1
|
Li X, Ma C, Bian X, Fu Y, Zhang G, Liu X, Zhang N. Effect of Germination on Mineral Content Changes in Brown Rice (Oryza sativa L.). Biol Trace Elem Res 2025; 203:535-543. [PMID: 38472512 DOI: 10.1007/s12011-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Minerals are the essential micronutrients for human health. Brown rice is a whole-grain food rich in minerals, with its bran portion limiting the application of minerals. In the present study, the changes in the contents of 23 different minerals (Na, Mg, K, Ca, B, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Sb, Ba, Li, Al, As, Cd, Sn, Hg, and Pb) in brown rice were evaluated during 17, 24, 30, 35, and 48 h of germination. The results showed that germination was associated with the decreased contents of Pb, Cd, As, Al, Li, Ba, Fe, Cr, Co, V, and Hg, and the increased content of Na in brown rice (p < 0.05). In contrast, this process was not significantly influential on the contents of Mg, K, Ca, B, Ni, Cu, Zn, Se, Sn, Sb, and Mn (p > 0.05). In addition, significant correlations were found among most of the mineral contents. Furthermore, according to the principal component analysis, three principal components of the different mineral contents were extracted to explain 96.60% of the cumulative variances. In summary, these findings demonstrated that germination represented a feasible approach to regulating and controlling the distribution of the mineral elements in brown rice, optimizing the levels of the mineral contents, and thus reducing the potential health risks.
Collapse
Affiliation(s)
- Xiang Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
2
|
Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI, Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis. Arch Toxicol 2024; 98:2763-2796. [PMID: 38758407 DOI: 10.1007/s00204-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Tatiana I Sotnikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
- City Clinical Hospital N. a. S.P. Botkin of the Moscow City Health Department, 125284, Moscow, Russia
| | - Tatiana V Korobeinikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 005508-000, Brazil
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
3
|
Nakamura Y, Kobayashi S, Cho K, Itoh S, Miyashita C, Yamaguchi T, Iwata H, Tamura N, Saijo Y, Ito Y, Seto Y, Honjo R, Ando A, Furuse Y, Manabe A, Kishi R. Prenatal metal concentrations and physical abnormalities in the Japan Environment and Children's Study. Pediatr Res 2024; 95:1875-1882. [PMID: 37857850 DOI: 10.1038/s41390-023-02851-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/22/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The association between prenatal metal exposure and congenital anomalies is unclear. We aimed to examine the association between exposure to cadmium, lead, mercury, selenium, and manganese and physical abnormalities. METHODS Data from 89,887 pregnant women with singleton pregnancies who participated in the Japan Environment and Children's Study (JECS) were used. The correlation between maternal blood metal concentrations and physical abnormalities during the second or third trimester was investigated using logistic regression models. Physical anomalies included those observed at birth or at 1 month, primarily from ICD-10 Chapter 17, particularly congenital anomalies associated with environmental factors (e.g., hypospadias, cryptorchidism, cleft lip and palate, digestive tract atresia, congenital heart disease, and chromosomal abnormalities) and minor abnormalities. RESULTS After adjusting for covariates, the OR (95% CIs) of physical abnormalities for a one-unit rise in Mn concentrations in all individuals were 1.26 (1.08, 1.48). The OR (95% CIs) of physical abnormalities in the 4th quartile (≥18.7 ng/g) were 1.06 (1.01, 1.13) (p-value for the trend = 0.034) compared with those in the 1st quartile (≤12.5 ng/g). CONCLUSION In Japan, maternal blood Mn concentrations above threshold during pregnancy may slightly increase the incidence of physical abnormalities. IMPACT Physical abnormalities (including minor anomalies and congenital anomalies) are associated with prenatal manganese concentrations. They are not associated with cadmium, lead, mercury, and selenium concentrations.
Collapse
Affiliation(s)
- Yuichi Nakamura
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroyoshi Iwata
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuaki Saijo
- Department of Social Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshiya Ito
- Division of Clinical Medicine, Japanese Red Cross Hokkaido College of Nursing, Kitami, Japan
| | - Yoshitaka Seto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Ryota Honjo
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Akiko Ando
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yuta Furuse
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Mal’tseva VN, Gudkov SV, Turovsky EA. Modulation of the Functional State of Mouse Neutrophils by Selenium Nanoparticles In Vivo. Int J Mol Sci 2022; 23:13651. [PMID: 36362436 PMCID: PMC9655531 DOI: 10.3390/ijms232113651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
This study aimed to discover the immunomodulatory effect of selenium nanoparticles (SeNPs) on the functional state of neutrophils in vivo. Intraperitoneal injections of SeNPs (size 100 nm) 2.5 mg/kg/daily to BALB/c mice for a duration of 7-28 days led to the development of an inflammatory reaction, which was registered by a significant increase in the number of neutrophils released from the peritoneal cavity, as well as their activated state, without additional effects. At the same time, subcutaneous injections of the same SeNPs preparations at concentrations of 0.1, 0.5, and 2.5 mg/kg, on the contrary, modulated the functional state of neutrophils depending on the concentration and duration of SeNPs administration. With the use of fluorescence spectroscopy, chemiluminescence, biochemical methods, and PCR analysis, it was found that subcutaneous administration of SeNPs (0.1, 0.5, and 2.5 mg/kg) to mice for a short period of time (7-14 days) leads to modification of important neutrophil functions (adhesion, the number of migrating cells into the peritoneal cell cavity, ROS production, and NET formation). The obtained results indicated the immunostimulatory and antioxidant effects of SeNPs in vivo during short-term administration, while the most pronounced immunomodulatory effects of SeNPs were observed with the introduction of a low concentration of SeNPs (0.1 mg/kg). Increase in the administration time of SeNPs (0.1 mg/kg or 2.5 mg/kg) up to 28 days led to a decrease in the adhesive abilities of neutrophils and suppression of the expression of mRNA of adhesive molecules, as well as proteins involved in the generation of ROS, with the exception of NOX2; there was a tendency to suppress gene expression pro-inflammatory factors, which indicates the possible manifestation of immunosuppressive and anti-inflammatory effects of SeNPs during their long-term administration. Changes in the expression of selenoproteins also had features depending on the concentration and duration of the administered SeNPs. Selenoprotein P, selenoprotein M, selenoprotein S, selenoprotein K, and selenoprotein T were the most sensitive to the introduction of SeNPs into the mouse organism, which indicates their participation in maintaining the functional status of neutrophils, and possibly mediated the immunomodulatory effect of SeNPs.
Collapse
Affiliation(s)
- Valentina N. Mal’tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Basaki M, Keykavusi K, Sahraiy N, Akbari G, Hejazi M. Small Heat Shock Protein's Gene Expression Response to Iron Oxide Nanoparticles in the Brain. Biol Trace Elem Res 2022; 200:1791-1798. [PMID: 34189677 DOI: 10.1007/s12011-021-02761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Small heat shock proteins (SHSPs) are conserved proteins that participate in many cellular functions like preventing protein aggregation and stress response. However, their role in responding to nanoparticles (NPs) has not yet been explained. We used a chicken embryo model to investigate the effects of two different forms of iron oxide-NPs (IONPs) on the mRNA expression of HSPB1, HSPB5, HSPB8, and HSPB9 in cerebral tissue. Two hundred-ten fertilized eggs were randomly divided into seven groups (30 eggs/group; 10 eggs/replicate). Three groups received 100 ppm, 250 ppm, and 500 ppm of Fe2O3-NPs, respectively. Three other groups received 100 ppm, 250 ppm, and 500 ppm of Fe3O4-NPs, respectively, and one group remained untreated as a control. The NPs were given by in ovo method (0.3 ml/egg) only once on the first day of the embryonic period. Samples from cerebrums were collected on day 20 for gene expression analyses. HSPB1, HSPB5, HSPB8, and HSPB9 were all expressed in both normal and IONPs exposed cerebrums. SHSPs tested were differentially expressed in response to various concentrations of IONPs. The highest expression levels in response to Fe2O3-NPs and Fe3O4-NPs were observed for HSPB5 and HSPB9, respectively. The greatest gene expression changes due to the Fe2O3-NPs and Fe3O4-NPs exposure observed for HSPB1 and HSPB5, respectively. The results suggest a protective cellular mechanism against IONPs through SHSPs and recommend that expression profiling of SHSPs be included in the study of nanotoxicity.
Collapse
Affiliation(s)
- Mehdi Basaki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran.
| | - Kamran Keykavusi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - Nazila Sahraiy
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - Ghasem Akbari
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - Marzieh Hejazi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| |
Collapse
|
6
|
Dietary Aspergillus oryzae Modulates Serum Biochemical Indices, Immune Responses, Oxidative Stress, and Transcription of HSP70 and Cytokine Genes in Nile Tilapia Exposed to Salinity Stress. Animals (Basel) 2021; 11:ani11061621. [PMID: 34072665 PMCID: PMC8228878 DOI: 10.3390/ani11061621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Probiotics are live microbial adjuncts with numerous beneficial effects on fish. This study aims to evaluate the roles of Aspergillus oryzae (ASP) in the modulation of serum haemato-biochemical measurements, immunity, antioxidative capacity, and transcriptomic responses of Nile tilapia juveniles exposed to salinity stress. Findings revealed that dietary supplementation with A. oryzae mitigated the harmful influences of salinity stress on the exposed Nile tilapia. Abstract Nile tilapia Juveniles (19.50 ± 0.5 g) were fed on a basal diet (control group (CTR)) and a diet supplemented with 1 g Aspergillus oryzae (ASP) per kg diet for 12 weeks. Fish were then subjected to different salinity levels (0, 10, 15, and 20 practical salinity units (psu)) for another 15 days. Two-way ANOVA analysis revealed that the individual effects of ASP in Nile tilapia exposed to salinity levels presented a significant decrease (p < 0.05) in values of haemato-biochemical indices (such as glucose, cortisol, alanine transaminase, aspartate transaminase, and malondialdehyde) compared to those in the CTR group exposed to the same salinity levels. Moreover, significant increases (p < 0.05) of blood protein profile (albumin, globulin, and total protein), non-specific immune responses (lysozyme activity, phagocytic activity, and phagocytic index), and antioxidant enzymes activities (glutathione peroxidase, catalase, and superoxide dismutase) were observed in ASP-supplemented groups. Interestingly, there was significant (p < 0.05) downregulation of the mRNA expression values of heat shock protein 70 and interferon-gamma genes, alongside upregulation of the mRNA expression values of interleukin 1 beta and interleukin 8 genes, in the hepatic tissues of Nile tilapia in ASP-supplemented groups exposed to different salinities compared to those in the CTR group exposed to the same salinity levels. Taken together, these findings supported the potential efficacy of dietary supplementation with ASP in alleviating salinity stress-induced haemato-biochemical alterations, immune suppression, and oxidative stress in the exposed Nile tilapia.
Collapse
|
7
|
Gene networks and toxicity/detoxification pathways in juvenile largemouth bass (Micropterus salmoides) liver induced by acute lead stress. Genomics 2020; 112:20-31. [DOI: 10.1016/j.ygeno.2019.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022]
|
8
|
Zheng S, Xing H, Zhang Q, Xue H, Zhu F, Xu S. Pharmacokinetics of Sodium Selenite Administered Orally in Blood and Tissues of Selenium-Deficient Ducklings. Biol Trace Elem Res 2019; 190:509-516. [PMID: 30465172 DOI: 10.1007/s12011-018-1567-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Selenium (Se) is an essential trace element for humans and animals. Appropriate amount of Se in the body can prevent a variety of diseases. However, Se deficiency leads to pathological changes such as skeletal muscle necrosis and pancreatic atrophy in livestock and poultry. Se preparations are widely used in the prevention and treatment of Se-deficient disease, but there is no unified standard of medication, and the safe dose range of Se is narrow. Therefore, it is of great significance to study the pharmacokinetics of low-Se ducklings and to formulate drug administration schemes. In the present study, eighty 1-day-old healthy ducklings were randomly selected, and fed with low-Se diet to 30 days of age (blood Se content ≦ 0.03 μg/mL). After the low Se duckling models were duplicated, blood samples and tissues of livers, pancreases, and thigh muscles were collected at different time points to detect Se content following oral administration of 0.1% sodium selenite (Na2SeO3) at 0.8 mg/kg BW, and the pharmacokinetics parameters were automatically calculated by MCPKP program. The results showed that pharmacokinetics characteristics of Na2SeO3 in blood, livers, and pancreases of ducklings were consistent with the first-order absorption and two-compartment open models; in thigh muscles was consistent with the first-order absorption and one compartment with a lag time open model. The primary kinetic parameters of Na2SeO3 in blood: the half-life of absorption was 5.9026 h, the time of reaching maximum concentration was 23.03 h, and the half-life of elimination was 131.13 h. The absorption of Na2SeO3 in livers was the quickest, pancreases and thigh muscles were in order of becoming slower, and the elimination of Na2SeO3 in thigh muscles was the quickest, livers and pancreases were in order of becoming slower. The administration parameters of multi-dose were calculated according to the kinetic of single-dose: loading dose (D*) was 1.7046 mg/kg BW, maintenance dose (D0) was 0.8 mg/kg BW, and dosing interval (τ) was 120 h. The results of this study can supplement and improve the theoretical system of Se metabolic kinetics, and provide experimental basis for the prevention and treatment of Se deficiency disease by rational drug use.
Collapse
Affiliation(s)
- Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hua Xue
- National Selenium-Rich Products Quality Supervision and Inspection Center, Enshi, 445000, People's Republic of China
| | - Fating Zhu
- National Selenium-Rich Products Quality Supervision and Inspection Center, Enshi, 445000, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
9
|
Liu Z, Zhang F, Lu P, Zhao R, Zhang H, Song B, Li L, Wu Z, Wu R. Selenium-Yeast Alleviated Inflammatory Damage Caused by Lead via Inhibiting Ras/ERK Pathway and Inflammatory Factors in Chicken Skeletal Muscles. Biol Trace Elem Res 2019; 190:493-500. [PMID: 30604133 DOI: 10.1007/s12011-018-1558-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the ameliorative effects of selenium-enriched yeast (Se-yeast) on the inflammatory damage induced by lead (Pb) in chicken skeletal muscles. A total of 108 1-day-old broiler chickens were randomly allocated into four groups (n = 27/group): the control group (C group), the Se-yeast-supplemented group (Se group), the lead-treated group (Pb group), and finally the Se- and Pb-combined group (Pb/Se group). The C group was fed with a basic diet comprising 0.049 mg/kg Se and 0.1 mg/kg Pb while the Se group was fed a Se-yeast diet containing 0.30 mg/kg Se and 0.1 mg/kg Pb. Similarly, the Pb group was fed a Pb acetate diet containing 0.049 mg/kg Se and 350 mg/kg Pb while the Pb/Se group was fed with a Se-yeast diet containing 0.30 mg/kg Se and 350 mg/kg Pb. On days 7, 21, and 35 after commencing the experiment, nine chicks belonging to each group were euthanized and the samples were analyzed by employing the techniques of inductively coupled plasma mass spectrometry and real-time quantitative PCR, along with Western blotting. The results indicated that excess Pb increased the nitric oxide concentration, enhanced the activity of inducible nitric oxide synthase (iNOS), and the mRNA levels of interleukin 1β (IL-1β), interleukin 4 (IL-4), interleukin 10 (IL-10), and interferon gamma (IFN-γ) in a time-dependent manner. Further, it was found that Se reduced damage caused by Pb by decreasing the expression of inflammatory factors in chicken skeletal muscles. Taken together, the results from this study provide the theoretical basis for an alleviate effect of Se on Pb-induced inflammatory damage in chicken skeletal muscles, mediated by inhibiting the Ras/extracellular signal-regulated kinase (ERK) pathway and the inflammatory factors.
Collapse
Affiliation(s)
- Zhe Liu
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Feng Zhang
- Department of Osteology, The Daqing Oil Field General Hospital, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Ping Lu
- China Animal Health And Epidemiology Center, Qingdao, 266000, People's Republic of China
| | - Rui Zhao
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Hua Zhang
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Baifen Song
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Liyang Li
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Zhijun Wu
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, People's Republic of China.
| |
Collapse
|
10
|
Huang H, Jiao X, Xu Y, Han Q, Jiao W, Liu Y, Li S, Teng X. Dietary selenium supplementation alleviates immune toxicity in the hearts of chickens with lead-added drinking water. Avian Pathol 2019; 48:230-237. [PMID: 30663336 DOI: 10.1080/03079457.2019.1572102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lead (Pb) is an environmental pollutant and can damage organisms. Selenium (Se) can alleviate Pb poisoning. The present study aimed to investigate the alleviative effect of Se on Pb-induced immune toxicity in chicken hearts. One-hundred-and-eighty Hy-line male chickens were randomly divided into four groups at 7 days of age. The control group was offered a standard commercial diet (SD) and drinking water (DW); the Se group was offered SD supplemented with sodium selenite (SeSD) and DW; the Pb + Se group was offered SeSD and DW supplemented with lead acetate (PbDW); and the Pb group was offered SD and PbDW. Relative mRNA expression of inducible nitric oxide synthase (iNOS), interleukins (IL-2, IL-4, IL-6, IL-12β, IL-17 and IFN-γ), and heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90) were determined by means of quantitative real-time PCR. Relative protein expression of iNOS, HSP60, HSP70, and HSP90 was assessed, as well as nitric oxide (NO) content and iNOS activity in heart tissue. The results indicated a down-regulation of interleukin (IL)-2 and IFN-γ and an up-regulation of NO, iNOS, interleukins (IL-4, IL-6, IL-12β, IL-17), and heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90) in Pb-damaged hearts. Se alleviated all of the above Pb-induced changes. There were time-dependent effects on NO content, iNOS activity, and mRNA levels of iNOS, IL-2, IL-4, IL-6, IL-17, HSP27, HSP40, HSP60, HSP70, and HSP90 after Pb treatment in the chicken hearts. Se alleviated Pb-induced immune toxicity in the chicken hearts.
Collapse
Affiliation(s)
- He Huang
- a Department of Animal Science, College of Animal Science and Technology , Northeast Agricultural University , Harbin , People's Republic of China
| | - Xiaoyan Jiao
- a Department of Animal Science, College of Animal Science and Technology , Northeast Agricultural University , Harbin , People's Republic of China
| | - Yanmin Xu
- a Department of Animal Science, College of Animal Science and Technology , Northeast Agricultural University , Harbin , People's Republic of China
| | - Qi Han
- a Department of Animal Science, College of Animal Science and Technology , Northeast Agricultural University , Harbin , People's Republic of China
| | - Wanying Jiao
- a Department of Animal Science, College of Animal Science and Technology , Northeast Agricultural University , Harbin , People's Republic of China
| | - Yanyan Liu
- b Department of Veterinary Medicine , College of Veterinary Medicine, Northeast Agricultural University , Harbin , People's Republic of China
| | - Shu Li
- b Department of Veterinary Medicine , College of Veterinary Medicine, Northeast Agricultural University , Harbin , People's Republic of China
| | - Xiaohua Teng
- a Department of Animal Science, College of Animal Science and Technology , Northeast Agricultural University , Harbin , People's Republic of China
| |
Collapse
|
11
|
Tang JY, Wang LQ, Jia G, Liu GM, Chen XL, Tian G, Cai JY, Shang HY, Zhao H. The hydroxy-analogue of selenomethionine alleviated lipopolysaccharide-induced inflammatory responses is associated with recover expression of several selenoprotein encoding genes in the spleens of Kunming mice. RSC Adv 2019; 9:40462-40470. [PMID: 35542664 PMCID: PMC9076260 DOI: 10.1039/c9ra07260h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/29/2019] [Indexed: 02/03/2023] Open
Abstract
This study aimed to determine whether hydroxy-analogue of selenomethionine (HMSeBA) supplementation could alleviate LPS-induced immunological stress in mice. A total of 90 Kunming mice were randomly assigned into 5 groups. The CON-LPS and CON+LPS groups were fed basal diet (BD), the others were fed BD with different levels of HMSeBA (0.15, 0.30 and 0.45 mg Se per kg) for 4 weeks. Mice were injected with LPS (3 mg per kg BW) or the corresponding physiological saline at 14 d and 28 d. Plasma and spleens were collected at 28 d. The results showed that: (1) LPS injection decreased ADG of mice at the 3rd week, and increased the concentration of IL-6 and TNF-α in plasma and the spleen index; (2) LPS injection induced immunological stress, up-regulated 8 inflammation-related genes and 3 selenoprotein encoding genes, and down-regulated 16 selenoprotein encoding genes in spleens; (3) compared with the CON+LPS group, HMSeBA supplementation increased ADG of mice at 3 weeks and GSH-Px activity in plasma and spleens, decreased spleen index and plasma IL-6 and TNF-α levels, down-regulated mRNA levels of COX-2, ICAM-1, TNF-α, IL-6, and MCP-1, and up-regulated IL-10 and iNOS in spleens. 0.30 mg Se per kg of HMSeBA exhibited the optimal protective effect; (4) HMSeBA supplementation modestly recovered the expression of 8 selenoprotein encoding genes in the spleens of the stressed mice. The results indicated that HMSeBA supplementation alleviated LPS-induced immunological stress accompanied up-regulation of a subset of selenoprotein encoding genes in spleens of mice. This study aimed to determine whether hydroxy-analogue of selenomethionine (HMSeBA) supplementation could alleviate LPS-induced immunological stress in mice.![]()
Collapse
Affiliation(s)
- Jia-Yong Tang
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Long-Qiong Wang
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Gang Jia
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Guang-Mang Liu
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Xiao-Ling Chen
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Gang Tian
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Jing-Yi Cai
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Hai-Ying Shang
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| | - Hua Zhao
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
- Key Laboratory of Animal Disease-resistant Nutrition
| |
Collapse
|
12
|
Wang X, Bao R, Fu J. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue. Biol Trace Elem Res 2018; 181:331-339. [PMID: 28510033 DOI: 10.1007/s12011-017-1041-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023]
Abstract
Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rongkun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
13
|
Martín-Folgar R, Aquilino M, Ozáez I, Martínez-Guitarte JL. Ultraviolet filters and heat shock proteins: effects in Chironomus riparius by benzophenone-3 and 4-methylbenzylidene camphor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:333-344. [PMID: 29034430 DOI: 10.1007/s11356-017-0416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC) are common ultraviolet filters (UV filters), compounds considered as emergent contaminants, used in different products like plastics and personal care products. The levels of these compounds are rising in the wild, but the effects they have on invertebrates are poorly understood. Chironomus riparius is a benthic insect widely used in toxicology, and several studies have been previously performed in our laboratory to determine the effects these compounds have on this organism at the molecular level. We have shown that UV filters can alter the mRNA levels of heat shock protein 70 (Hsp70), one of the most studied heat shock proteins. Although these proteins are crucial for the survival of organisms, little data is available on the effects these emergent contaminants have on them, especially in invertebrates. Here, we analyzed the transcriptional activity of 12 genes covering the different groups of heat shock protein [Hsp10, Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, Hsp27, Hsp34, Hsp40, Hsp60, Hsc70 (3), and Hsc70 (4)] in response to 0.1 and 1 mg/L concentrations of BP3 and 4MBC at 8 and 24 h. The results showed that some small Hsp (sHsp) genes were altered by these compounds, while the genes of proteins present in mitochondria, Hsp10 and Hsp60, did not change. sHsps are also involved in developmental processes, so the observed variations could be due to the endocrine disruption activity described for these compounds rather than to a stress response.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Williams RJ, Holladay SD, Williams SM, Gogal RM. Environmental Lead and Wild Birds: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 245:157-180. [PMID: 29038944 DOI: 10.1007/398_2017_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lead is a persistent inorganic environmental pollutant that affects humans and animals worldwide. Avian species are especially susceptible to lead exposure through consumption of lead ammunition, lead fishing tackle, and other contaminated food sources such as aquatic species ingesting lead contaminated sediments in mining areas. Even with government regulations on the use of lead ammunition in many countries, including the United States, terrestrial, aquatic, predatory, and scavenger avian species are still at risk of exposure to potentially lethal concentrations of lead. The toxicities seen in these avian species include increased oxidative stress and decreased anti-oxidant enzymes in hepatic and renal tissue. The avian immune system is also a target of lead and displays a number of altered functions suggestive of immune suppression; however, studies in wildlife and laboratory species remain too limited for definitive statements with regard to population risk. In contrast, lead clearly inhibits reproductive capabilities in adult birds, and alters growth and development of hatchlings. Environmental remediation for lead removal, which would lower toxic exposure in wildlife, presently is a monumental and prohibitively expensive effort. Wildlife exposure will therefore continue in contaminated areas, necessitating development of new remediation practices. These plans should aim toward limiting more widespread or heavier contamination of wildlife habitats. This chapter reviews presently available information of lead toxicity in wild bird species, and suggests continued monitoring and reduction strategies to reduce lead exposure for at-risk avian populations.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Steven D Holladay
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Susan M Williams
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Robert M Gogal
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Hu X, Zhang R, Xie Y, Wang H, Ge M. The Protective Effects of Polysaccharides from Agaricus blazei Murill Against Cadmium-Induced Oxidant Stress and Inflammatory Damage in Chicken Livers. Biol Trace Elem Res 2017; 178:117-126. [PMID: 27943028 DOI: 10.1007/s12011-016-0905-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
Abstract
This study aimed to assess the protective roles of polysaccharides from Agaricus blazei Murill (ABP) against cadmium (Cd)-induced damage in chicken livers. A total of 80 Hy-Line laying chickens (7 days old) were randomly divided into four groups (n = 20). Group I (control) was fed with a basic diet and 0.2 ml saline per day, group II (Cd-treated group) was fed with a basic diet containing 140 mg/kg cadmium chloride (CdCl2) and 0.2 ml saline per day, group III (Cd + ABP-treated group) was fed with a basic diet containing 140 mg/kg CdCl2 and 0.2-ml ABP solution (30 mg/ml) per day via oral gavage, and group IV (ABP-treated group) was fed with 0.2-ml ABP solution (30 mg/ml) per day via oral gavage. The contents of Cd and malondialdehyde (MDA), the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), the messenger RNA (mRNA) levels of inflammatory cytokines and heat shock proteins (HSPs), the protein levels of HSPs, and the histopathological changes of livers were evaluated on days 20, 40, and 60. The results showed that Cd exposure resulted in Cd accumulating in livers and inhibiting the activities of antioxidant enzymes (SOD and GSH-PX). Cd exposure caused histopathological damage and increased the MDA content, the mRNA levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) and the protein levels of HSPs (HSP60, HSP70, and HSP90). ABP supplementation during dietary exposure to Cd reduced the histopathological damage and decreased the contents of Cd and MDA and the expression of inflammatory cytokines and HSPs and improved the activities of antioxidant enzymes. The results indicated that ABP could partly ameliorate the toxic effects of Cd on chicken livers.
Collapse
Affiliation(s)
- Xuequan Hu
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yingying Xie
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongmei Wang
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Ge
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Huang H, Wang Y, An Y, Tian Y, Li S, Teng X. Selenium for the mitigation of toxicity induced by lead in chicken testes through regulating mRNA expressions of HSPs and selenoproteins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14312-14321. [PMID: 28424960 DOI: 10.1007/s11356-017-9019-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Lead (Pb) is a toxic element and environmental pollutant. Pb toxicity and antagonistic effect of selenium (Se) on Pb have been deeply studied in mammals. The testis is one of the target organs of Pb in birds. The aim of this study was to investigate the mitigating effect of Se on Pb toxicity in chicken testes by determining messenger RNA (mRNA) expressions of 5 heat shock proteins (HSPs) and 25 selenoproteins. Sixty male chickens (7-day-old) were randomly divided into the control group, the Se group, the Pb group, and the Pb + Se group, and were fed for 90 days. The feeding methods of chickens were as follows: The control group was fed drinking water and commercial diet (0.49 mg/kg Se). Lead acetate was added into the drinking water (350 mg/L Pb). Sodium selenite was added into the commercial diet (1 mg/kg Se). Multivariate correlation analysis and principal component analysis (PCA) were used to define the relationships among all the measured factors and the most important parameters that could be used as key factors, respectively. The results indicated that Se decreased the increase of mRNA expressions of all the HSPs and increased the decrease of mRNA expressions of all the selenoproteins induced by Pb in the chicken testes. HSP70 may be a biomarker of Pb poisoning in the chicken testes. Se alleviated Pb-induced toxicity in the chicken testes through regulating mRNA expressions of HSPs and selenoproteins.
Collapse
Affiliation(s)
- He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang An
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yaguang Tian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
17
|
Wang Y, Wang K, Huang H, Gu X, Teng X. Alleviative effect of selenium on inflammatory damage caused by lead via inhibiting inflammatory factors and heat shock proteins in chicken testes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13405-13413. [PMID: 28386897 DOI: 10.1007/s11356-017-8785-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate ameliorative effect of selenium (Se) on lead (Pb)-induced inflammatory damage in chicken testes. One hundred eighty 7-day-old male chickens were randomly assigned into the control group, the Se group, the Pb group, and the Pb/Se group. Lead acetate was added in drinking water (350 mg/L Pb). Sodium selenite was added in the standard commercial diet (1 mg/kg Se). On the 30th, 60th, and 90th days of the experiment, 15 chickens of each group were euthanized. Inductively coupled plasma mass spectrometry, hematoxylin and eosin staining, real-time quantitative PCR, and Western blot were used. The results indicated that excess Pb increased nitric oxide content; inducible nitric oxide synthase (iNOS) activity; nuclear factor-kappa B (NF-κB), tumor necrosis factor-α, cyclooxygenase-2, prostaglandin E synthases, and iNOS mRNA levels in a time-dependent manner; NF-κB, iNOS, heat shock protein (HSP) 60, HSP70, and HSP90 protein levels; and Pb concentration. Excess Pb decreased Se concentration and induced histological changes. Se-alleviated Pb caused all of the above changes. Se improved Pb-caused inflammatory damage by decreasing the expression of inflammatory factors and heat shock proteins in the chicken testes. Our results provided theoretical basis of an alleviative effect of Se on Pb-induced bird testis damage.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kexin Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xianhong Gu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
18
|
Liu Y, Jiao X, Teng X, Gu X, Teng X. Antagonistic effect of selenium on lead-induced inflammatory injury through inhibiting the nuclear factor-κB signaling pathway and stimulating selenoproteins in chicken hearts. RSC Adv 2017. [DOI: 10.1039/c7ra00034k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the chicken model of Pb and Se, Se alleviated Pb-induced the changes of inflammatory factors, selenoproteins, and histology. Se alleviated Pb-induced inflammatory injury through inhibiting NF-κB signaling pathway and stimulating selenoproteins in the chicken hearts.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Xiaoyan Jiao
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Xiaojie Teng
- Grassland Workstation in Heilongjiang Province
- Harbin 150067
- People's Republic of China
| | - Xianhong Gu
- Institute of Animal Science
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| |
Collapse
|