1
|
Escudero-Cernuda S, Clases D, Eiro N, González LO, Fraile M, Vizoso FJ, Fernández-Sánchez ML, Gonzalez de Vega R. Quantitative distribution of essential elements and non-essential metals in breast cancer tissues by LA-ICP-TOF-MS. Anal Bioanal Chem 2025; 417:361-371. [PMID: 39557687 PMCID: PMC11698889 DOI: 10.1007/s00216-024-05652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Breast cancer (BC) is the leading cause of cancer death among women worldwide, making the discovery and quantification of new biomarkers essential for improving diagnostic and preventive strategies to limit dissemination and improve prognosis. Essential trace metals such as Fe, Cu, and Zn may play critical roles in the pathophysiology of both benign and malignant breast tumors. However, due to the high metabolic activity and reduced element selectivity of cancer cells, also non-essential elements may be taken up and may even be implicated with disease progression. This study investigates the spatial distribution and concentrations of both essential and non-essential elements in breast tissues, assessing their potential for diagnostic applications. Laser ablation (LA)-inductively coupled plasma-mass spectrometry (ICP-MS) with a time-of-flight (ToF) mass analyzer (LA-ICP-ToF-MS) was used to inquire the distribution of almost all elements across the periodic table and their abundance in metastatic (n = 11), non-metastatic (n = 7), and healthy (n = 4) breast tissues. Quantification was achieved using gelatine-based standards for external calibration to quantitatively map various elements. Overall, the Fe, Cu, Zn, Sr, and Ba levels were significantly increased in tumor samples with Sr and Ba showing strong correlation, likely due to their similar chemistry. Comparison of calibrated LA-ICP-ToF-MS data with a histologic staining demonstrated the possibility to clearly differentiate between various tissue types and structures in breast tissues such as tumor niche and stroma. The levels of the studied elements were significantly higher in the tumor niche areas compared to the stroma, and for Fe, a significant accumulation was observed in the tumor niche areas from the metastatic patient group relative to the levels found in the same areas of the non-metastatic group.
Collapse
Affiliation(s)
- Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - David Clases
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Noemi Eiro
- Research Unit, Jove Hospital Foundation, Gijón, Spain
| | | | - María Fraile
- Research Unit, Jove Hospital Foundation, Gijón, Spain
| | | | | | | |
Collapse
|
2
|
Szwiec M, Marciniak W, Derkacz R, Huzarski T, Gronwald J, Cybulski C, Dębniak T, Jakubowska A, Lener MR, Falco M, Kładny J, Baszuk P, Kotsopoulos J, Narod SA, Lubiński J. Serum Levels of Copper and Zinc and Survival in Breast Cancer Patients. Nutrients 2024; 16:1000. [PMID: 38613033 PMCID: PMC11013867 DOI: 10.3390/nu16071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
There is emerging interest in the relationship between several serum micronutrients and the prognosis of patients with breast cancer. The relationship between serum zinc and copper levels and breast cancer prognosis is unclear. In our study, we included 583 patients with breast cancer diagnosed between 2008 and 2015 in the region of Szczecin, Poland. In a blood sample obtained before treatment, serum zinc and copper levels were quantified by mass spectroscopy. Each patient was assigned to one of four categories (quartiles) based on the distribution of the elements in the entire cohort. Patients were followed from diagnosis to death over a mean of 10.0 years. The 10-year overall survival was 58.3% for women in the highest and 82.1% for those in the lowest quartile of serum copper/zinc ratio (p < 0.001). The multivariate hazard ratio (HR) for breast cancer death was 2.07 (95% CI 1.17-3.63; p = 0.01) for patients in the highest quartile of serum copper/zinc ratio compared to those in the lowest. There is evidence that the serum zinc level and copper/zinc ratio provide an independent predictive value for overall survival and breast cancer-specific survival after breast cancer diagnosis.
Collapse
Affiliation(s)
- Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tomasz Huzarski
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Marcin R. Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Michał Falco
- Regional Oncology Centre, 71-730 Szczecin, Poland;
| | - Józef Kładny
- Department of General and Oncological Surgery, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| | - Joanne Kotsopoulos
- Women’s College Research Institute, Toronto, ON M5S 1B2, Canada; (J.K.); (S.A.N.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Steven A. Narod
- Women’s College Research Institute, Toronto, ON M5S 1B2, Canada; (J.K.); (S.A.N.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Jan Lubiński
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (J.G.); (C.C.); (T.D.); (A.J.); (M.R.L.); (P.B.)
| |
Collapse
|
3
|
Wu H, Sun Y, Yang J, Gao Z, Shen H, Li M, Wang D, Tang Y. Iron deficiency downregulates ENPEP to promote angiogenesis in liver tumors. J Nutr Biochem 2023; 117:109357. [PMID: 37085059 DOI: 10.1016/j.jnutbio.2023.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The abnormal iron metabolism in liver cancer leads to iron deficiency in tumor tissues. We previously found that iron deficiency promoted liver cancer metastasis, but the mechanisms were not fully understood. In the present study, we identified that the angiogenesis-associated glutamyl aminopeptidase (ENPEP) was consistently decreased in iron-deficient liver tissues, iron-deficient liver tumors, and iron-deprived liver cancer cells. Interestingly, the lower expression of ENPEP was correlated with the poor prognosis of liver cancer patients, while the biomarkers of angiogenesis, CD31 and CD34, were increased in tumor tissues. In vivo imaging of liver-orthotopically implanted and tail vein-injected liver cancer cells showed that iron deficiency increased the pulmonary metastasis of liver cancer. The angiogenesis in iron-deficient tumors was enhanced, and the expression of ENPEP was decreased. Silencing ENPEP expression increased the migration of liver cancer cells and the proliferation of cocultured HUVECs. By sequence analysis, we found that the transcription factor SP1 possessed abundant binding sites in the ENPEP promoter region. Its combination with ENPEP promoters was verified by chromatin immunoprecipitation. The inhibition of SP1 by mithramycin A effectively restored the expression of ENPEP, which was decreased by iron deficiency. In conclusion, these results revealed that iron deficiency in liver tumors decreased the expression of ENPEP by SP1 and increased the angiogenesis and metastasis of liver tumors, which further explained the mechanism by which iron deficiency promoted liver cancer metastasis.
Collapse
Affiliation(s)
- Huiwen Wu
- Department of Nutrition, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Sun
- Department of Nutrition, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Zelong Gao
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China.
| |
Collapse
|
4
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
5
|
Wang D, Wu H, Yang J, Li M, Ling C, Gao Z, Lu H, Shen H, Tang Y. Loss of SLC46A1 decreases tumor iron content in hepatocellular carcinoma. Hepatol Commun 2022; 6:2914-2924. [PMID: 35811443 PMCID: PMC9512484 DOI: 10.1002/hep4.2031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
It is interesting that high iron is an independent inducer or cofactor of hepatocellular carcinoma (HCC) while the amount of iron is decreased in the liver tumor tissues. Due to the previous findings that iron deficiency promoted HCC metastasis, it is of significance to identify the underlying mechanism of iron deficiency in HCC. The tumor iron content and expressions of iron-metabolic molecules were observed in the primary liver cancers of rats and mice. The molecules that changed independently of iron were identified by comparing the expression profiles in the human HCC tissues and iron-deprived HCC cells. The downstream effects of these molecules on regulating intracellular iron content were investigated in vitro and further validated in vivo. Both in primary liver cancers of rats and mice, we confirmed the decreased iron content in tumor tissues and the altered expressions of iron-metabolic molecules, including transferrin receptor 1 (TfR1), six-transmembrane epithelial antigen of prostate 3 (STEAP3), divalent metal transporter 1 (DMT1), SLC46A1, ferroportin, hepcidin, and ferritin. Among these, STEAP3, DMT1, and SLC46A1 were altered free of iron deficiency. However, only silence or overexpression of SLC46A1 controlled the intracellular iron content of HCC cells. The interventions of STEAP3 or DMT1 could not change the intracellular iron content. Lentivirus-mediated regain of SLC46A1 expression restored the iron content in orthotopically implanted tumors, with correspondingly changes in the iron-metabolic molecules as iron increasing. Conclusion: Taken together, these results suggest that the loss of SLC46A1 expression leads to iron deficiency in liver tumor tissues, which would be an effective target to manage iron homeostasis in HCC.
Collapse
Affiliation(s)
- Dongyao Wang
- School of PharmacySecond Military Medical UniversityShanghaiChina
| | - Huiwen Wu
- Department of NutritionSecond Military Medical UniversityShanghaiChina
- Department of NutritionShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Jianxin Yang
- Department of NutritionSecond Military Medical UniversityShanghaiChina
| | - Min Li
- Department of NutritionSecond Military Medical UniversityShanghaiChina
| | - Changquan Ling
- Department of Traditional Chinese MedicineChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Zelong Gao
- Department of NutritionSecond Military Medical UniversityShanghaiChina
| | - Hongtao Lu
- Department of NutritionSecond Military Medical UniversityShanghaiChina
| | - Hui Shen
- Department of NutritionSecond Military Medical UniversityShanghaiChina
| | - Yuxiao Tang
- Department of NutritionSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Cao B, Lei Y, Xue H, Liang Y, Liu Y, Xie Q, Yan L, Cui L, Li N. Changes in the Serum Concentrations of Essential Trace Metals in Patients with Benign and Malignant Breast Cancers. Biol Trace Elem Res 2022; 200:3537-3544. [PMID: 34671925 DOI: 10.1007/s12011-021-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Essential trace metals (ETMs) may play important roles in the pathophysiology of benign and malignant breast cancers. Our study aimed to find associations between ETMs and benign and malignant breast cancers. We recruited 146 patients with benign (n = 73) and malignant (n = 73) breast tumors and 95 healthy controls (HCs) from Peking University Third Hospital, Beijing, China. The serum concentrations of seven ETMs (Zn, Mn, Cu, Fe, Co, Ni, and Mo) were evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The serum concentrations of Zn were significantly lower in the malignant group than in the HC group, whereas the concentrations of Cu (p < 0.001) were significantly higher in the malignant group. The concentrations of Fe were significantly lower in both malignant and benign groups than in the HC group (p < 0.05). We observed that the Fe/Cu ratio was lower and the Cu/Ni ratio was higher in the malignant group than in the HCs, as well as in the benign group than in the HCs. The serum concentration of Fe (OR = 0.454; 95% CI, 0.263, 0.784; p = 0.005) was negatively associated with breast tumors after adjusting for potential confounders, including age, BMI, and smoking, drinking and menopause statuses; that of Cu (OR = 2.274; 95% CI, 1.282, 4.031; p = 0.005) was positively associated. Changes in the concentrations of ETMs (Zn, Cu, Fe, and Ni) may be involved in the development of malignant breast cancer. The findings provide foundations for further exploration of ETMs in the prevention and treatment of breast tumors.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality (SWU), Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yutao Lei
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Heng Xue
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yongming Liang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, He J, Jin J, Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer. Metallomics 2022; 14:6596881. [PMID: 35648480 DOI: 10.1093/mtomcs/mfac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
Metals play a critical role in human health and diseases. In recent years, metallomics has been introduced and extensively applied to investigate the distribution, regulation, function, and crosstalk of metal(loid) ions in various physiological and pathological processes. Based on high-throughput multielemental analytical techniques and bioinformatics methods, it is possible to elucidate the correlation between the metabolism and homeostasis of diverse metals and complex diseases, in particular for cancer. This review aims to provide an overview of recent progress made in the application of metallomics in cancer research. We mainly focuses on the studies about metallomic profiling of different human biological samples for several major types of cancer, which reveal distinct and dynamic patterns of metal ion contents and the potential benefits of using such information in the detection and prognosis of these malignancies. Elevated levels of copper appear to be a significant risk factor for various cancers, and each type of cancer has a unique distribution of metals in biofluids, hair/nails, and tumor-affected tissues. Furthermore, associations between genetic variations in representative metalloprotein genes and cancer susceptibility have also been demonstrated. Overall, metallomics not only offers a better understanding of the relationship between metal dyshomeostasis and the development of cancer but also facilitates the discovery of new diagnostic and prognostic markers for cancer translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie He
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Cihan Ren
- Experimental High School Attached to Beijing Normal University, Beijing 100052, P. R. China
| |
Collapse
|
8
|
Jouybari L, Kiani F, Islami F, Sanagoo A, Sayehmiri F, Hosnedlova B, Doşa MD, Kizek R, Chirumbolo S, Bjørklund G. Copper Concentrations in Breast Cancer: A Systematic Review and Meta-Analysis. Curr Med Chem 2021; 27:6373-6383. [PMID: 31533596 DOI: 10.2174/0929867326666190918120209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common neoplasm, comprising 16% of all women's cancers worldwide. Research of Copper (Cu) concentrations in various body specimens have suggested an association between Cu levels and breast cancer risks. This systematic review and meta-analysis summarize the results of published studies and examine this association. We searched the databases PubMed, Scopus, Web of Science, and Google Scholar and the reference lists of relevant publications. The Standardized Mean Differences (SMDs) between Cu levels in cancer cases and controls and corresponding Confidence Intervals (CIs), as well as I2 statistics, were calculated to examine heterogeneity. Following the specimens used in the original studies, the Cu concentrations were examined in three subgroups: serum or plasma, breast tissue, and scalp hair. We identified 1711 relevant studies published from 1984 to 2017. There was no statistically significant difference between breast cancer cases and controls for Cu levels assayed in any studied specimen; the SMD (95% CI) was -0.01 (-1.06 - 1.03; P = 0.98) for blood or serum, 0.51 (-0.70 - 1.73; P = 0.41) for breast tissue, and -0.88 (-3.42 - 1.65; P = 0.50) for hair samples. However, the heterogeneity between studies was very high (P < 0.001) in all subgroups. We did not find evidence for publication bias (P = 0.91). The results of this meta-analysis do not support an association between Cu levels and breast cancer. However, due to high heterogeneity in the results of original studies, this conclusion needs to be confirmed by well-designed prospective studies.
Collapse
Affiliation(s)
- Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Farhad Islami
- Surveillance and Health Services Research, American Cancer Society, Atlanta, United States
| | - Akram Sanagoo
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bozena Hosnedlova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno-Bohunice, Brno, Czech Republic
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno-Bohunice, Brno, Czech Republic
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
9
|
Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment. J Inorg Biochem 2020; 210:111159. [PMID: 32652260 DOI: 10.1016/j.jinorgbio.2020.111159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Iron overload can act as catalyst for the formation of free radicals, which may promote oxidant-mediated breast carcinogenesis. However, the association between iron and breast cancer has not been comprehensively elucidated. In this study, we found that iron overload upregulated the inflammatory cytokine interleukin-6 (IL-6) expression to activate Janus Kinases 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) signaling in triple negative breast cancer (TNBC) MDA-MB-231 cell lines, resulting in epithelial-mesenchymal transition (EMT) and cancer cell migration, but it had no effects on the estrogen receptor (ER)-positive breast cancer MCF-7 cells. However, in the presence of exogenous IL-6, iron overload could also dramatically induce an autocrine IL-6 loop in ER-positive MCF-7 cells to active IL-6/JAK2/STAT3 signaling, resulting in enhanced EMT and cell motility. In vivo animal studies also identified that iron overload promoted the progression of low metastatic breast cancer tumorigenicity and lung metastasis following the addition of exogenous IL-6. This study suggested that iron overload could result in inducible IL-6 expression leading to promote malignant transformation of breast cancer cells in an paracrine or autocrine IL-6-rich inflammatory environment. Anti-inflammation and iron depletion therapy would be an effective therapeutic/preventive strategy for suppressing breast cancer progression.
Collapse
|
10
|
Sanagoo A, Kiani F, Saei Gharenaz M, Sayehmiri F, Koohi F, Jouybari L, Dousti M. A systematic review and meta-analysis on the association of serum and tumor tissue iron and risk of breast cancer. CASPIAN JOURNAL OF INTERNAL MEDICINE 2020; 11:1-11. [PMID: 32042380 PMCID: PMC6992715 DOI: 10.22088/cjim.11.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Some studies have investigated the effects of iron on breast carcinogenesis and reported different findings about the association between Fe and breast cancer risk. This study was conducted to estimate this effect using meta-analysis method. METHODS A total of 20 articles published between 1984 and 2017 worldwide were selected through searching PubMed, Scopus, Embase, Web of Science, and Cochrane Library. Keywords such Breast Cancer, Neoplasm, Trace elements, Iron, Breast tissue concentration, Plasma concentration, Scalp hair concentration, toenail concentration and their combination were used in the search. RESULTS The total number of participants was 4,110 individuals comprising 1,624 patients with breast cancer and 2,486 healthy subjects. Fe concentration was measured in the various subgroups in both case and control groups. There were significant correlations between Fe concentration and breast cancer in breast tissue subgroup (SMD: 0.67 [95% CI: 0.17 to 1.17; P=0.009]). Whereas, there was no meaningful difference in Fe status between women with and without breast cancer related to scalp hair and plasma subgroups; (SMD: -3.74 [95% CI: -7.58 to 0.10; P=0.056] and (SMD:-1.14[95% CI: -2.30 to 0.03; P=0.055], respectively. CONCLUSION The present meta-analysis indicated a positive and straight association between iron concentrations and risk of breast cancer but because of high heterogeneity we recommend more accurate future studies.
Collapse
Affiliation(s)
- Akram Sanagoo
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Saei Gharenaz
- Students Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Koohi
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majjid Dousti
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
11
|
Jouybari L, Kiani F, Akbari A, Sanagoo A, Sayehmiri F, Aaseth J, Chartrand MS, Sayehmiri K, Chirumbolo S, Bjørklund G. A meta-analysis of zinc levels in breast cancer. J Trace Elem Med Biol 2019; 56:90-99. [PMID: 31442959 DOI: 10.1016/j.jtemb.2019.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breast cancer is the most commonly occurring neoplasm in females, comprising 16% of all female cancers worldwide. Various studies indicate some discrepancies regarding zinc (Zn) levels in various samples of breast cancer patients. OBJECTIVE The present study evaluated by meta-analysed the published data for Zn levels analyzed in breast tissue, plasma, serum, and hair samples and its relationship with breast cancer. METHODS The present meta-analysis included 36 studies, all of which were published in the years between 1984 to 2017 and selected by searching the databases MEDLINE, EMBASE, Cochrane Library, PubMed, Scopus, and the ISI Web of Knowledge. The articles were analyzed, and I² statistics were used to examine heterogeneity. The objective analysis was performed on data from the 36 studies, with total 1699 study subjects and 2009 controls. RESULTS Significant statistical differences overall were observed, based on a random effects model (SMD (95 % CI), -0.78[-1.40, -0.16], P = 0.014). Data from 19 of these studies indicated significant statistical differences between cancerous patients and controls with regard to serum and plasma Zn concentration (SMD [(95 %CI): -1.61(-2.43, -0.79)]. There was a significant statistical difference between the breast tissue and hair as regards Zn status (SMD (95%CI): 2.32(1.42, 3.21)) and (SMD (95v%CI): -1.80(-3.41, -0.20), respectively. Zn concentration levels typically decreased in blood and hair samples of patients with breast cancer, whereas it was elevated in tumor tissues. CONCLUSIONS There is a significant relationship between lowered serum Zn concentrations and risk of breast cancer onset or recurrences in women, but because of high heterogeneity, we recommend other primary studies.
Collapse
Affiliation(s)
- Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Akbar Akbari
- Department of Immunology, Abadan School of Medical Sciences, Abadan, Iran
| | - Akram Sanagoo
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| | | | - Kourosh Sayehmiri
- Prevention Center of Social Mental Injuries, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|
12
|
Chen C, Wang S, Liu P. Deferoxamine Enhanced Mitochondrial Iron Accumulation and Promoted Cell Migration in Triple-Negative MDA-MB-231 Breast Cancer Cells Via a ROS-Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20194952. [PMID: 31597263 PMCID: PMC6801410 DOI: 10.3390/ijms20194952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
In our previous study, Deferoxamine (DFO) increased the iron concentration by upregulating the expression levels of TfR1 and DMT1 and exacerbated the migration of triple-negative breast cancer cells. However, the mechanisms of iron distribution and utilization in triple-negative breast cancer cells with a DFO-induced iron deficiency are still unclear. In this study, triple-negative MDA-MB-231 and estrogen receptor (ER)-positive MCF-7 breast cancer cells were used to investigate the mechanisms of iron distribution and utilization with a DFO-induced iron deficiency. We found that the mitochondrial iron concentration was elevated in MDA-MB-231 cells, while it was decreased in MCF-7 cells after DFO treatment. The cellular and mitochondrial reactive oxygen species (ROS) levels increased in both breast cancer cell types under DFO-induced iron-deficient conditions. However, the increased ROS levels had different effects on the different breast cancer cell types: Cell viability was inhibited and apoptosis was enhanced in MCF-7 cells, but cell viability was maintained and cell migration was promoted in MDA-MB-231 cells through the ROS/NF-κB and ROS/TGF-β signaling pathways. Collectively, this study suggests that under DFO-induced iron-deficient conditions, the increased mitochondrial iron levels in triple-negative MDA-MB-231 breast cancer cells would generate large amounts of ROS to activate the NF-κB and TGF-β signaling pathways to promote cell migration.
Collapse
Affiliation(s)
- Chunli Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| | - Shicheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200000, China.
| |
Collapse
|
13
|
Chen C, Liu P, Duan X, Cheng M, Xu LX. Deferoxamine-induced high expression of TfR1 and DMT1 enhanced iron uptake in triple-negative breast cancer cells by activating IL-6/PI3K/AKT pathway. Onco Targets Ther 2019; 12:4359-4377. [PMID: 31213851 PMCID: PMC6549404 DOI: 10.2147/ott.s193507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Deferoxamine (DFO) is a commonly used iron chelator, which can reduce the iron levels in cells. DFO is normally used to treat iron-overload disease, including some types of cancer. However, our previous studies revealed that DFO treatment significantly increased the iron concentrations in triple-negative breast cancer cells (TNBCs) resulting in enhanced cell migration. But the mechanism of DFO-induced increasing iron uptake in aggressive TNBCs still remained unclear. Materials and methods: Iron metabolism-related proteins in aggressive breast cancer MDA-MB-231, HS578T and BT549 cells and nonaggressive breast cancer MCF-7 and T47D cells were examined by immunofluorescence and Western blotting. The possible regulatory mechanism was explored by Western blotting, co-incubation with neutralizing antibodies or inhibitors, and transwell assay. Results: In this study, we found that DFO treatment significantly increased the levels of iron uptake proteins, DMT1 and TfR1, in aggressive TNBCs. Moreover, both TfR1 and DMT1 expressed on cell membrane were involved in high iron uptake in TNBCs under DFO-induced iron deficient condition. For the possible regulatory mechanism, we found that DFO treatment could promote a high expression level of IL-6 in aggressive MDA-MB-231 cells. The activated IL-6/PI3K/AKT pathway upregulated the expression of iron-uptake related proteins, TfR1 and DMT1, leading to increased iron uptakes. Conclusion: We demonstrated that DFO could upregulate expression of TfR1 and DMT1 , which enhanced iron uptake via activating IL-6/PI3K/AKT signaling pathway in aggressive TNBCs.
Collapse
Affiliation(s)
- Chunli Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyue Duan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Man Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Bajbouj K, Shafarin J, Hamad M. High-Dose Deferoxamine Treatment Disrupts Intracellular Iron Homeostasis, Reduces Growth, and Induces Apoptosis in Metastatic and Nonmetastatic Breast Cancer Cell Lines. Technol Cancer Res Treat 2018; 17:1533033818764470. [PMID: 29562821 PMCID: PMC5865460 DOI: 10.1177/1533033818764470] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence suggest that iron overload enhances cancer growth and metastasis; hence, iron chelation is being increasingly used as part of the treatment regimen in patients with cancer. Now whether iron chelation depletes intracellular iron and/or disrupts intracellular iron homeostasis is yet to be fully addressed. MCF-7 and MDA-MB-231 breast cancer cells treated with increasing concentrations of the iron chelator deferoxamine were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, cell viability, growth potential, and apoptosis at different time points following treatment. Treatment with deferoxamine at 1, 5, or 10 μM for 24 or 48 hours, while not leading to significant changes in intracellular labile iron content, upregulated the expression of hepcidin, ferroportin, and transferrin receptors 1 and 2. In contrast, deferoxamine at 30, 100, or 300 μM for 24 hours induced a significant decrease in intracellular labile iron, which was associated with increased expression of hepcidin, ferritin, and transferrin receptors 1 and 2. At 48 hours, there was an increase in intracellular labile iron, which was associated with a significant reduction in hepcidin and ferritin expression and a significant increase in ferroportin expression. Although low-dose deferoxamine treatment resulted in a low to moderate decrease in MCF-7 cell growth, high-dose treatment resulted in a significant and precipitous decrease in cell viability and growth, which was associated with increased expression of phosphorylated Histone 2A family member X and near absence of survivin. High-dose deferoxamine treatment also resulted in a very pronounced reduction in wound healing and growth in MDA-MB-231 cells. These findings suggest that high-dose deferoxamine treatment disrupts intracellular iron homeostasis, reduces cell viability and growth, and enhances apoptosis in breast cancer cells. This is further evidence to the potential utility of iron chelation as an adjunctive therapy in iron-overloaded cancers.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- 1 Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- 1 Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- 1 Sharjah Institute for Medical Research, Sharjah, United Arab Emirates.,2 Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Bajbouj K, Shafarin J, Abdalla MY, Ahmad IM, Hamad M. Estrogen-induced disruption of intracellular iron metabolism leads to oxidative stress, membrane damage, and cell cycle arrest in MCF-7 cells. Tumour Biol 2017; 39:1010428317726184. [PMID: 29022497 DOI: 10.1177/1010428317726184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (<80%) as compared with controls. Survivin expression significantly increased at 24 h post treatment with 5, 10, or 20 nM; however, that of γ-H2AX increased only after survivin levels dropped and only at the 20 nM E2 dose. Minimal upregulation and splitting of caspase 9 was only evident in cells treated with 20 nM E2; no changes in caspase 3 expression were evident. Although Annexin V staining studies showed that E2 treatment did not induce apoptosis, scanning electron microscopy studies showed marked membrane blebbing at 20 nM/48 h of E2. These findings suggest that estrogen treatment disrupts intracellular iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- 1 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- 1 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maher Y Abdalla
- 2 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- 3 Department of Medical Imaging and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mawieh Hamad
- 1 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,4 Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Sciegienka SJ, Solst SR, Falls KC, Schoenfeld JD, Klinger AR, Ross NL, Rodman SN, Spitz DR, Fath MA. D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H 2O 2-mediated oxidative stress. Free Radic Biol Med 2017; 108:354-361. [PMID: 28389407 PMCID: PMC5495544 DOI: 10.1016/j.freeradbiomed.2017.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 12/23/2022]
Abstract
D-penicillamine (DPEN), a copper chelator, has been used in the treatment of Wilson's disease, cystinuria, and rheumatoid arthritis. Recent evidence suggests that DPEN in combination with biologically relevant copper (Cu) concentrations generates H2O2 in cancer cell cultures, but the effects of this on cancer cell responses to ionizing radiation and chemotherapy are unknown. Increased steady-state levels of H2O2 were detected in MB231 breast and H1299 lung cancer cells following treatment with DPEN (100µM) and copper sulfate (15µM). Clonogenic survival demonstrated that DPEN-induced cancer cell toxicity was dependent on Cu and was significantly enhanced by depletion of glutathione [using buthionine sulfoximine (BSO)] as well as inhibition of thioredoxin reductase [using Auranofin (Au)] prior to exposure. Treatment with catalase inhibited DPEN toxicity confirming H2O2 as the toxic species. Furthermore, pretreating cancer cells with iron sucrose enhanced DPEN toxicity while treating with deferoxamine, an Fe chelator that inhibits redox cycling, inhibited DPEN toxicity. Importantly, DPEN also demonstrated selective toxicity in human breast and lung cancer cells, relative to normal untransformed human lung or mammary epithelial cells and enhanced cancer cell killing when combined with ionizing radiation or carboplatin. Consistent with the selective cancer cell toxicity, normal untransformed human lung epithelial cells had significantly lower labile iron pools than lung cancer cells. These results support the hypothesis that DPEN mediates selective cancer cell killing as well as radio-chemo-sensitization by a mechanism involving metal ion catalyzed H2O2-mediated oxidative stress and suggest that DPEN could be repurposed as an adjuvant in conventional cancer therapy.
Collapse
Affiliation(s)
- Sebastian J Sciegienka
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Kelly C Falls
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Adrienne R Klinger
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Natalie L Ross
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Samuel N Rodman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
17
|
Lobo L, Costas-Rodríguez M, de Vicente JC, Pereiro R, Vanhaecke F, Sanz-Medel A. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry. Talanta 2017; 165:92-97. [DOI: 10.1016/j.talanta.2016.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 01/06/2023]
|
18
|
Liu P, He K, Song H, Ma Z, Yin W, Xu LX. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-α-dependent NF-κB signaling and TGF-β signaling. J Inorg Biochem 2016; 160:40-8. [PMID: 27138103 DOI: 10.1016/j.jinorgbio.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Recent studies have suggested that excess iron accumulation may be a risk factor for breast cancer. However the role of iron in breast cancer metastasis has remained unclear. The major goal of our study is to investigate the roles of iron in breast cancer metastasis. We modulated the intracellular iron levels of human breast cancer cells, including the aggressive MDA-MB-231 cells and non-aggressive MCF-7 cells, by using Deferoxamine (DFO) - a most widely used iron chelator. We found that DFO treatment could deplete intracellular iron in MCF-7 cells. In contrast, DFO treatment led to a significant increase in the intracellular iron level in MDA-MB-231 cells. The MDA-MB-231 cells with the increased intracellular iron level exhibited increases in both mesenchymal markers and cell migration. Furthermore, the DFO-treated MDA-MB-231 cells showed increases in both tumor necrosis factor α (TNF-α)-induced nuclear factor kappa B (NF-κB) signaling and transforming growth factor-β (TGF-β) signaling, which could contribute to the enhanced cell migration. Collectively, our study has provided the first evidence suggesting that increased intracellular iron levels could lead to enhanced migration of aggressive breast cancer cells by increasing TNF-α-dependent NF-κB signaling and TGF-β signaling. Our study has also suggested that caution should be taken when DFO is applied for treating breast cancer cells, since DFO could produce differential effects on the intracellular iron levels for aggressive breast cancer cells and non-aggressive breast cancer cells.
Collapse
Affiliation(s)
- Ping Liu
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Kun He
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongjiao Song
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhufeng Ma
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weihai Yin
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lisa X Xu
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Ding X, Jiang M, Jing H, Sheng W, Wang X, Han J, Wang L. Analysis of serum levels of 15 trace elements in breast cancer patients in Shandong, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7930-7935. [PMID: 25520207 DOI: 10.1007/s11356-014-3970-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/08/2014] [Indexed: 05/28/2023]
Abstract
Experimental and epidemiological studies suggest that serum levels of trace elements may be associated with breast cancer risk. We compared serum levels of 15 trace elements between breast cancer patients and normal controls from Shandong, China, for the first time to assess whether serum levels of trace elements were associated with breast cancer risk. Eighty-eight breast cancer patients and 84 healthy controls were enrolled in the study. A Spectraspan V direct current plasma atomic emission spectrometer was used to determine the serum levels of 15 trace elements including Zn, Mn, Al, Cd, Fe, Mg, Ca, Pb, Cu, Se, Ni, Ti, Co, Li, and Cr. Breast cancer patients had significantly higher serum levels of Cd (p = 0.000), Mg (p = 0.001), Cu (p = 0.000), Co (p = 0.006), and Li (p = 0.003) and borderline higher Cr (p = 0.052), while significantly lower Mn (p = 0.000), Al (p = 0.000), Fe (p = 0.000), and Ti (p = 0.000) compared to their matched controls. However, there were no significant differences in serum levels of Zn (p = 0.824), Ca (p = 0.711), Pb (p = 0.274), Se (p = 0.236), and Ni (p = 0.185) between the two groups. Our study showed a possible association between serum levels of trace elements and breast cancer risk in eastern China, though it warrants further investigations to confirm the association. If confirmed, modulation of trace elements may help reduce breast cancer risk.
Collapse
Affiliation(s)
- Xiao Ding
- Cancer Center, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Starska K, Bryś M, Forma E, Olszewski J, Pietkiewicz P, Lewy-Trenda I, Danilewicz M, Krześlak A. The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues. Toxicol Appl Pharmacol 2015; 285:187-97. [PMID: 25900616 DOI: 10.1016/j.taap.2015.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/08/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the -5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region -5 A/G SNP was identified by restriction fragment length polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of -5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the -5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the -5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma.
Collapse
Affiliation(s)
- Katarzyna Starska
- I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź, Poland.
| | - Magdalena Bryś
- Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź, Poland
| | - Jurek Olszewski
- II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź, Poland
| | - Piotr Pietkiewicz
- II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź, Poland
| | - Iwona Lewy-Trenda
- Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Marian Danilewicz
- Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź, Poland
| |
Collapse
|
21
|
The −5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer. Toxicol Appl Pharmacol 2014; 280:256-63. [DOI: 10.1016/j.taap.2014.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
|