1
|
Su J, Pan X, Xian K, Fu C, He J, Liu B, Sang J, Huang N. Transcriptomic Profiling of Paulownia fortunei (Seem.) Hemsl. Roots in Response to Chromium and Copper Stress. Genes (Basel) 2025; 16:595. [PMID: 40428417 PMCID: PMC12110757 DOI: 10.3390/genes16050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Soil heavy metal pollution by chromium (Cr) and copper (Cu) is a global environmental concern. METHODS This study evaluated Cr/Cu accumulation in Paulownia fortunei tissues and analyzed its root transcriptome under Cr and Cu stress to elucidate molecular response mechanisms. RESULTS Findings revealed significantly higher Cr and Cu accumulation capacity in roots compared to stems and leaves. Transcriptome sequencing identified 6017 and 2265 differentially expressed genes (DEGs) under Cr and Cu stress, respectively. These DEGs were primarily involved in redox reactions, stress responses, transcriptional regulation, transmembrane transport, and metabolism. Quantitative PCR of 20 selected genes validated dynamic expression changes under stress. Weighted Gene Co-expression Network Analysis (WGCNA) identified distinct co-expression modules associated with Cr and Cu. Hub gene analysis implicated Pfo_020668 and Pfo_019190 in Cr response, while Pfo_010312 and Pfo_000197 may enhance Cu tolerance via cell wall polysaccharide synthesis regulation. Pathways related to pyruvate metabolism and proteasome were significantly enriched under Cr stress, whereas amino acid metabolism pathways were prominent under Cu stress. CONCLUSIONS Differentially expressed transporter genes suggest potential roles in heavy metal uptake and transport. This transcriptomic analysis provides novel insights into P. fortunei's molecular responses to Cr and Cu stress, offering a foundation for utilizing this species in soil phytoremediation efforts.
Collapse
Affiliation(s)
- Jiang Su
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| | - Xinfeng Pan
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Kanghua Xian
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| | - Chuanming Fu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| | - Jinxiang He
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| | - Baojun Liu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| | - Jinhan Sang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| | - Ningzhen Huang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (J.S.); (X.P.); (K.X.); (C.F.); (J.H.); (B.L.); (J.S.)
| |
Collapse
|
2
|
Liu D, Zhang H, Mei J, Zheng X, Rong J, Li Z. Highly Efficient Adsorption of Cr(VI) by Mechanically Enhanced Chitosan Oligosaccharide Aerogel with Hierarchical Porosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8602-8610. [PMID: 40126175 DOI: 10.1021/acs.langmuir.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A three-dimensional porous aerogel was synthesized by combining soft chitosan oligosaccharide to hard multi-walled carbon nanotubes (MWCNTs) under mild conditions. Owing to the support of MWCNTs, mesopores can be detected on the inner surfaces of the aerogel. The cross-linking by tetraethylenepentamine forms a macropore structure after freeze drying, using water as the template. The hydrogel can bear 30% recoverable compression with the aid of hydrogen bonds between the amide groups. The aerogel exhibits excellent adsorption capabilities for Cr(VI) in water. The adsorption capacity can reach 367.6 mg/g within 100 min. Notably, the aerogel demonstrated an extremely high efficiency in removal for trace Cr(VI). Soluble Cr(VI) of 1 mg/L can be completely removed by the aerogel at a dosage of 0.2 g/L. This work provides a new strategy to synthesize adsorbents with hierarchical pores that exhibit high porosity and a fast mass transfer rate.
Collapse
Affiliation(s)
- Dandan Liu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Hui Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
3
|
Ding E, Deng F, Fang J, Liu J, Yan W, Yao Q, Miao K, Wang Y, Sun P, Li C, Liu Y, Dong H, Dong L, Zhang X, Lu Y, Lin X, Ding C, Li T, Shi Y, Cai Y, Liu X, Godri Pollitt KJ, Ji JS, Tong S, Tang S, Shi X. Exposome-Wide Ranking to Uncover Environmental Chemicals Associated with Dyslipidemia: A Panel Study in Healthy Older Chinese Adults from the BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97005. [PMID: 39240788 PMCID: PMC11379127 DOI: 10.1289/ehp13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
BACKGROUND Environmental contaminants (ECs) are increasingly recognized as crucial drivers of dyslipidemia and cardiovascular disease (CVD), but the comprehensive impact spectrum and interlinking mechanisms remain uncertain. OBJECTIVES We aimed to systematically evaluate the association between exposure to 80 ECs across seven divergent categories and markers of dyslipidemia and investigate their underpinning biomolecular mechanisms via an unbiased integrative approach of internal chemical exposome and multi-omics. METHODS A longitudinal study involving 76 healthy older adults was conducted in Jinan, China, and participants were followed five times from 10 September 2018 to 19 January 2019 in 1-month intervals. A broad spectrum of seven chemical categories covering the prototypes and metabolites of 102 ECs in serum or urine as well as six serum dyslipidemia markers [total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein (Apo)A1, ApoB, and ApoE4] were measured. Multi-omics, including the blood transcriptome, serum/urine metabolome, and serum lipidome, were profiled concurrently. Exposome-wide association study and the deletion/substitution/addition algorithms were applied to explore the associations between 80 EC exposures detection frequency > 50 % and dyslipidemia markers. Weighted quantile sum regression was used to assess the mixture effects and relative contributions. Multi-omics profiling, causal inference model, and pathway analysis were conducted to interpret the mediating biomolecules and underlying mechanisms. Examination of cytokines and electrocardiograms was further conducted to validate the observed associations and biomolecular pathways. RESULTS Eight main ECs [1-naphthalene, 1-pyrene, 2-fluorene, dibutyl phosphate, tri-phenyl phosphate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, chromium, and vanadium] were significantly associated with most dyslipidemia markers. Multi-omics indicated that the associations were mediated by endogenous biomolecules and pathways, primarily pertinent to CVD, inflammation, and metabolism. Clinical measures of cytokines and electrocardiograms further cross-validated the association of these exogenous ECs with systemic inflammation and cardiac function, demonstrating their potential mechanisms in driving dyslipidemia pathogenesis. DISCUSSION It is imperative to prioritize mitigating exposure to these ECs in the primary prevention and control of the dyslipidemia epidemic. https://doi.org/10.1289/EHP13864.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yu Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NIEH, China CDC, Beijing, China
| |
Collapse
|
4
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Hamidi O, Chamani M, Ghahri H, Sadeghi AA, Malekinejad H, Palangi V. Effects of Supplemental Chromium Nanoparticles on IFN-γ expression of Heat Stress Broilers. Biol Trace Elem Res 2022; 200:339-347. [PMID: 33598892 DOI: 10.1007/s12011-021-02634-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The aim of present study was to investigate the beneficial effect of chromium (III) picolinate (CrPic) and chromium (III) picolinate nanoparticles (NCrPic) addition on growth performance, stress-related hormonal changes, and serum levels of various immunity biomarkers, as well as the gene expression of IFN-γ in broilers exposed to heat stress conditions. Treatments included T1 which received the basal diet with no feed additive; T2 exposed to heat stress; T3, T4, and T5 containing 500, 1000, and 1500 ppb CrPic; as well as T6, T7, and T8 containing 500, 1000, and 1500 ppb NCrPic, respectively. After 2 weeks from CrPic and NCrPic supplementation, IFN-γ mRNA expression was assayed using the RT-PCR technique. The results showed that the lower body weight, daily weight gain, daily feed intake by heat stress, and the feed conversion ratio were recovered remarkably by CrPic and NCrPic supplements. The stress-elevated levels of cortisol and immunoglobulin were reduced significantly using CrPic and NCrPic supplementation (P ≤ 0.05). The gene expression profile showed that the upregulated expression of IFN-γ was regulated by the addition of CrPic and NCrPic, in particular, to the diet; however, a full downregulation of IFN-γ expression was observed after week 2 of NCrPic supplementation. In conclusion, the results indicated that nanoparticle supplementation could be effective in reducing heat stress-induced detrimental alterations, thereby attributing to substantial changes to the immune system, including IFN-γ expression.
Collapse
Affiliation(s)
- Omid Hamidi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Ghahri
- Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Valiollah Palangi
- Department of Animal Science, Agricultural Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
6
|
Dworzański W, Sembratowicz I, Cholewińska E, Tutaj K, Fotschki B, Juśkiewicz J, Ognik K. Effects of Different Chromium Compounds on Hematology and Inflammatory Cytokines in Rats Fed High-Fat Diet. Front Immunol 2021; 12:614000. [PMID: 33717096 PMCID: PMC7953491 DOI: 10.3389/fimmu.2021.614000] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to determine how a high-fat diet supplemented with various forms of chromium affects hematological and immune parameters of the blood of rats. The rats received a standard diet or a high-fat diet supplemented with chromium at 0.3 mg/kg body weight (BW) in the form of chromium(III) picolinate, chromium(III)-methionine or nano-sized chromium. Selected hematological parameters were determined in the blood of the rats, including total white blood cell (WBC) count, leukogram, red blood cell (RBC) count, hemoglobin level (HGB), hematocrit (HCT), platelet count (PLT) and platelet percentage (PCT), as well as immune parameters: levels of immunoglobulins A and E (IgA and IgE), interleukin-6 (IL-6), interleukin-2 (IL-2), and tumor necrosis factor α (TNF-α); activity of ceruloplasmin (Cp); and levels of caspase 3 and 8 (Casp3 and Casp8). Feeding rats a high-fat diet increased blood markers of induction of inflammation, ie pro-inflammatory cytokines IL-6 and TNF-α, and also significantly increased IgE. The diet had no effect on the blood count, except for an increase in the number of neutrophils. The chromium compounds tested, particularly Cr-Met and Cr-NPs, stimulated the immune system of the rats, as indicated by increased concentrations of IgA, IgE, IL-2, IL-6, TNF-α, and Cp. Given the increase in inflammatory mediators induced by chromium, it should not be used to mitigate the effects of a high-fat diet. Moreover, chromium picolinate and chromium nanoparticles were shown to increase the content of caspase 3 and 8 in the blood of rats, which indicates a pro-apoptotic effect. The effects of the use of chromium nanoparticles include reductions in the WBC count and in the thrombocyte count (leuko- and thrombopenia). Taking account these data the use of chromium as dietary supplement should be reconsidered.
Collapse
Affiliation(s)
- Wojciech Dworzański
- Chair and Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Iwona Sembratowicz
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Krzysztof Tutaj
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
7
|
Moradi F, Kooshki F, Nokhostin F, Khoshbaten M, Bazyar H, Pourghassem Gargari B. A pilot study of the effects of chromium picolinate supplementation on serum fetuin-A, metabolic and inflammatory factors in patients with nonalcoholic fatty liver disease: A double-blind, placebo-controlled trial. J Trace Elem Med Biol 2021; 63:126659. [PMID: 33045675 DOI: 10.1016/j.jtemb.2020.126659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Evaluating the impact of chromium picolinate supplementation on glycemic status, lipid profile, inflammatory markers and fetuin-A in patients with non-alcoholic fatty liver disease (NAFLD). METHODS In present research, participants (N = 46) were randomized to (400 mcg/day, n = 23) chromium picolinate and placebo (n = 23) for 3 months. RESULTS Glucose indices, and lipid profiles, inflammatory biomarker and fetuin-A were measured before and after the intervention. Chromium reduced triglyceride (TG), atherogenic index of plasma (AIP), very-low-density lipoprotein (VLDL), insulin, homeostatic model assessment for insulin resistance (HOMA-IR), high-sensitivity C-reactive protein (hs-CRP), interleukin (IL) -6, tumor necrosis factor-alpha (TNF-α) and fetuin-A significantly compared to placebo group (p < 0.05). Furthermore, chromium significantly increased the quantitative insulin sensitivity check index (QUICKI). There were no significant differences in total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), fasting blood sugar (FBS), Hemoglobin A1c (HbA1C), interleukin (IL)-17 between the two groups (p < 0.05). CONCLUSION Chromium picolinate significantly decreased TG, insulin, HOMA-IR, fetuin-A, the number of inflammatory factors, and increased QUICKI without changing FBS, HbA1C, TC, LDL, HDL, IL-17 levels and liver steatosis intensity in patients with NAFLD. Further studies by examining the effect of different doses of chromium and mechanisms of cellular action, would help further clarify the subject.
Collapse
Affiliation(s)
- Fardin Moradi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Biochemistry & Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Science, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Biochemistry & Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Science, Iran
| | - Forough Nokhostin
- Assistant Professor of Internal Medicine, Dept. of Internal Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Manouchehr Khoshbaten
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Bazyar
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry & Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Science, Iran.
| |
Collapse
|