1
|
Summer M, Hussain T, Ali S, Khan RRM, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: a review from drug delivery to toxicity. INT J POLYM MATER PO 2025; 74:829-845. [DOI: 10.1080/00914037.2024.2375337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore
| |
Collapse
|
2
|
Aytar EC, Sarı ZB, Sarı ME, Durmaz A, Torunoğlu EI, Gümrükçüoğlu A, Demirel G. Anticancer potential of Bellardia trixago quantum dots: Cytotoxic effects on various cancer cell lines. Bioorg Chem 2025; 158:108340. [PMID: 40073593 DOI: 10.1016/j.bioorg.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
This study investigates the synthesis, characterization, and anticancer effects of carbon quantum dots (CQDs) derived from Bellardia trixago. The CQDs were analyzed using Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). TEM results revealed that the CQDs have a spherical morphology and exhibit a layered structure. XRD analysis showed a graphite-like crystalline structure, while FTIR and XPS studies confirmed the presence of OH, CC, and CO functional groups on the surface. The biological activity of CQDs demonstrated selective cytotoxicity, inducing significant cell death in cancer cells while exhibiting low toxicity in healthy cells. More pronounced morphological changes were observed in HEp-2 and SaOS-2 cells, while HEK-293 cells showed negligible changes. These findings suggest that quantum dots could serve as a potential alternative for cancer treatment.
Collapse
Affiliation(s)
- Erdi Can Aytar
- Usak University Faculty of Agriculture Department of Horticulture, 64200 Uşak, Turkey.
| | - Zeynep Betul Sarı
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Basic Medical Sciences, Medical Biology, 06010 Ankara, Turkey
| | - Muhammet Emin Sarı
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biology, 42090 Konya, Turkey
| | - Alper Durmaz
- Artvin Coruh University, Ali Nihat Gok Yigit Botanical Garden Application and Research Center, 08000 Artvin, Turkey
| | - Emine Incilay Torunoğlu
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biochemistry, 42090 Konya, Turkey
| | - Abidin Gümrükçüoğlu
- Artvin Çoruh University, Medicinal-Aromatic Plants Application and Research Center, 08000 Artvin, Turkey
| | - Gamze Demirel
- Selçuk University - Akşehir Kadir Yallagöz School of Health - Department of Nutrition and Dietetics, 42560 Konya, Turkey
| |
Collapse
|
3
|
Wang Y, Liu J, El-Kott AF, AlSheri AS, Ghamry HI. Curcumin-mediated synthesis of silver nanoparticles immobilized on chitosan-modified kaolin: Investigation of its catalytic activity, antioxidant and anti-lung cancer effects. Int J Biol Macromol 2025; 307:141540. [PMID: 40020824 DOI: 10.1016/j.ijbiomac.2025.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
In this research, Curcumin, a naturally occurring pigment, was utilized to synthesize silver nanoparticles (AgNPs), serving as a reducing agent, and stabilizer, through an environmentally friendly, cost-effective, and straightforward method. This process occurred on the surface of kaolin; a mineral clay modified with chitosan. The study revealed that the phenolic hydroxyl and carbonyl functional groups of Curcuma played a significant role in reducing silver ions to form AgNPs with a characteristic ginger hue. Additionally, the presence of kaolin minerals promoted the in-situ nucleation of AgNPs on both the surface and within the interlayers of the modified kaolin. This approach successfully inhibited aggregation and ensured a uniform distribution of AgNPs, with particle sizes ranging from 20 to 30 nm across the kaolin surface. The resulting Kaolin@CS-Cur/AgNPs nanocomposite was thoroughly characterized using various analytical techniques, including TEM, SEM, FT-IR, EDX-elemental mapping, ICP-OES, and XRD. The composite demonstrated promising catalytic activity in the solvent-free preparation of 1-substituted-1H-tetrazoles via a three-component coupling reaction (MCR) involving NaN3, amines, and triethyl orthoformate. Catalyst performance was further validated by conducting eight catalyst recycling cycles, drain tests, and hot filtration experiments. DPPH assay indicates the power antioxidant efficacy of Kaolin@CS-Cur/AgNPs nanocomposite. After undergoing 3-4 passages, the lung cancer cells as well as the normal cell were meticulously prepared in regards to their morphology and quantity through in vitro experiments. After separating the flask surface cells through trypsin-EDTA, we evaluated and enumerated the cell viability, and subsequently cultured 3 × 103 cells in 96 wells with or without NPs. IC50 of Kaolin@CS-Cur/AgNPs nanocomposite was 110, 96, and 38 on HLC-1, LC-2/ad and PC-14 lung cancer cells.
Collapse
Affiliation(s)
- Yudong Wang
- Thoracic Surgery Department, Shengjing Hospital of China Medical University, Liaoning 110004, China
| | - Jun Liu
- Thoracic Surgery Department, Shengjing Hospital of China Medical University, Liaoning 110004, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Heba I Ghamry
- Department of Biology, Nutrition and Food Science, College of Science, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
4
|
M A, S KB, Liyana EP, Jasmine JS. Transformative potential of plant-based nanoparticles in cancer diagnosis and treatment: bridging traditional medicine and modern therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04113-y. [PMID: 40237799 DOI: 10.1007/s00210-025-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer is a primary global health concern, with an estimated 35.3 million cancer cases expected worldwide, representing a 76.6% increase in 2022, and 20 million by 2050, resulting from genetic mutation and environmental factors that cause uncontrolled cell growth. Other factors including smoking, unhealthy diets, physical inactivity, exposure to carcinogens, UV radiation, and aging increase DNA damage. Current cancer treatments like chemotherapy, radiation therapy, immunotherapy, and surgery are effective, but those have significant effects like lack of specificity, development of drug resistance, and significant side effects to healthy tissues. An advancement to conventional therapies is plant-based nanoparticles as transformative approaches in cancer diagnosis and treatment. These nanoparticles synthesized using plant bioactive compounds like flavonoids, alkaloids, polyphenols, and some metals-oxides like gold, silver, copper, zinc, etc. offer eco-friendly, cost-effective, and biocompatible alternatives. They enhance targeted drug delivery, allowing anticancer agents specifically to tumor cells, minimizing damage to health. Improves imaging techniques like MRI and fluorescence imaging, and helps early detection, cancer biomarkers, allowing for prompt intervention. Recent findings show that nanocarriers made from plant-based materials, such as polyphenols (curcumin, resveratrol) and plant-extracted metal nanoparticles (gold, silver), can improve drug stability and selectively target tumor cells. Plant-derived nanoparticles play a crucial role in cancer immunotherapy and nanovaccines. Biodegradable plant-based nanocarriers can deliver cancer vaccines, stimulating long-term immunity against tumors. Graphene oxide and gold nanoparticles synthesized from plant extracts can absorb near-infrared (NIR) light, generating heat to destroy cancer cells with minimal damage to surrounding tissues. This study discusses the types of plant-based nanoparticles like plant virus nanoparticles (TMV, PVX, CPMV), plant metallic nanoparticles (Au, Ag., Cu, Zn, Mg, Ca, and Mn), and flavonoid nanoparticles found in cancer treatment, their significant roles, chemotherapy-based nanomedicines available in the medical field, and a detailed vision of nanomaterial applications in cancer diagnosis, treatment, and targeted drug delivery.
Collapse
Affiliation(s)
- Aswini M
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| | - Kavitha Bagya S
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - E P Liyana
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
5
|
Pandey A, Karmous I. Exploring the Potential of Plant-Based Nanotechnology in Cancer Immunotherapy: Benefits, Limitations, and Future Perspectives. Biol Trace Elem Res 2025; 203:1746-1763. [PMID: 38862749 DOI: 10.1007/s12011-024-04266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Reconceptualizing cancer immunotherapy can be improved if combined with plant production systems and nanotechnology. This review aims to contribute to the knowledge of plant use in nanomedicine and cancer immunotherapy. In the foreground, we outlined each of these approaches; nanomedicine, green synthesis, and immunotherapy. The benefits of plant-based nanoparticles in mending the immune systems were subsequently analyzed, with reference to the literature. The combining effects of biological and therapeutic properties of some phytochemicals and their derivatives, with targeted nanoparticles and selective immunotherapy, can enhance the delivery of drugs and antibodies, and induce antitumor immune responses, via activation of functions of neutrophils, lymphocyte cells, and natural killer cells, and macrophages, resulting in induced apoptosis and phagocytosis of tumor cells, which can improve designing immunotherapeutic strategies targeting cancer, with a larger spectrum compared to the current cytotoxic anticancer drugs commonly used in clinics. This study uncovers the mechanistic drivers of cancer immunoengineering in cancer therapy using plant-based nanomaterials, enhancing therapeutic benefits while minimizing toxic and side effects.
Collapse
Affiliation(s)
- Ashish Pandey
- Department of Radiology, Tech4Health Institute, NYU Langone Health, New York, NY, USA
| | - Ines Karmous
- Biology and Environmental Department, Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Gabes, Tunisia.
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, University of Carthage, Carthage, Tunisia.
| |
Collapse
|
6
|
Dubey S, Virmani T, Yadav SK, Kumar G, Sharma A, Gugulothu D. Utilizing Plant Phytoconstituents in Metal Oxide Nanoparticle Synthesis for Cancer Therapies. Curr Pharm Des 2025; 31:1270-1289. [PMID: 39781736 DOI: 10.2174/0113816128329342241120105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as Cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety. OBJECTIVE This study aims to investigate the role of plant phytoconstituents in the development of MONPs via green synthesis and explore the therapeutic effectiveness of MONPs in treating several types of cancer. Primarily, it examines the potential of plant phytoconstituents (phenolic compounds, flavonoids, glycosides, alkaloids, etc.) in the development of MONPs as well as their improved ability to target numerous types of cancer. METHODS A systemic search was conducted on recent literature, focusing on developing green MONPs by utilizing plants' phytoconstituents (plant extracts). The study of plant phytochemicals (present in different parts of a plant such as leaves, flowers, stems, peels, and roots) and their role in the synthesis of green metal oxide nanoparticles as well as their anticancer activity against several types of cancers was analyzed. Also focusing on their anticancer mechanism that involves ROS production, generates oxidative stress, and apoptosis leads to cancer inhibition. RESULTS Phytochemicals-mediated metal oxide nanoparticle synthesis revealed many advantages such as improved biological compatibility and enhanced sensitivity towards cancer cells. Phytochemicals present in plant extracts act as natural capping, reducing, and stabilizing agents, enhancing nanoparticle synthesis which leads to synergistic anticancer activity. Additionally, the natural antioxidant and anticancer activity of various phytochemicals enhances the therapeutic potential of metal oxide nanoparticles, producing them more effective against ROS-generated apoptosis and showing negligible toxicity towards normal cells. CONCLUSION The utilization of plant phytochemicals in metal oxide nanoparticle production presents a safe, eco-friendly, sustainable, and effective approach to developing effective and safer cancer nanomedicines. Green synthesis not only increases anticancer activity but also decreases the biocompatibility problems associated with the physiochemical synthetic approach. Further research needs to concentrate on improving this synergy to create a targeted phytochemical-based metal oxide nanoparticle for cancer therapeutics.
Collapse
Affiliation(s)
- Swati Dubey
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Tarun Virmani
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Shiv Kumar Yadav
- Department of Pharmacy, B.S. Anangpuria Institute of Pharmacy, Faridabad, India
| | - Girish Kumar
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Ashwani Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Dalapathi Gugulothu
- Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
7
|
Zoghebi K, Sabei FY, Safhi AY. Exploring the anti-cancer properties of Carissa carandas as a multi-targeted approach against breast cancer. J Biomol Struct Dyn 2024:1-25. [PMID: 39660546 DOI: 10.1080/07391102.2024.2437548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 12/12/2024]
Abstract
The escalating incidence of breast cancer globally presents a formidable challenge within oncology. Our research pursued an examination of the anti-cancer potential of Carissa carandas, a shrub traditionally used for medicinal purposes and known for its composition of vital nutrients and phytochemicals. We employed a network pharmacology strategy combined with molecular docking and molecular dynamics simulations to elucidate the intricate relationships between the phytochemical constituents of C. carandas, critical breast cancer proteins, and associated signaling pathways. The study highlighted a complex network of protein interactions, identifying AKT1, HIF1A, PTGS2, and GSK3B as key nodes within this network. These proteins are engaged by numerous investigated compounds from C. carandas and are fundamental in modulating crucial signaling pathways such as those involving Estrogen, HIF-1, Prolactin, VEGF, and Th17 cell differentiation-each of which plays a recognized role in breast cancer progression, affecting tumor growth, proliferation, and metastatic potential. Our analysis suggests that the phytochemicals in C. carandas may exert anti-cancer activity by synergistically modulating these pathways, highlighting the benefit of multi-targeted therapeutic approaches over single-targeted ones. In summary, through the application of advanced network pharmacology, molecular docking, MD simulations, and MM/PBSA analysis, our study offers a detailed exploration of the potential mechanisms by which C. carandas may exert anti-cancer effects. This sets a foundation for further in-depth experimental and clinical trials to validate these mechanisms and support the advancement of novel plant-derived therapeutic options towards breast cancer, with the possibility of significantly advancing the therapeutic options for this prevalent disease.
Collapse
Affiliation(s)
- Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Adetunji TL, Olisah C, Acho MA, Oyetunde-Joshua F, Amoo SO. Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2836. [PMID: 39458783 PMCID: PMC11511196 DOI: 10.3390/plants13202836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Worldwide, cancer ranks among the foremost contributors to mortality despite recent medical progress. Alternative approaches in controlling various forms of cancer are being highly explored by researchers. This study provides the global research trends in the utilization of medicinal plant-synthesized nanoparticles for cancer treatment over the span of 18 years using scientometric analysis. Recent research advances on medicinal plant-derived nanoparticles for cancer treatment and their possible mechanisms of action were described. Relevant articles published between 2005 and 2023 were retrieved from Scopus and Web of Science and analyzed using RStudio and VOSViewer. Scientometric indicators were employed to analyze the results. The initial search returned 5695 articles, with a publication growth rate of 3.71% annually. Countries from Asia contributed the most (61.37%) to the total number of publications. The therapeutic effects of nanoparticles derived from medicinal plants can be attributed to various mechanistic pathways, including induced apoptosis from reactive oxygen species generation, as well as mitochondrial and cell membrane disruption, amongst others. Although some reported studies demonstrated promising safety and efficacy against certain cancer cells in vivo and in vitro, the little to no clinical data on medicinal plant-synthesized nanoparticles hinder the ability to make informed decisions about their clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa;
| | | | - Funsho Oyetunde-Joshua
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
9
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
10
|
Barathi S, Ramalingam S, Krishnasamy G, Lee J. Exploring the Biomedical Frontiers of Plant-Derived Nanoparticles: Synthesis and Biological Reactions. Pharmaceutics 2024; 16:923. [PMID: 39065620 PMCID: PMC11279729 DOI: 10.3390/pharmaceutics16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
As contemporary technology advances, scientists are striving to identify new approaches to managing several diseases. Compared to the more popular physiochemical synthesis, the plant-derived combination of metallic nanoparticles using plant secondary metabolites as a precursor has a number of benefits, including low expenses, low energy consumption, biocompatibility, and medicinal usefulness. This study intends to explore the impacts of using plant-derived synthetic materials including metallic nanoparticles (NPs), emphasizing the benefits of their broad use in next-generation treatments for cancer, diabetes, Alzheimer's, and vector diseases. This comprehensive analysis investigates the potential of plant-derived remedies for diseases and looks at cutting-edge nanoformulation techniques aimed at addressing the function of the nanoparticles that accompany these organic substances. The purpose of the current review is to determine how plant extracts contribute to the synthesis of Silver nanoparticles (AgNPs), Gold nanoparticles (GtNPs), and platinum nanoparticles (PtNPs). It provides an overview of the many phytocompounds and their functions in biomedicine, including antibacterial, antioxidant, anticancer, and anti-inflammatory properties. Furthermore, this study placed a special focus on a range of applications, including drug delivery systems, diagnostics and therapy, the present benefits of nanoparticles (NPs), their biomedical uses in medical technology, and their toxicities.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Elavarasan V, Vijayakumar S, Aldawood S, Thangaswamy S, Prathipkumar S. Assessment of luminescent copper nanomaterials as anti-germs, anti-proliferation efficiencies using green nano-strategy. LUMINESCENCE 2024; 39:e4831. [PMID: 39051545 DOI: 10.1002/bio.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm. FT-IR analysis was employed to examine the functional groups. FE-SEM with EDX was used to assess the morphology and carry out an elemental analysis of the nanomaterials. Diffusion and MTT assays were used to study the antimicrobial and anticancer activities. The synthesized copper nanomaterials exhibited in-vitro cytotoxicity against human skin cancer (A431) cell lines. Green nanomaterial was examined against the methylene blue dye, photodegradation was reduced by up to 90.6% within 50 minutes. The copper nanomaterials synthesized in our study exhibit promising applications in biomedicine and environmental pollution research.
Collapse
Affiliation(s)
- Vidhya Elavarasan
- Department of Botany, Sri Vijay Vidyalaya College of Arts and Science (Women), Affiliated to Periyar University, Bargur, Krishnagiri, India
| | | | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvankumar Thangaswamy
- Biomaterials Research Unit, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, India
| | | |
Collapse
|
12
|
El-Sayed H, Abdelsalam A, Morad MY, Sonbol H, Ibrahim AM, Tawfik E. Phyto-synthesized silver nanoparticles from Sargassum subrepandum: anticancer, antimicrobial, and molluscicidal activities. FRONTIERS IN PLANT SCIENCE 2024; 15:1403753. [PMID: 38779072 PMCID: PMC11110841 DOI: 10.3389/fpls.2024.1403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
In the realm of nanotechnology, the use of algae to produce nanoparticles is an environmentally friendly, sustainable, and economically viable strategy. In the present study, the brown macroalgae Sargassum subrepandum was utilized to effectively produce silver nanoparticles (AgNPs). Through various characterization techniques, the AgNPs' structural integrity was confirmed. AgNPs exhibited significant antimicrobial activity against Pseudomonas aeruginosa and Fusarium equiseti. AgNPs showed cytotoxic effects on the MCF-7 breast adenocarcinoma cell line with an IC50 of 12.5 µg/ml. Treatment with AgNPs resulted in a marked reduction in cell viability, alongside evident apoptotic and necrotic morphological changes in the cancer cells. Through molecular docking studies, a deeper understanding of the interaction between AgNPs and crucial proteins related to cancer has been achieved, AgNPs showed a promising molluscicidal action on Biomphalaria alexandrina snails, a Schistosoma mansoni intermediate host. The half-lethal dose (LC50) of AgNPs was determined to be 0.84 mg/L. The potential consequences of its administration include potential disruptions to the glycolysis profile, as well as potential impacts on the steroidal hormone's estrogen and testosterone and certain kidney function tests. This study highlights the diverse uses of algae-synthesized AgNPs, ranging from healthcare to environmental management, demonstrating their importance in advancing nano-biotechnological solutions.
Collapse
Affiliation(s)
- Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman Tawfik
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| |
Collapse
|
13
|
Ogwuegbu MC, Ayangbenro AS, Mthiyane DMN, Babalola OO, Onwudiwe DC. Green synthesis of CuO nanoparticles using Ligustrum lucidum extract, and the antioxidant and antifungal evaluation. MATERIALS RESEARCH EXPRESS 2024; 11:055010. [DOI: 10.1088/2053-1591/ad4e9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Biosynthesis of metal oxide nanoparticles using plant extract is an inexpensive, simple, rapid, and environmentally friendly approach to obtaining nanoparticles for biological applications. Herein, copper oxide nanoparticles (CuO-NPs) were successfully synthesized using an aqueous extract from Ligustrum lucidum leaves. The structural, optical, and morphological characteristics of the nanoparticles were assessed using x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectrophotometer, transmission and scanning electron microscopy (TEM and SEM), and energy-dispersive x-ray (EDX). Nanocrystalline CuO with an average crystalline size of 22.0 nm and a band gap energy of 1.4 eV were confirmed from the XRD and UV-vis spectrophotometer, respectively. Morphological studies showed spherical nanoparticles, whose particle size estimation (30 ± 5 nm) agrees with the crystalline size deduced from the XRD pattern. A free radical scavenging activity of the CuO nanoparticles, evaluated using the 1, 1-diphenhyl-2-picrylhydrazyl (DPPH) assay, showed that it exhibited high antioxidant activity (IC50: 63.35 μg ml−1) that is concentration dependent. Antifungal evaluation using four different fungal strains (Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, and Trichoderma harzianum) indicated a direct relationship between the potency of the particles and their concentration, with 1 ppm solution exhibiting the highest potency. The green synthesized CuO-NPs using Ligustrum lucidum may be potentially used as an antioxidant and antifungal agent for therapeutic applications.
Collapse
|
14
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
15
|
Gatou MA, Skylla E, Dourou P, Pippa N, Gazouli M, Lagopati N, Pavlatou EA. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. CRYSTALS 2024; 14:215. [DOI: 10.3390/cryst14030215] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In recent times, there has been considerable interest among researchers in magnesium oxide (MgO) nanoparticles, due to their excellent biocompatibility, stability, and diverse biomedical uses, such as antimicrobial, antioxidant, anticancer, and antidiabetic properties, as well as tissue engineering, bioimaging, and drug delivery applications. Consequently, the escalating utilization of magnesium oxide nanoparticles in medical contexts necessitates the in-depth exploration of these nanoparticles. Notably, existing literature lacks a comprehensive review of magnesium oxide nanoparticles’ synthesis methods, detailed biomedical applications with mechanisms, and toxicity assessments. Thus, this review aims to bridge this gap by furnishing a comprehensive insight into various synthetic approaches for the development of MgO nanoparticles. Additionally, it elucidates their noteworthy biomedical applications as well as their potential mechanisms of action, alongside summarizing their toxicity profiles. This article also highlights challenges and future prospects for further exploring MgO nanoparticles in the biomedical field. Existing literature indicates that synthesized magnesium oxide nanoparticles demonstrate substantial biocompatibility and display significant antibacterial, antifungal, anticancer, and antioxidant properties. Consequently, this review intends to enhance readers’ comprehension regarding recent advancements in synthesizing MgO nanoparticles through diverse approaches and their promising applications in biomedicine.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Eirini Skylla
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Panagiota Dourou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
16
|
Talib H, Mehmood A, Amjad MS, Mustafa A, Khan MAR, Raffi M, Khan RT, Ahmad KS, Qureshi H. Antibacterial, antioxidant, and anticancer potential of green fabricated silver nanoparticles made from Viburnum grandiflorum leaf extract. BOTANICAL STUDIES 2024; 65:4. [PMID: 38252177 PMCID: PMC10803688 DOI: 10.1186/s40529-024-00411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Recently, researchers are focusing on creating new tools to combat the antibiotic resistant bacteria and malignancy issues, which pose significant threats to humanity. Biosynthesized silver nanoparticles (AgNPs) are thought to be a potential solution to these issues. The biosynthesis method, known for its environmentally friendly and cost-effective characteristics, can produce small-sized AgNPs with antimicrobial and anticancer properties. In this study, AgNPs were bio-fabricated from the distilled water and methanolic extracts of Viburnum grandiflorum leaves. Physio-chemical characterization of the bio-fabricated AgNPs was conducted using UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. RESULTS AgNPs produced from the methanol extract were smaller in size (12.28 nm) compared to those from the aqueous extract (17.77 nm). The bioengineered AgNPs exhibited a circular shape with a crystalline nature. These biosynthesized AgNPs demonstrated excellent bactericidal activity against both gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Highest antibacterial activity was observed with the methanol extract against P. aeruginosa (14.66 ± 0.74 mm). AgNPs from the methanol extract also displayed the highest antioxidant activity, with an IC50 value of 188.00 ± 2.67 μg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, AgNPs exhibited notable cytotoxic activity against Rhabdomyosarcoma cell line (RD cell) of human muscle cancer cell. The IC50 values calculated from the MTT assay were 26.28 ± 1.58 and 21.49 ± 1.44 μg/mL for AgNPs synthesized from aqueous and methanol extracts, respectively. CONCLUSION The methanol extract of V. grandiflorum leaves demonstrates significant potential for synthesizing AgNPs with effective antibacterial, antioxidant, and anticancer actions, making them applicable in various biomedical applications.
Collapse
Affiliation(s)
- Hina Talib
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan.
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu and Kashmir Bagh, Bagh, 12500, Pakistan.
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Amna Mustafa
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | | | - Muhammad Raffi
- Department of Materials Engineering, National Institute of Lasers and Optronics (NILOP), Lehtrar Road, Nilore, Islamabad, 45650, Pakistan
| | - Rizwan Taj Khan
- Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan
| |
Collapse
|
17
|
Hamed NS, Taha EFS, Khateeb S. Matcha-silver nanoparticles reduce gamma radiation-induced oxidative and inflammatory responses by activating SIRT1 and NLRP-3 signaling pathways in the Wistar rat spleen. Cell Biochem Funct 2023; 41:1115-1132. [PMID: 37653677 DOI: 10.1002/cbf.3844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
The biogenic synthesis of nanoparticles has drawn significant attention. The spleen is the largest lymphatic organ that is adversely impacted during irradiation. The current study was designated to evaluate the possible anti-inflammatory effect of matcha-silver nanoparticles (M-AgNPs) to reduce inflammation associated with γ-radiation induced-oxidative stress and inflammation in rats' spleen. Silver nanoparticles (AgNPs) were synthesized by biogenic synthesis using a green sonochemical method from matcha (M) green tea. The obtained M-AgNPs were extensively characterized by dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, and Fourier-transform infrared spectroscopy. Using zetasizer analysis, the surface charge, particle size, and radical scavenging DPPH assay of M-AgNPs were also examined. Biocompatibility and cytotoxicity were analyzed by MTT assay, and the IC50 was calculated. Four groups of 24 Wistar rats each had an equal number of animals. The next step involved measuring the levels of oxidative stress markers in the rat splenic tissue. Additionally, the amounts of inflammatory protein expression were evaluated using the ELISA analysis. The results indicated the formation of spherical nanoparticles of pure Ag° coated with matcha polyphenols at the nanoscale, as well as uniform monodisperse particles suited for cellular absorption. Results revealed that M-AgNPs improved all biochemical parameters. Furthermore, M-AgNPs relieve inflammation by reducing the expression of NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin-1β (IL-1β), and enhancing the levels of ileSnt information regulator 1 (SIRT1). Histopathological examinations demonstrated the ability of M-AgNPs to overcome the damage consequent to irradiation and recover the spleen's cellular structure. These results confirmed that matcha is a potential biomaterial for synthesizing AgNPs, which can be exploited for their anti-inflammatory activity.
Collapse
Affiliation(s)
- Noha Sayed Hamed
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Eman F S Taha
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Sahar Khateeb
- Department of Chemistry, Biochemistry Division, Faculty of Science, Fayum University, Fayum, Egypt
| |
Collapse
|
18
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|
19
|
Khalil Abad MH, Nadaf M, Taghavizadeh Yazdi ME. Biosynthesis of ZnO.Ag 2O 3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. MICRO & NANO LETTERS 2023; 18. [DOI: 10.1049/mna2.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe zinc oxide‐silver oxide nanocomposite (ZnO.Ag2O3 particles) was prepared by using an aqueous plant extract of Haplophyllum obtusifolium for the first time. Powder X‐ray diffraction (PXRD), Fourier transforms spectroscopy (FTIR), field emission microscopy (FESEM), energy dispersive X‐ray analysis (EDX), and transmission electron microscopy (TEM) were applied to analyze the structure, functional groups, morphology, and purity of the prepared nanocomposite. PXRD revealed the formulation of ZnO.Ag2O3 for the particles. The investigation of functional groups has demonstrated the presence of some carbonated impurities along with absorbed water in the composition of the ZnO.Ag2O3 nanocomposite. Morphologically, particles have formed a petal‐like shape with different sizes. The EDX analysis also confirmed the composition of the prepared sample and the presence of 4.78% silver in the formula. Additionally, the TEM analysis revealed spherical and rectangular shapes with a particle size of 80.43 ± 46.73 nm. Moreover, the ZnO.Ag2O3 particles were used against cancer cells, which has shown synthesized NCs have a toxic effect against liver cancer cells in a concentration and time‐dependent manner.
Collapse
Affiliation(s)
| | - Mohabat Nadaf
- Department of Biology Payame Noor University Tehran Iran
| | | |
Collapse
|
20
|
Rana N, Singh SK, Banu NA, Hjazi A, Vamanu E, Singh MP. The Ethnopharmacological Properties of Green-Engineered Metallic Nanoparticles against Metabolic Disorders. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1022. [PMID: 37374226 DOI: 10.3390/medicina59061022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Metabolic syndrome is a multifaceted pathophysiologic condition that is largely caused by an imbalance between caloric intake and energy expenditure. The pathogenesis of metabolic syndrome is determined by an individual's genetic/epigenetics and acquired factors. Natural compounds, notably plant extracts, have antioxidant, anti-inflammatory, and insulin-sensitizing properties and are considered to be a viable option for metabolic disorder treatment due to their low risk of side effects. However, the limited solubility, low bioavailability, and instability of these botanicals hinder their performance. These specific limitations have prompted the need for an efficient system that reduces drug degradation and loss, eliminates unwanted side effects, and boosts drug bioavailability, as well as the percentage of the drug deposited in the target areas. The quest for an enhanced (effective) drug delivery system has led to the formation of green-engineered nanoparticles, which has increased the bioavailability, biodistribution, solubility, and stability of plant-based products. The unification of plant extracts and metallic nanoparticles has helped in the development of new therapeutics against metabolic disorders such as obesity, diabetes mellitus, neurodegenerative disorders, non-alcoholic fatty liver, and cancer. The present review outlines the pathophysiology of metabolic diseases and their cures with plant-based nanomedicine.
Collapse
Affiliation(s)
- Neha Rana
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara 144411, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Najitha A Banu
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara 144411, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Adulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P Singh
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
- Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
21
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
22
|
Sabapathi N, Ramalingam S, Aruljothi KN, Lee J, Barathi S. Characterization and Therapeutic Applications of Biosynthesized Silver Nanoparticles Using Cassia auriculate Flower Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040707. [PMID: 36840055 PMCID: PMC9961718 DOI: 10.3390/plants12040707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The current study analyzes the biosynthesis of silver nanoparticles using the Cassia auriculate flower extract as the reducing and stabilizing agent. The Cassia auriculate- silver nanoparticles (Ca-AgNPs) obtained are characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The results of the spectral characterization have revealed that the surface Plasmon resonance band observed at 448 nm confirms the formation of AgNPs. TEM analysis of the Ca-AgNPs was a predominately spherical shape with a size assortment of 30 to 80 nm and an angular size of 50 nm. The well-analyzed Ca-AgNPs were used in various biological assays, including healthcare analysis of antimicrobial, antioxidant (DPPH), and cytotoxic investigations. Ca-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity against to pathogenic strains. The occurrence of Ca-AgNPs lead to reduced Live/Dead ratio of bacteria (from 36.97 ± 1.35 to 9.43 ± 0.27) but improved the accumulation of bacterial clusters. The cytotoxicity of Ca-AgNPs was carried out by MTT assay against MCF-7 breast cancer cells and a moderate cytotoxic. The approach of flower extract-mediated synthesis is a cost-efficient, eco-friendly, and easy alternative to conventional methods of silver nanoparticle synthesis.
Collapse
Affiliation(s)
- Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Srinivasan Ramalingam
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
23
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
24
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Wani AK, Akhtar N, Mir TUG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A, Devkota HP, Prakash A. Targeting Apoptotic Pathway of Cancer Cells with Phytochemicals and Plant-Based Nanomaterials. Biomolecules 2023; 13:194. [PMID: 36830564 PMCID: PMC9953589 DOI: 10.3390/biom13020194] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is the elimination of functionally non-essential, neoplastic, and infected cells via the mitochondrial pathway or death receptor pathway. The process of apoptosis is highly regulated through membrane channels and apoptogenic proteins. Apoptosis maintains cellular balance within the human body through cell cycle progression. Loss of apoptosis control prolongs cancer cell survival and allows the accumulation of mutations that can promote angiogenesis, promote cell proliferation, disrupt differentiation, and increase invasiveness during tumor progression. The apoptotic pathway has been extensively studied as a potential drug target in cancer treatment. However, the off-target activities of drugs and negative implications have been a matter of concern over the years. Phytochemicals (PCs) have been studied for their efficacy in various cancer cell lines individually and synergistically. The development of nanoparticles (NPs) through green synthesis has added a new dimension to the advancement of plant-based nanomaterials for effective cancer treatment. This review provides a detailed insight into the fundamental molecular pathways of programmed cell death and highlights the role of PCs along with the existing drugs and plant-based NPs in treating cancer by targeting its programmed cell death (PCD) network.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA
| | - Shyam Kumar Mallik
- College of Medical and Allied Sciences, Purbanchal University, Morang 56600, Nepal
| | - Shruti Sinha
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Surya Kant Tripathi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abha Jain
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aprajita Jha
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Chandrababu G, Sah SK, Kumar AR, M S, Nath LR. Green Synthesized Nanoparticles as a Plausible Therapeutic Strategy Against Hepatocellular Carcinoma: An Update on its Preclinical and Clinical Relevance. Recent Pat Anticancer Drug Discov 2023; 18:268-291. [PMID: 35616675 DOI: 10.2174/1574892817666220523124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Green nanotechnology can offer notable advantages over the conventional drug delivery methods in terms of improved drug stability, drug-carrying capacity, site-specificity, and feasibility to apply different routes of administration with less systemic toxicities. Metal nanoparticles bio fabricated with phytoconstituents and microbial extracts have gained significant interest for the treatment of various solid tumors including hepatocellular carcinoma. Hepatocellular carcinoma (HCC) is an aggressive cancer with a very poor prognosis. The current treatments of HCC fails to provide tumor specificity, causing many systemic toxicities and poor overall survival benefits especially for patients in advanced and terminal stages. A novel therapeutic approach with maximal therapeutic effect and minimum adverse effects are urgently required for HCC patients. Green synthesized metal nanoparticles offer significant anticancer effects along with minimal systemic toxicities because of their site-specific delivery into the tumor microenvironment (TME). Green synthesized metal nanoparticles can therefore be a highly beneficial strategy for the treatment of HCC if properly validated with preclinical and clinical studies. This review focuses on the preclinical evidence of the most widely studied green metal nanoparticles such as green synthesized silver nanoparticles, gold nanoparticles and selenium nanoparticles. We have also summarised the clinical studies and the patents approved for nanoparticles against HCC.
Collapse
Affiliation(s)
- Gopika Chandrababu
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Sunil Kumar Sah
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Sabitha M
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
27
|
Naik J, David M. Phytofabrication of silver and zinc oxide nanoparticles using the fruit extract of Phyllanthus emblica and its potential anti-diabetic and anti-cancer activity. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2141668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jarnain Naik
- Enivronmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, India
| | - M. David
- Enivronmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
28
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
29
|
Tummala V, Jaiswal J, Singh AK, Dhayal M. Biosynthesized Silver Nanoparticles Having High Redox Current Enhance Anticancer Response for HepG2 Cells. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022. [DOI: 10.1007/s40995-022-01374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Alsubhi NS, Alharbi NS, Felimban AI. Optimized Green Synthesis and Anticancer Potential of Silver Nanoparticles Using Juniperus procera Extract Against Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Silver nanoparticles (AgNPs) have been considered promising candidates for medical practices in various fields. This study proposed an efficient, economical, uncomplicated, and reliable method to synthesize AgNPs utilizing leaf and fruit extracts of Juniperus procera (J. procera)
as capping, reducing, and stabilizing agents. The study includes optimizing the green synthesis conditions to produce stable AgNPs with high yields, acceptable particle size, and shape, hence, AgNPs may be used for different medical purposes through the improvement of their properties. Several
spectroscopic and other analyses performed characterization of the fabricated AgNPs, and the results show stable and spherical AgNPs between 14 and 18 nm in size. The study also evaluated the anticancer activities of the biosynthesized AgNPs using J. procera fruit and leaf extracts
against in vitro lung cancer A549 and H1975 cells. The results demonstrate the high toxicity of the biosynthesized AgNPs against in vitro lung cancer cells, supporting therapeutic and biomedical applications of AgNPs.
Collapse
Affiliation(s)
- Nehad S. Alsubhi
- Department of Biology, Collage of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Njud S. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Afnan I. Felimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
31
|
Lavudi K, Harika VS, Kokkanti RR, Patchigolla S, Sinha A, Patnaik S, Penchalaneni J. 2-Dimensional in vitro culture assessment of ovarian cancer cell line using cost effective silver nanoparticles from Macrotyloma uniflorum seed extracts. Front Bioeng Biotechnol 2022; 10:978846. [PMID: 36051584 PMCID: PMC9425338 DOI: 10.3389/fbioe.2022.978846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Our research focused on generating AgNPs using Macrotyloma uniflorum (MU) seed extracts and studied their efficacy in combating tumor growth using the 2-Dimensional method for ovarian cancer cell line-PA-1. Characterization studies including a UV-visible spectrophotometer confirmed the surface plasmon resonance peak of 436 nm. Particle size determination data validated the nanoparticle diameter of 91.8 nm. Synthesized AgNPs possess a negative charge of -28.0 mV, which was confirmed through the zeta potential study. Structural characterization studies including XRD determined the crystal phase of AgNPs at four distant peaks at 2θ (38.17, 44.36, 64.52, and 77.46) and were assigned to 111, 200, 220, and 311 planes of the FCC. FTIR studies have confirmed the presence of O-H, N-H, C=O, ethers, C-Br, and C-I groups in AgNPs respectively. DPPH study has confirmed the presence of free radicles and we observed that at 500 μg/ml concentration, 76.08% of free radicles were formed which shows their efficiency. MTT assay shows the efficacy of MU-AgNPs in reducing the cell viability. At lower concentrations of MU-AgNP, 66% viability was observed and 9% of viability was observed at higher dose. ROS production (21%) was observed using MU-AgNPs with respect to 0.45% in controls, which affirms the capacity to induce DNA damage via apoptosis. Standard drug camptothecin generated 26% of ROS production which confirms higher potential of AgNPs in inducing DNA damage in tumor cells without causing lethality to the healthy cells. Further, the Fluorescence-activated cell sorting (FACS) study using a standard Caspase-3 marker confirms the generation of apoptotic bodies using two different concentrations of MU-AgNPs. At 40 μg, 64% of apoptotic cell death was observed, whereas, using 20 μg, 23% of apoptosis was recorded via fluorescent intensity. Propidium iodide-based Cell cycle study has shown a significant decrease in G0/G1 phase compared to control (88.8%), which further confirmed the apoptotic induction. Matrix metalloproteinases (MMP) studies using JC-1 dye, showed a significant increase in green fluorescence owing to lowered membrane potential, thus ensuring the breakdown of mitochondrial potential compared to untreated and standard drugs. With the obtained results, we are concluding that MU-AgNPs has a tremendous capacity to suppress the ovarian cancer cell proliferation in vitro by inducing DNA damage and apoptosis.
Collapse
Affiliation(s)
- Kousalya Lavudi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Venkata Satya Harika
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
| | - Swaroopa Patchigolla
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
| | - Anupriya Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Srinivas Patnaik
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavati Mahila Visva Vidyalayam, Tirupati, Andhra Pradesh, India
- *Correspondence: Josthna Penchalaneni,
| |
Collapse
|
32
|
Jagtap RR, Garud A, Puranik SS, Rudrapal M, Ansari MA, Alomary MN, Alshamrani M, Salawi A, Almoshari Y, Khan J, Warude B. Biofabrication of Silver Nanoparticles (AgNPs) Using Embelin for Effective Therapeutic Management of Lung Cancer. Front Nutr 2022; 9:960674. [PMID: 35990347 PMCID: PMC9386231 DOI: 10.3389/fnut.2022.960674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022] Open
Abstract
Nanobiotechnology is a burgeoning field of research with applications in cancer treatment, targeted chemotherapy, and molecular diagnosis. This study aims at the fabrication of silver nanoparticles using embelin derived from Embelia ribes to evaluate its anticancer property. Silver nanoparticles (AgNPs) have emerged as a novel nano-carrier for therapeutic agents with a wide range of medical capabilities due to their unique structural, physicochemical, and optical features. In our study, the particle size of fabricated AgNPs was measured as 25 nm, and the zeta potential was recorded as -5.42 mV, which indicates the good stability of embelin-derived AgNPs. The crystalline surface morphology was observed by SEM analysis. The FT-IR spectrum confirmed the reduction in silver ions (Ag+) by embelin, and the TEM analysis exhibited polydispersed Ag+ of 20-30 nm. The anticancer potential of embelin-fabricated AgNPs was investigated using in vitro studies on lung cancer cells by the MTT assay. The results revealed significant dose-dependent inhibition of cell proliferation against A549 cell lines. Embelin AgNP-induced apoptosis was measured by the annexin-V PI apoptosis assay, which exhibited significantly low necrotic cells as compared to apoptotic cells. Finally, the findings of our study suggest the anticancer potential of biofabricated embelin AgNPs, particularly against lung cancer cells.
Collapse
Affiliation(s)
- Rutika R. Jagtap
- Post Graduate Research Centre, Department of Zoology, Modern College of Arts, Science and Commerce, Pune, India
| | - Aniket Garud
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Shubhangi S. Puranik
- Post Graduate Research Centre, Department of Zoology, Modern College of Arts, Science and Commerce, Pune, India
| | - Mithun Rudrapal
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Bhagyashri Warude
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| |
Collapse
|
33
|
Biosynthesis of Silver Nanoparticles Using Astragalus flavesces Leaf: Identification, Antioxidant Activity, and Catalytic Degradation of Methylene Blue. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
35
|
Rahim NA, Mail MH, Muhamad M, Sapuan S, SMN Mydin RB, Seeni A. Investigation of antiproliferative mechanisms of Alstonia angustiloba-silver nanoparticles in skin squamous cell carcinoma (A431 cell line). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Hasan EA, El-Hashash MA, Zahran MK, El-Rafie HM. Comparative study of chemical composition, antioxidant and anticancer activities of both Turbinaria decurrens Bory methanol extract and its biosynthesized gold nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Iram F, Yasmeen A, Massey S, Iqbal MS, Asim S, Irshad M, Zahid H, Khan AY, Kazimi SGT. Synthesis of gold and silver nanoparticles by use of arabinoglucan from Lallemantia royleana. Int J Biol Macromol 2021; 191:1137-1150. [PMID: 34563577 DOI: 10.1016/j.ijbiomac.2021.09.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Highly stable gold and silver nanoparticles were synthesized by use of an arabinoglucan from Lallemantia royleana seeds without additional use of reducing or stabilizing agents. The mechanism involved the reduction potential of the hemicellulose as verified by cyclic voltammetry. The arabinoglucan used was substantially free from ferulic acid and phenolic content, suggesting the inherent reducing potential of arabinoglucan for gold and silver ions. The synthesized nanoparticles exhibited surface plasmon resonance maxima at 515 nm (gold) and 397 nm (silver) corresponding to sizes of 10 nm and 8 nm, respectively. The zeta potential values were -24.1 mV (gold) and -22.3 mV (silver). The silver nanoparticles showed potential for application in surface-enhanced Raman spectroscopy. Gold nanoparticles were found to be non-toxic, whereas silver nanoparticles exhibited dose-dependent biological activities and found to be cytotoxic against brine shrimps and HeLa cell lines and the tumours caused by A. tumefaciens.
Collapse
Affiliation(s)
- Fozia Iram
- Department of Chemistry, LCW University, Lahore 54600, Pakistan.
| | - Abida Yasmeen
- Department of Chemistry, LCW University, Lahore 54600, Pakistan.
| | - Shazma Massey
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan.
| | - Mohammad S Iqbal
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan.
| | - Sumreen Asim
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.
| | - Misbah Irshad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| | - Hina Zahid
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan
| | - Athar Y Khan
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan.
| | - Syed G T Kazimi
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
38
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
39
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
40
|
Wani IA, Ahmad T, Khosla A. Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. NANOTECHNOLOGY 2021; 32:462001. [PMID: 34340224 DOI: 10.1088/1361-6528/ac19d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Development of eco-friendly synthetic methods has resulted in the production of biocompatible Ag NPs for applications in medical sector. To overcome the prevailing antibiotic resistance in bacteria, Ag NPs are being extensively researched over the past few years due to their broad spectrum and robust antimicrobial properties. Silver nanoparticles are also being studied widely in advanced anticancer therapy as an alternative anticancer agent to combat cancer in an effective manner. Keeping this backdrop in consideration, this review aims to provide an extensive coverage of the recent progresses in the green synthesis of Ag NPs specifically using plant derived reducing agents such phytochemicals and numerous other biopolymers. Current development in antimicrobial activity of Ag NPs against various pathogens has been deliberated at length. Recent advances in potent anticancer activity of the biogenic Ag NPs against various cancerous cell lines has also been discussed in detail. Mechanistic details of the synthesis of Ag NPs, their anticancer and antimicrobial action has also been highlighted.
Collapse
Affiliation(s)
- Irshad A Wani
- Postgraduate Department of Chemistry, Govt. Degree College Bhadarwah, University of Jammu, Jammu & Kashmir-182222, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
41
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|
42
|
Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. NANOMATERIALS 2021; 11:nano11082033. [PMID: 34443864 PMCID: PMC8400837 DOI: 10.3390/nano11082033] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Gholam Hosein Shahidi Bonjar
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Akbar Hosseinipour
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran;
| |
Collapse
|
43
|
Cai F, Li S, Huang H, Iqbal J, Wang C, Jiang X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J Biomed Mater Res A 2021; 110:424-442. [PMID: 34331516 DOI: 10.1002/jbm.a.37281] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Immune responses are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. These responses are attributed to immune cells that produce cytokines, mediate cytotoxicity, and synthesize antibodies. Gold nanoparticles (GNPs) are novel agents that intervene with immune responses because of their unique physical-chemical properties. In particular, GNPs enhance anti-tumour activity during immunotherapy and eliminate excessive inflammation in autoimmune diseases. However, GNPs synthesized by conventional methods are toxic to living organisms. Green biosynthesis provides a safe and eco-friendly method to obtain GNPs from microbes or plant extracts. In this review, we describe several patterns for green GNP biosynthesis. The applications of GNPs to target immune cells and modulate the immune response are summarized. In particular, we elaborate on how GNPs regulate innate immunity and adaptive immunity, including inflammatory signaling and immune cell differentiation. Finally, perspectives and challenges in utilizing green biosynthesized GNPs for novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Feiyang Cai
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
44
|
Manikandan DB, Arumugam M, Veeran S, Sridhar A, Krishnasamy Sekar R, Perumalsamy B, Ramasamy T. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:33927-33941. [PMID: 33410001 DOI: 10.1007/s11356-020-12108-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O-H, C=C, C-H, C-O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
45
|
Medici S, Peana M, Coradduzza D, Zoroddu MA. Gold nanoparticles and cancer: detection, diagnosis and therapy. Semin Cancer Biol 2021; 76:27-37. [DOI: 10.1016/j.semcancer.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
|
46
|
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188569. [PMID: 34015412 DOI: 10.1016/j.bbcan.2021.188569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Apoptosis deficiency is one of the most important features observed in neoplastic diseases. The Bcl-2 family is composed of a subset of proteins that act as decisive apoptosis regulators. Research and clinical studies have both demonstrated that the hyperactivation of Bcl-2-related anti-apoptotic effects correlates with cancer occurrence, progression and prognosis, also having a role in facilitating the radio- and chemoresistance of various malignancies. Therefore, targeting Bcl-2 inactivation has provided some compelling therapeutic advantages by enhancing apoptotic sensitivity or reversing drug resistance. Therefore, this pharmacological route turned into one of the most promising routes for cancer treatment. This review discusses some of the well-defined and emerging roles of Bcl-2 as well as its potential clinical value in cancer therapeutics.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
47
|
Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. MICRO AND NANO SYSTEMS LETTERS 2021. [PMCID: PMC8091155 DOI: 10.1186/s40486-021-00131-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology holds an emerging domain of medical science as it can be utilized virtually in all areas. Phyto-constituents are valuable and encouraging candidates for synthesizing green silver nanoparticles (AgNPs) which possess great potentials toward chronic diseases. This review gives an overview of the Green approach of AgNPs synthesis and its characterization. The present review further explores the potentials of Phyto-based AgNPs toward anticancer and antiviral activity including its probable mechanism of action. Green synthesized AgNPs prepared by numerous medicinal plants extract are critically reviewed for cancer and viral infection. Thus, this article mainly highlights green synthesized Phyto-based AgNPs with their potential applications for cancer and viral infection including mechanism of action and therapeutic future prospective in a single window. ![]()
Collapse
|
48
|
KAVAKEBI E, ANVAR AA, AHARI H, MOTALEBI AA. Green biosynthesized Satureja rechingeri Jamzad-Ag/poly vinyl alcohol film: quality improvement of Oncorhynchus mykiss fillet during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.62720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Ertugrul MS, Nadaroglu H, Nalci OB, Hacimuftuoglu A, Alayli A. Preparation of CoS nanoparticles-cisplatin bio-conjugates and investigation of their effects on SH-SY5Y neuroblastoma cell line. Cytotechnology 2020; 72:10.1007/s10616-020-00432-5. [PMID: 33095405 PMCID: PMC7695799 DOI: 10.1007/s10616-020-00432-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Neuroblastoma is one of the most widely seen under the age of 15 tumors that occur in the adrenal medulla and sympathetic ganglia. Cisplatin, an antineoplastic drug, is a Platinum-based compound and is known to inhibit the proliferation of neuroblastoma cells. Effective applications of nanoparticles in biomedical areas such as biomolecular, antimicrobial detection and diagnosis, tissue engineering, theranostics, biomarking, drug delivery, and anti-cancer have been investigated in many studies. This study aims to prepare the bioconjugates of CoS (cobalt sulfide) nanoparticles (NPs) with cisplatin combination groups and to evaluate their effects on the neuroblastoma cell line. Nanoparticle synthesis was done using the green synthesis technique using Punica granatum plant extract. The size and shape of CoS NPs were characterized by SEM, FT-IR, and XRD. Zeta potential was confirmed by the DLS study. For this purpose, the SH-SY5Y neuroblastoma cell line was cultured in a suitable cell culture medium. Cisplatin 5 µg and different concentrations (Cisplatin + CoS NPs bioconjugates (5, 10, 25, 50, 75 μg) doses were applied to SH-SY5Y neuroblastoma cell lines for 24 h. TAC, TOS and MTT tests were performed 24 h after the application. According to the MTT test results, cisplatin and CoS NP combinations reduced the proliferation of neuroblastoma cells by 78 to 57% compared to the cisplatin control. From the findings obtained; the most effective Bio-conjugate group was Cisplatin 5 μg/mL + CoS 75 μg/mL.
Collapse
Affiliation(s)
- Muhammed Sait Ertugrul
- Department of Pharmacology, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, 25240, Erzurum, Turkey.
| | - Ozge Balpinar Nalci
- Department of Medical Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Azize Alayli
- Department of Nursing, Faculty of Health Sciences, Sakarya University of Applied Sciences, 54187, Sakarya, Turkey
| |
Collapse
|
50
|
Ameri A, Shakibaie M, Rahimi HR, Adeli-Sardou M, Raeisi M, Najafi A, Forootanfar H. Rapid and Facile Microwave-Assisted Synthesis of Palladium Nanoparticles and Evaluation of Their Antioxidant Properties and Cytotoxic Effects Against Fibroblast-Like (HSkMC) and Human Lung Carcinoma (A549) Cell Lines. Biol Trace Elem Res 2020; 197:132-140. [PMID: 31782064 DOI: 10.1007/s12011-019-01984-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
We report here a simple microwave irradiation method (850 W, 3 min) for the synthesis of palladium nanoparticles (Pd NPs) using ascorbic acid (as reducing agent) and sodium alginate (as stabilizer agent). The synthesized nanoparticles were characterized using transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), UV-Visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR) techniques. Antioxidant properties and cytotoxic effects of as-synthesized Pd NPs and Pd (II) acetate were also assessed. UV-Vis study showed the formation of Pd NPs with maximum absorption at 345 nm. From TEM analysis, it was observed that the Pd NPs had spherical shape with particle size distribution of 13-33 nm. Based on DPPH radical scavenging activity and reducing power assay, the antioxidant activities of Pd NPs were significantly higher than the Pd (II) acetate (p < 0.05). At the same concentration of 640 μg/mL, the scavenging activities were 32.9 ± 3.2% (Pd (II) acetate) and 27.2 ± 2.1% (Pd NPs). For A549 cells treated 48 h with Pd NPs, Pd (II) acetate, and cisplatin, the measured concentration necessary causing 50% cell death (IC50) was 7.2 ± 1.7 μg/mL, 32.1 ± 2.1 μg/mL, and 206.2 ± 3.5 μg/mL, respectively. On HSkMC cells, the IC50 of the Pd NPs (320 μg/mL) was higher compared to Pd (II) acetate (228.7 ± 3.6 μg/mL), which confirmed lower cytotoxicity of the Pd NPs.
Collapse
Affiliation(s)
- Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Raeisi
- The Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Najafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|