferroptosis inhibitors.
Collapse
|
14
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
15
|
Lin MC, Liu CC, Lin YC, Hsu CW. Epigallocatechin Gallate Modulates Essential Elements, Zn/Cu Ratio, Hazardous Metal, Lipid Peroxidation, and Antioxidant Activity in the Brain Cortex during Cerebral Ischemia. Antioxidants (Basel) 2022; 11:antiox11020396. [PMID: 35204278 PMCID: PMC8868580 DOI: 10.3390/antiox11020396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Cerebral ischemia induces oxidative brain injury via increased oxidative stress. Epigallocatechin gallate (EGCG) exerts anti-oxidant, anti-inflammatory, and metal chelation effects through its active polyphenol constituent. This study investigates whether EGCG protection against cerebral ischemia-induced brain cortex injury occurs through modulating lipid peroxidation, antioxidant activity, the essential elements of selenium (Se), zinc (Zn), magnesium (Mg), copper (Cu), iron (Fe), and copper (Cu), Zn/Cu ratio, and the hazardous metal lead (Pb). Experimentally, assessment of the ligation group was performed by occlusion of the right common carotid artery and the right middle cerebral artery for 1 h. The prevention group was intraperitoneally injected with EGCG (50 mg/kg) once daily for 10 days before cerebral ischemia. The brain cortex tissues were homogenized and the supernatants were harvested for biochemical analysis. Results indicated that cerebral ischemia markedly decreased SOD, CAT, Mg, Zn, Se, and Zn/Cu ratio and increased malondialdehyde (MDA), Fe, Cu, and Pb in the ischemic brain cortex. Notably, pretreating rats with EGCG before ischemic injury significantly reversed these biochemical results. Our findings suggest that the neuroprotection of EGCG in the ischemic brain cortex during cerebral ischemia involves attenuating oxidative injury. Notably, this neuroprotective mechanism is associated with regulating lipid peroxidation, antioxidant activity, essential elements, Zn/Cu ratio, and hazardous metal Pb.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-C.L.); (C.-W.H.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (C.-W.H.)
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Yu-Chen Lin
- Department of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Ching-Wen Hsu
- Department of Pharmacy, Chung Kang Branch, Cheng Ching Hospital, Taichung 407211, Taiwan
- Correspondence: (M.-C.L.); (C.-W.H.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (C.-W.H.)
| |
Collapse
|
16
|
Delavari NM, Gharaei A, Mirdar HJ, Davari A, Rastiannasab A. Modulatory effect of dietary copper nanoparticles and vitamin C supplementations on growth performance, hematological and immune parameters, oxidative status, histology, and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:33-51. [PMID: 34850306 DOI: 10.1007/s10695-021-01036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Copper and vitamin C are micronutrients needed for the living organism's functions. Vitamin C has a great effect on the immune system of fish. The present study aimed to evaluate the effects of dietary copper nanoparticles (Cu-NPs) and vitamin C (VC) supplementations on rainbow trout (Oncorhynchus mykiss) juveniles. So, 216 rainbow trout juveniles were randomly assigned to six groups with trial diets supplemented with Cu-NPs and VC including 0/0 (T1, control diet), 0/250 (T2), 0/500 (T3), 2/250 (T4), 2/500 (T5), and 2/0 (T6) mg Cu-NPs/VC per kg diet. After the feeding trial for 60 days, the fish were challenged with Yersinia ruckeri, and the survival rate was calculated for 15 days. Based on the data analysis, weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lysozyme, alternative complement activity (ACH50), hematocrit (Hct), hemoglobin (Hb), and mean corpuscular volume (MCV) were significantly (p < 0.05) increased in the fish fed on T4 and T5 diets compared with the control group. Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) were significantly (p < 0.05) decreased in the fish fed with diets contain Cu-NPs and VC (T4 and T5). The expressions of TNF-α, IL-1ß, IL-10, SOD, CAT, and GPX genes were significantly (p < 0.05) decreased in the fish fed on T3, T4, and T5 diets versus the control. In addition, the dietary Cu-NPs and VC supplementations significantly enhanced resistance against pathogens and led to the control of infection in rainbow trout. In conclusion, Cu-NPs and VC administered as feed additives at 2/250-500 mg/kg elevated the growth performance, antioxidant capacity, and health of rainbow trout.
Collapse
Affiliation(s)
- Nik Mojtaba Delavari
- Department of Fisheries, Natural Resources Faculty, University of Zabol, P.O. Box: 98615-538, Zabol, Sistan and Balouchestan, Iran
| | - Ahmad Gharaei
- Department of Fisheries, Natural Resources Faculty, University of Zabol, P.O. Box: 98615-538, Zabol, Sistan and Balouchestan, Iran.
| | - Harijani Javad Mirdar
- Department of Fisheries, Natural Resources Faculty, University of Zabol, P.O. Box: 98615-538, Zabol, Sistan and Balouchestan, Iran
| | - Aida Davari
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Zabol, Zabol, Sistan and Balouchestan, Iran
| | - Abolhasan Rastiannasab
- Genetics and Fish Breeding Center of Shahid Motahhari Yasuj, Yasuj, Kohgiloyeh and Boyerahmad, Iran
| |
Collapse
|
17
|
Lin MC, Liu CC, Liao CS, Ro JH. Neuroprotective Effect of Quercetin during Cerebral Ischemic Injury Involves Regulation of Essential Elements, Transition Metals, Cu/Zn Ratio, and Antioxidant Activity. Molecules 2021; 26:molecules26206128. [PMID: 34684707 PMCID: PMC8538157 DOI: 10.3390/molecules26206128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia results in increased oxidative stress in the affected brain. Accumulating evidence suggests that quercetin possesses anti-oxidant and anti-inflammatory properties. The essential elements magnesium (Mg), zinc (Zn), selenium (Se), and transition metal iron (Fe), copper (Cu), and antioxidants superoxide dismutase (SOD) and catalase (CAT) are required for brain functions. This study investigates whether the neuroprotective effects of quercetin on the ipsilateral brain cortex involve altered levels of essential trace metals, the Cu/Zn ratio, and antioxidant activity. Rats were intraperitoneally administered quercetin (20 mg/kg) once daily for 10 days before ischemic surgery. Cerebral ischemia was induced by ligation of the right middle cerebral artery and the right common carotid artery for 1 h. The ipsilateral brain cortex was homogenized and the supernatant was collected for biochemical analysis. Results show that rats pretreated with quercetin before ischemia significantly increased Mg, Zn, Se, SOD, and CAT levels, while the malondialdehyde, Fe, Cu, and the Cu/Zn ratio clearly decreased as compared to the untreated ligation subject. Taken together, our findings suggest that the mechanisms underlying the neuroprotective effects of quercetin during cerebral ischemic injury involve the modulation of essential elements, transition metals, Cu/Zn ratio, and antioxidant activity.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Chin-Sheng Liao
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 407211, Taiwan;
| | - Ju-Hai Ro
- Department of Pharmacy, Chung-Kang Branch, Cheng-Ching Hospital, Taichung 407211, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| |
Collapse
|
18
|
Ro JH, Liu CC, Lin MC. Resveratrol Mitigates Cerebral Ischemic Injury by Altering Levels of Trace Elements, Toxic Metal, Lipid Peroxidation, and Antioxidant Activity. Biol Trace Elem Res 2021; 199:3718-3727. [PMID: 33230635 DOI: 10.1007/s12011-020-02497-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/15/2020] [Indexed: 01/31/2023]
Abstract
Cerebral ischemia causes increased oxidative stress due to the overproduction of reactive oxygen species. The polyphenol compound resveratrol exerts neuroprotective effects through its antioxidant and anti-inflammatory abilities. The trace elements magnesium (Mg), zinc (Zn), and selenium (Se) also exert antioxidant properties. This study mainly investigates whether the neuroprotective effect of resveratrol during cerebral ischemia is related to its modulation of the concentrations of trace element and toxic metal lead (Pb). Experimental rats were administered resveratrol (20 mg/kg) once daily for 10 consecutive days. Cerebral ischemia was surgically induced via ligation of the right middle cerebral artery and right common carotid artery for 1 h. Brain cortex tissues were homogenized, and the supernatants were harvested for biochemical analysis. Experimental results showed that rats pretreated with resveratrol before cerebral ischemia had significantly higher trace element concentrations of Mg, Zn, and Se and higher antioxidant activity (superoxide dismutase and catalase) in the brain cortex as compared to untreated cerebral ischemia rats. Conversely, resveratrol pretreatment markedly attenuated lipid peroxidation and concentrations of the toxic metal Pb as compared to untreated cerebral ischemic rats. Altogether, the findings of this study highlight that the mechanism underlying the neuroprotective effect of resveratrol involves modulation of the brain levels of trace elements, toxic metal lead, lipid peroxidation, and antioxidant activity.
Collapse
Affiliation(s)
- Ju-Hai Ro
- Department of Pharmacy, Chung Kang Branch, Cheng Ching Hospital, Taichung, Taiwan
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
19
|
Lin MC, Liu CC, Lin YC, Liao CS. Resveratrol Protects against Cerebral Ischemic Injury via Restraining Lipid Peroxidation, Transition Elements, and Toxic Metal Levels, but Enhancing Anti-Oxidant Activity. Antioxidants (Basel) 2021; 10:antiox10101515. [PMID: 34679650 PMCID: PMC8532811 DOI: 10.3390/antiox10101515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Cerebral ischemia is related to increased oxidative stress. Resveratrol displays anti-oxidant and anti-inflammatory properties. The transition elements iron (Fe) and copper (Cu) are indispensable for the brain but overload is deleterious to brain function. Aluminum (Al) and arsenic (As) are toxic metals that seriously threaten brain health. This study was conducted to elucidate the correlation of the neuroprotective mechanism of resveratrol to protect cerebral ischemic damage with modulation of the levels of lipid peroxidation, anti-oxidants, transition elements, and toxic metals. Experimentally, 20 mg/kg of resveratrol was given once daily for 10 days. The cerebral ischemic operation was performed via occlusion of the right common carotid artery together with the right middle cerebral artery for 60 min followed by homogenization of the brain cortex and collection of supernatants for biochemical analysis. In the ligation group, levels of malondialdehyde, Fe, Cu, Al, and As increased but those of the anti-oxidants superoxide dismutase and catalase decreased. Pretreating rats with resveratrol before ischemia significantly reversed these effects. Our findings highlight the association of overload of Fe, Cu, As, and Al with the pathophysiology of cerebral ischemia. In conclusion, resveratrol protects against cerebral ischemic injury via restraining lipid peroxidation, transition elements, and toxic metals, but increasing anti-oxidant activity.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: ; Tel.: +886-4-2239-1647
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Yu-Chen Lin
- Department of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Chin-Sheng Liao
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 407211, Taiwan;
| |
Collapse
|
20
|
Ebokaiwe AP, Okori S, Nwankwo JO, Ejike CECC, Osawe SO. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:591-602. [PMID: 33064168 PMCID: PMC7561705 DOI: 10.1007/s00210-020-02000-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Selenium nanoparticles (SeNPs) are well reported to exhibit pharmacological activities both in vitro and in vivo. However, literature is devoid of studies on the impact of SeNPs and/or metformin (M) against streptozotocin (STZ)-mediated oxidative brain injury and behavioral impairment. Consequently, to fill this gap, diabetes was induced in male Wistar rats by feeding with 10% fructose solution for 2 weeks, followed by a single dose intraperitoneal injection of STZ (40 mg/kg body weight [bwt]). After rats were confirmed diabetic, they were treated orally with 0.1 mg/kg bwt of SeNPs ± M (50 mg/kg bwt), and normal control (NC) received citrate buffer (2 mg/mL) for 5 weeks. In comparison with the diabetic control (DC), SeNPs, and/or M significantly (p < 0.05) lowered blood glucose levels, but increased insulin secretion and pancreatic β-cell function. An increase in locomotor and motor activities evidenced by improved spontaneous alternation, locomotor frequency, hinding, and increased mobility time were observed in treated groups. In addition, there was enhanced brain antioxidant status with a lower acetylcholinesterase (AChE) activity and oxidative-inflammatory stress biomarkers. A significant downregulation of caspase 3 and upregulation of parvalbumin and Nrf2 protein expressions was observed in treated groups. In some of the studied parameters, treated groups were statistically (p < 0.05) insignificant compared with the normal control (NC) group. Overall, co-treatment elicited more efficacy than that of the individual regimen.
Collapse
Affiliation(s)
- Azubuike P Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, PMB 1010, Nigeria.
| | - Stephen Okori
- Department of Anatomy, Faculty of Basic Medical Sciences, Cross River University of Technology, Okuku Campus, Okuku, Cross River, Nigeria
| | - Joseph O Nwankwo
- Department of Medical Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, PMB 1010, Nigeria
| | - Chukwunonso E C C Ejike
- Department of Medical Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, PMB 1010, Nigeria
| | - Sharon O Osawe
- Department of Biological Sciences, Biochemistry Programme, KolaDaisi University, Ibadan, Oyo State, Nigeria
| |
Collapse
|
21
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
22
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6:49. [PMID: 33536413 PMCID: PMC7858612 DOI: 10.1038/s41392-020-00428-9] [Citation(s) in RCA: 774] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. The process of ferroptotic cell death is defined by the accumulation of lethal lipid species derived from the peroxidation of lipids, which can be prevented by iron chelators (e.g., deferiprone, deferoxamine) and small lipophilic antioxidants (e.g., ferrostatin, liproxstatin). This review summarizes current knowledge about the regulatory mechanism of ferroptosis and its association with several pathways, including iron, lipid, and cysteine metabolism. We have further discussed the contribution of ferroptosis to the pathogenesis of several diseases such as cancer, ischemia/reperfusion, and various neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease), and evaluated the therapeutic applications of ferroptosis inhibitors in clinics.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Shuo Xu
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Hua Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
23
|
Abstract
Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferroptosis, a new form of regulated cell death that is caused by iron-dependent lipid peroxidation, plays a significantly detrimental role in many I/R models. In this review, we aim to revise the pathological process of I/R and then explore the molecular pathogenesis of ferroptosis. Furthermore, we aim to evaluate the role that ferroptosis plays in I/R, providing evidence to support the targeting of ferroptosis in the I/R pathway may present as a therapeutic intervention to alleviate ischemia/reperfusion injury (IRI) associated cell damage and death.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qiao-Zhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, China. E-mail:
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, Chengdu, Sichuan 610041, China. E-mail:
| |
Collapse
|
24
|
Azimzadeh M, Jelodar G. Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E. J Anim Physiol Anim Nutr (Berl) 2020; 104:1568-1574. [PMID: 32279387 DOI: 10.1111/jpn.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
Advances in telecommunication and their broad usage in the community have become a great concern from the health aspect. The object of the present study was to examine the effects of exposure to 900 MHz RFW on brain Iron (Fe), Copper (Cu), Zinc (Zn) and Manganese (Mn) concentration, and the protective role of pre-treatment of vitamin E on mentioned elements homoeostasis. Twenty adult male Sprague-Dawley rats (200 ± 20 g) randomly were divided into four groups. Control group (without any exposure, received distilled water), treatment control group (orally received 250 mg/kg BW/d vitamin E), treatment group (received 250 mg/kg BW/d vitamin E and exposed to 900 MHz RFW) and sham-exposed group (exposed to 900 MHz RFW). Animals (with freely moving in the cage) were exposed to RFW for 30 consecutive days (4 hr/day). The levels of the above mentioned elements in the brain tissue were determined on the last day using atomic absorption spectrophotometry. Exposure to 900 MHz RFW induced a significant increase in the Fe, Cu, Mn levels and Cu/Zn ratio accompanied by a significant decrease in Zn level in the sham-exposed group compare to control group. Vitamin E pre-treatment improved the level of Fe, Cu, Mn and Cu/Zn ratio, except in the Zn concentration. Exposure to 900 MHz RFW caused disrupted trace elements homoeostasis in the brain tissue and administration of vitamin E as an antioxidant and neuroprotective agent improved the situation.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
25
|
The Application of Ferroptosis in Diseases. Pharmacol Res 2020; 159:104919. [DOI: 10.1016/j.phrs.2020.104919] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
26
|
Luo J, Zhu T, Wang X, Cheng X, Yuan Y, Jin M, Betancor MB, Tocher DR, Zhou Q. Toxicological mechanism of excessive copper supplementation: Effects on coloration, copper bioaccumulation and oxidation resistance in mud crab Scylla paramamosain. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122600. [PMID: 32272279 DOI: 10.1016/j.jhazmat.2020.122600] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/01/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Copper is a widespread pollutant in marine environments, and marine animals can ingest large amounts of copper through the food chain. Here, an 8-week feeding trial was designed to investigate the effects of different dietary copper levels on coloration, copper bioaccumulation, stress response and oxidation resistance of juvenile mud crab Scylla paramamosain. The results indicated that crabs fed the diet with 162 mg/kg copper exhibited a dark-blue carapace and hemolymph. The accumulation of copper in tissues was positively correlated with the level of copper in feed. High/excess dietary copper (162 mg/kg) up-regulated the expression of stress response related genes, and reduced the expression/activities of anti-oxidation genes/enzymes. The activity of phenoloxidase decreased significantly when dietary copper level was 86-162 mg/kg, and the expression of hemocyanin was up-regulated in crab fed the diets with 28-162 mg/kg copper. Overall, the results of the present study indicated that high dietary copper led to parachrea in carapace and hemolymph of mud crab, and caused copper deposition abnormality in carapace and hepatopancreas. The data suggested that the toxic effects of dietary copper were concentration-dependent such that, excess dietary copper (162 mg/kg) had adverse impacts on oxidation resistance.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin Cheng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
27
|
Gu H, Hou Q, Liu Y, Cai Y, Guo Y, Xiang H, Chen S. On-line regeneration of electrochemical biosensor for in vivo repetitive measurements of striatum Cu 2+ under global cerebral ischemia/reperfusion events. Biosens Bioelectron 2019; 135:111-119. [PMID: 31004921 DOI: 10.1016/j.bios.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
The detection of Cu2+ ion, one of the metal ions substantial in cerebral physiology, is critical in studying brain activities and understanding brain functions. However, repetitive measurements of Cu2+ in the progress of physiological and pathological events is still challenging, because lack of the platform for repetitive on-line detection-regeneration cycle. Herein we report the design of a regenerated electrochemical biosensor combined with the in vivo microdialysis system. In this biosensor, hyperbranched polyethyleneimine (hPEI) acts as a regenerated recognition unit for Cu2+. Just by a simple rinse of ethylenediaminetetraacetic acid (EDTA) disodium salt, the Cu2+ and Cu+ ions on the biosensor interface were chelated with EDTA disodium salt, thus achieving the regeneration of the biosensor. In addition, 6-(ferrocenyl)hexanethiol (FcHT) serves as the inner reference moiety to elevate the sensing accuracy over regeneration cycles. As a result, this ratiometric electrochemical biosensor not only revealed high sensitivity and selectivity, but also exhibited excellent stability during multiple regeneration processing. This biosensor was capable of determining Cu2+ with a linear range between 0.05 and 12 μM and low detection limit (LOD) of 13 nM. Then, the platform has been successfully applied in repetitive Cu2+ analysis in rat brain under global cerebral ischemia/reperfusion events. The combination of results from 7 rats indicates global cerebral ischemia caused an obvious increase of the Cu2+ level, while reperfusion brought this level back to normal.
Collapse
Affiliation(s)
- Hui Gu
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| | - Qi Hou
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yujie Cai
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yanqiu Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| |
Collapse
|
28
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol 2018; 56:4880-4893. [PMID: 30406908 DOI: 10.1007/s12035-018-1403-3] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells, ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic stroke, Alzheimer's disease, and Parkinson's disease. This review summarizes current research on ferroptosis, its underlying mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide valuable information regarding treatment and prevention of these devastating diseases.
Collapse
Affiliation(s)
- Abigail Weiland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Captical Medical University, Beijing, 100069, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017; 22:1520-1530. [PMID: 28886009 DOI: 10.1038/mp.2017.171] [Citation(s) in RCA: 514] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Functional failure of tau contributes to age-dependent, iron-mediated neurotoxicity, and as iron accumulates in ischemic stroke tissue, we hypothesized that tau failure may exaggerate ischemia-reperfusion-related toxicity. Indeed, unilateral, transient middle cerebral artery occlusion (MCAO) suppressed hemispheric tau and increased iron levels in young (3-month-old) mice and rats. Wild-type mice were protected by iron-targeted interventions: ceruloplasmin and amyloid precursor protein ectodomain, as well as ferroptosis inhibitors. At this age, tau-knockout mice did not express elevated brain iron and were protected against hemispheric reperfusion injury following MCAO, indicating that tau suppression may prevent ferroptosis. However, the accelerated age-dependent brain iron accumulation that occurs in tau-knockout mice at 12 months of age negated the protective benefit of tau suppression against MCAO-induced focal cerebral ischemia-reperfusion injury. The protective benefit of tau knockout was revived in older mice by iron-targeting interventions. These findings introduce tau-iron interaction as a pleiotropic modulator of ferroptosis and ischemic stroke outcome.
Collapse
Affiliation(s)
- Q-Z Tuo
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - P Lei
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - K A Jackman
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - X-L Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - H Xiong
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - X-L Li
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Z-Y Liuyang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Roisman
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - S-T Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - S Ayton
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Q Wang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - P J Crouch
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - K Ganio
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - X-C Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - P A Adlard
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Y-M Lu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - R Cappai
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - J-Z Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - R Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - A I Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Ahn JH, Shin MC, Park JH, Kim IH, Cho JH, Lee TK, Lee JC, Chen BH, Shin BN, Tae HJ, Park J, Choi SY, Lee YL, Kim DW, Kim YH, Won MH, Cho JH. Effects of long‑term post‑ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia. Mol Med Rep 2017; 15:3623-3630. [PMID: 28440411 PMCID: PMC5436201 DOI: 10.3892/mmr.2017.6485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/02/2017] [Indexed: 01/19/2023] Open
Abstract
Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
31
|
Müller TE, Nunes ME, Menezes CC, Marins AT, Leitemperger J, Gressler ACL, Carvalho FB, de Freitas CM, Quadros VA, Fachinetto R, Rosemberg DB, Loro VL. Sodium Selenite Prevents Paraquat-Induced Neurotoxicity in Zebrafish. Mol Neurobiol 2017; 55:1928-1941. [PMID: 28244005 DOI: 10.1007/s12035-017-0441-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
Abstract
Considering the antioxidant properties of sodium selenite (Na2SeO3) and the involvement of oxidative stress events in paraquat-induced neurotoxicity, this study investigated the protective effect of dietary Na2SeO3 on biochemical and behavioral parameters of zebrafish exposed to paraquat (PQ). Fish were pretreated with a Na2SeO3 diet for 21 days and then PQ (20 mg/kg) was administered intraperitoneally with six injections for 16 days. In the novel tank test, the Na2SeO3 diet prevented the locomotor impairments, as well as the increase in the time spent in the top area of the tank, and the exacerbation of freezing episodes. In the preference for conspecifics and in the mirror-induced aggression (MIA) tasks, Na2SeO3 prevented the increase in the latency to enter the area closer to conspecifics and the agonistic behavior of PQ-treated animals, respectively. Na2SeO3 prevented the increase of carbonylated protein (CP), reactive oxygen species (ROS), and nitrite/nitrate (NOx) levels, as well as the decrease in non-protein thiols (NPSH) levels. Regarding the antioxidant enzymatic defenses, Na2SeO3 prevented the increase in catalase (CAT) and glutathione peroxidase (GPx) activities caused by PQ. Altogether, dietary Na2SeO3 improves behavioral and biochemical function impaired by PQ treatment in zebrafish, by modulating not only redox parameters, but also anxiety- and aggressive-like phenotypes in zebrafish.
Collapse
Affiliation(s)
- Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Mauro E Nunes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Charlene C Menezes
- Graduate Program in Animal Biodiversity, Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Aline T Marins
- Graduate Program in Animal Biodiversity, Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Jossiele Leitemperger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Ana Carolina Lopes Gressler
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Catiuscia Molz de Freitas
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa A Quadros
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Roselei Fachinetto
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Animal Biodiversity, Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
32
|
Jiang XQ, Cao CY, Li ZY, Li W, Zhang C, Lin J, Li XN, Li JL. Delineating hierarchy of selenotranscriptome expression and their response to selenium status in chicken central nervous system. J Inorg Biochem 2017; 169:13-22. [PMID: 28088013 DOI: 10.1016/j.jinorgbio.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022]
Abstract
Selenium (Se) incorporated in selenoproteins as selenocysteine and supports various important cellular and organismal functions. We recently reported that chicken brain exhibited high priority for Se supply and retention under conditions of dietary Se deficiency and supernutrition Li et al. (2012) . However, the selenotranscriptome expressions and their response to Se status in chicken central nervous system (CNS) are unclear. To better understand the relationship of Se homeostasis and selenoproteins expression in chicken CNS, 1day-old HyLine White chickens were fed a low Se diet (Se-L, 0.028mg/g) supplemented with 4 levels of dietary Se (0 to 5.0mgSe/kg) as Na2SeO3 for 8weeks. Then chickens were dissected for getting the CNS, which included cerebral cortex, cerebellum, thalamus, bulbus cinereus and marrow. The expressions of selenoproteome which have 24 selenoproteins were detected by the quantitative real-time PCR array. The concept of a selenoprotein hierarchy was developed and the hierarchy of different regions in chicken CNS was existence, especially cerebral cortex and bulbus cinereus. The expression of selenoproteins has a hierarch while changing Se content, and Selenoprotein T (Selt), Selenoprotein K (Selk), Selenoprotein W (Selw), Selenoprotein U (Selu), Glutathione peroxidase 3 (Gpx3), Glutathione peroxidase 4 (Gpx4), Selenoprotein P (Sepp1), Selenoprotein O (Selo), Selenoprotein 15 (Sel15), Selenoprotein N (Seln), Glutathione peroxidase 2 (Gpx2) and Selenoprotein P 2 (Sepp2) take more necessary function in the chicken CNS. Therefore, we hypothesize that hierarchy of regulated the transcriptions of selenoproteome makes an important role of CNS Se metabolism and transport in birds.
Collapse
Affiliation(s)
- Xiu-Qing Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chang-Yu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhao-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jing-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
33
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
34
|
Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS One 2016; 11:e0154797. [PMID: 27152948 PMCID: PMC4859492 DOI: 10.1371/journal.pone.0154797] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES From previous data in animal models of cerebral ischemia, lipocalin-2 (LCN2), a protein related to neutrophil function and cellular iron homeostasis, is supposed to have a value as a biomarker in ischemic stroke patients. Therefore, we examined LCN2 expression in the ischemic brain in an animal model and measured plasma levels of LCN2 in ischemic stroke patients. METHODS In the mouse model of transient middle cerebral artery occlusion (tMCAO), LCN2 expression in the brain was analyzed by immunohistochemistry and correlated to cellular nonheme iron deposition up to 42 days after tMCAO. In human stroke patients, plasma levels of LCN2 were determined one week after ischemic stroke. In addition to established predictive parameters such as age, National Institutes of Health Stroke Scale and thrombolytic therapy, LCN2 was included into linear logistic regression modeling to predict clinical outcome at 90 days after stroke. RESULTS Immunohistochemistry revealed expression of LCN2 in the mouse brain already at one day following tMCAO, and the amount of LCN2 subsequently increased with a maximum at 2 weeks after tMCAO. Accumulation of cellular nonheme iron was detectable one week post tMCAO and continued to increase. In ischemic stroke patients, higher plasma levels of LCN2 were associated with a worse clinical outcome at 90 days and with the occurrence of post-stroke infections. CONCLUSIONS LCN2 is expressed in the ischemic brain after temporary experimental ischemia and paralleled by the accumulation of cellular nonheme iron. Plasma levels of LCN2 measured in patients one week after ischemic stroke contribute to the prediction of clinical outcome at 90 days and reflect the systemic response to post-stroke infections.
Collapse
|
35
|
Afshari L, Amani R, Soltani F, Haghighizadeh MH, Afsharmanesh MR. The relation between serum Vitamin D levels and body antioxidant status in ischemic stroke patients: A case-control study. Adv Biomed Res 2015; 4:213. [PMID: 26605242 PMCID: PMC4627183 DOI: 10.4103/2277-9175.166150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/23/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stroke is the second cause of death among elderly people. Oxidative stress plays an important role in brain damage after stroke. Currently, Vitamin D has been shown as an antioxidant. The aim of this study was to evaluate the status of Vitamin D, antioxidant enzymes, and the relation between them in ischemic stroke patients. MATERIALS AND METHODS This case-control study was carried out on 36 patients with ischemic stroke patients and 36 matched subjects as controls. Intake of fruits and vegetables, exposure of sunlight, serum lipid profile, concentrations of serum 25-dihydroxy Vitamin D (25(OH) D), activities of serum superoxide dismutase, and glutathione peroxidase enzymes were determined. RESULTS Severe Vitamin D deficiency was seen in 30% of the patients versus 11% of the controls (P < 0.05). Consumption of fruits and vegetables was lower in patients than that of controls (P < 0.05). Activities of antioxidant enzymes and intake of fruits were positively correlated in stroke patients (P = 0.02). The most potent predictors of stroke risk were hypertension, high levels of low-density lipoprotein cholesterol (LDL-C) and history of cardiovascular disease (CVD) (odds ratios: 3.33, 3.15, and 3.14, respectively, P < 0.05 for all). There was no association between 25(OH) D levels with activities of serum antioxidant enzymes and lipid profile in the two groups. CONCLUSION Ischemic stroke patients have higher prevalence of severe Vitamin D deficiency and lower intakes of fruits and vegetables. Intake of fruits was positive correlated to higher antioxidant enzymes levels. High levels of blood pressure, history of CVD, and high LDL-C levels are the strongest predictors of ischemic stroke.
Collapse
Affiliation(s)
- Laleh Afshari
- Department of Nutrition, Arvand International Division, Faculty of Paramedicine, Health Research Institute, Diabetes Research Center, Ahvaz, Iran
| | - Reza Amani
- Department of Nutrition, Faculty of Paramedicine, Health Research Institute, Diabetes Research Center, Ahvaz, Iran
| | - Farhad Soltani
- Department of Aneshtesiology, ICU, Golestan Medical Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hossein Haghighizadeh
- Department of Statistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
36
|
Tian T, Ni H, Sun BL. Neurobehavioral Deficits in a Rat Model of Recurrent Neonatal Seizures Are Prevented by a Ketogenic Diet and Correlate with Hippocampal Zinc/Lipid Transporter Signals. Biol Trace Elem Res 2015; 167:251-8. [PMID: 25778834 DOI: 10.1007/s12011-015-0285-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy in adults, but it has not been extensively tested for its efficacy in neonatal seizure-induced brain damage. We have previously shown altered expression of zinc/lipid metabolism-related genes in hippocampus following penicillin-induced developmental model of epilepsy. In this study, we further investigated the effect of KD on the neurobehavioral and cognitive deficits, as well as if KD has any influence in the activity of zinc/lipid transporters such as zinc transporter 3 (ZnT-3), MT-3, ApoE, ApoJ (clusterin), and ACAT-1 activities in neonatal rats submitted to flurothyl-induced recurrent seizures. Postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizure group (EXP) and control group (CONT). On P28, they were further randomly divided into the seizure group without ketogenic diet (EXP1), seizure plus ketogenic diet (EXP2), the control group without ketogenic diet (CONT1), and the control plus ketogenic diet (CONT2). Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed from P35 to P49. Morris water maze test was performed during P51-P57. Then hippocampal mossy fiber sprouting and the protein levels of ZnT3, MT3, ApoE, CLU, and ACAT-1 were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced neurobehavioral toxicology and aberrant mossy fiber sprouting were blocked by KD. In parallel with these behavioral changes, rats treated with KD (EXP2) showed a significant down-regulated expression of ZnT-3, MT-3, ApoE, clusterin, and ACAT-1 in hippocampus when compared with the non-KD-treated EXP1 group. Our findings provide support for zinc/lipid transporter signals being potential targets for the treatment of neonatal seizure-induced brain damage by KD.
Collapse
Affiliation(s)
- Tian Tian
- Neurology Laboratory, Children's Hospital of Soochow University, No.303, Jingde Road, Suzhou, 215003, People's Republic of China
| | | | | |
Collapse
|
37
|
p63 Expression in the Gerbil Hippocampus Following Transient Ischemia and Effect of Ischemic Preconditioning on p63 Expression in the Ischemic Hippocampus. Neurochem Res 2015; 40:1013-22. [PMID: 25777256 DOI: 10.1007/s11064-015-1556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 01/17/2023]
Abstract
p63 is a transcription factor of p53 gene family, which are involved in development, differentiation and cell response to stress; however, its roles in ischemic preconditioning (IPC) in the brain are not clear. In the present study, we investigated the effect of IPC on p63 immunoreactivity caused by 5 min of transient cerebral ischemia in gerbils. IPC was induced by subjecting the gerbils to 2 min of transie ischemia 1 day prior to 5 min of transient ischemia. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+)-sham-operated-group and IPC + ischemia-operated-group). The number of viable neurons in the stratum pyramidale of the hippocampal CA1 region (CA1) was significantly increased by IPC + ischemia-operated-group compared with that in the ischemia-operated-group 5 days after ischemic insult. We found that strong p63 immunoreactivity was detected in the CA1 pyramidal neurons in the sham-operated-group, and the immunoreactivity was decreased with time after ischemia-reperfusion. In addition, strong p63 immunoreactivity was newly expressed in microglial cells of the CA1 region from 2 days after ischemia-reperfusion. In all the IPC + sham-operated-groups, p63 immunoreactivity in the CA1 pyramidal neurons was similar to that in the sham-operated-group, and the immunoreactivity was well maintained in the IPC + ischemia-operated-groups after cerebral ischemia. In brief, our present findings show that IPC dramatically protected the reduction of p63 immunoreactivity in the pyramidal neurons of the CA1 region after ischemia-reperfusion, and this result suggests that the expression of p63 may be necessary for neurons to survive after transient cerebral ischemia.
Collapse
|
38
|
Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015; 7:1213-28. [DOI: 10.1039/c5mt00075k] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A review of selenium's essential role in normal brain function and its potential involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bárbara Rita Cardoso
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Elemental Bio-imaging Facility
- University of Technology Sydney
| |
Collapse
|
39
|
Safwen K, Selima S, Mohamed E, Ferid L, Pascal C, Mohamed A, Ezzedine A, Meherzia M. Protective effect of grape seed and skin extract on cerebral ischemia in rat: implication of transition metals. Int J Stroke 2014; 10:415-24. [PMID: 25365917 DOI: 10.1111/ijs.12391] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Ischemic stroke is a leading cause of long lasting disability in humans and oxidative stress an important underlying cause. The present study aims to determine the effect of short term (seven-days) administration of high dosage grape seed and skin extract (GSSE 2.5 g/kg) on ischemia/reperfusion (I/R) injury in a rat model of global ischemia. Ischemia was induced by occlusion of the common carotid arteries for 30 min followed by one-hour reperfusion on control or GSSE treated animals. I/R induced a drastic oxidative stress characterized by high lipid and protein oxidation, a drop in antioxidant enzyme defenses, disturbed transition metals as free iron overload and depletion of copper, zinc and manganese as well as of associated brain enzyme activities as glutamine synthetase and lactate dehydrogenase. I/R also induced NO and calcium disruption and an increase in calpain activity, a calcium-sensitive cysteine protease. Interestingly, almost all I/R-induced disturbances were prevented by GSSE pretreatment as oxidative stress, transition metals associated enzyme activities, brain damage size and histology. Owing to its antioxidant potential, high dosage GSSE protected efficiently the brain against ischemic stroke and should be translated to humans.
Collapse
Affiliation(s)
- Kadri Safwen
- Bioactive Substance Laboratory, Biotechnology Centre, Hammam-Lif, Tunis
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu JX, Cao CY, Sun YC, Wang LL, Li N, Xu SW, Li JL. Effects on liver hydrogen peroxide metabolism induced by dietary selenium deficiency or excess in chickens. Biol Trace Elem Res 2014; 159:174-82. [PMID: 24819086 DOI: 10.1007/s12011-014-0002-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023]
Abstract
To determine the relationship between dietary selenium (Se) deficiency or excess and liver hydrogen peroxide (H2O2) metabolism in chickens, 1-day-old chickens received insufficient Se (0.028 mg Se per kg of diet) or excess Se (3.0 or 5.0 mg Se per kg of diet) in their diets for 8 weeks. Body and liver weight changes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, H2O2 content, and activities and mRNA levels of enzymes associated with H2O2 metabolism (catalase (CAT) and superoxide dismutase (SOD) 1-3) were determined in the liver. This study showed that Se deficiency or excess Se intake elicited relative severe changes. Se deficiency decreased growth, while Se excess promoted growth in chickens. Both diets vastly altered the liver function, but no obvious histopathological changes were observed in the liver. Se deficiency significantly lowered SOD and CAT activities, and the H2O2 content in the liver and serum increased. Se excess (3.0 mg/kg) decreased SOD and CAT activities with changes in their mRNA levels, and the H2O2 content increased. The larger Se excess (5.0 mg/kg) showed more serious effects but was not fatal. These results indicated that the H2O2 metabolism played a destructive role in the changes in bird liver function induced by Se deficiency or excess.
Collapse
Affiliation(s)
- Jing-Xiu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee JC, Cho JH, Cho GS, Ahn JH, Park JH, Kim IH, Cho JH, Tae HJ, Cheon SH, Ahn JY, Park J, Choi SY, Won MH. Effect of Transient Cerebral Ischemia on the Expression of Receptor for Advanced Glycation End Products (RAGE) in the Gerbil Hippocampus Proper. Neurochem Res 2014; 39:1553-63. [DOI: 10.1007/s11064-014-1345-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/18/2014] [Accepted: 05/22/2014] [Indexed: 01/11/2023]
|
42
|
Şenol N, Nazıroğlu M, Yürüker V. N-Acetylcysteine and Selenium Modulate Oxidative Stress, Antioxidant Vitamin and Cytokine Values in Traumatic Brain Injury-Induced Rats. Neurochem Res 2014; 39:685-92. [DOI: 10.1007/s11064-014-1255-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 12/17/2022]
|
43
|
Tang QQ, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Kuang SY, Tang L, Zhou XQ. Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biol Trace Elem Res 2013; 155:370-80. [PMID: 24052363 DOI: 10.1007/s12011-013-9785-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/06/2013] [Indexed: 11/28/2022]
Abstract
To investigate the effects of dietary copper (Cu) on fish growth, digestive and absorptive enzyme activities, and antioxidant status in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idella) (282±2.8 g) were fed six diets containing 0.74 (basal diet), 2.26, 3.75, 5.25, 6.70, and 8.33 mg Cu /kg diet for 8 weeks. Results showed that percentage weight gain (PWG) and feed intake were increased with dietary Cu levels up to 3.75 mg/kg diet. In addition, the positive effects of dietary Cu at a level 3.75 or 5.25 mg/kg diet on trypsin, chymotrypsin, and lipase activities in the hepatopancreas and of Na(+), K(+)-ATPase, alkaline phosphatase, creatine kinase, and γ-glutamyl transpeptidase activities in three intestine segments produced significantly (P<0.05) better feed efficiency (FE). However, amylase activity in the hepatopancreas was decreased by dietary Cu levels up to 3.75 mg/kg diet (P<0.05). In addition, dietary Cu at 3.75 or 5.25 mg/kg diet decreased malondialdehyde and protein carbonyl content partly by significantly (P<0.05) increasing the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione content in the hepatopancreas and intestine. Collectively, dietary Cu improved growth and digestive and absorptive capacity and decreased lipid peroxidation and protein oxidation partly by enhancing antioxidant defense in the hepatopancreas and intestine. The dietary Cu requirement for PWG, plasma ceruloplasmin activity, and FE of young grass carp (282-688 g) were 4.78, 4.95, and 4.70 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Q Q Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan,, Cheng Du, 625014, China
| | | | | | | | | | | | | | | | | |
Collapse
|