1
|
Cheung CK, Barratt J, Lafayette R, Liew A, Suzuki Y, Tesař V, Trimarchi H, Wong MG, Zhang H, Rizk DV. Targeting APRIL in the treatment of glomerular diseases. Kidney Int 2024; 106:806-818. [PMID: 39182759 DOI: 10.1016/j.kint.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
A proliferation-inducing ligand (APRIL) is a key member of the tumor necrosis factor superfamily of cytokines and plays a central role in B-cell survival, proliferation, and Ig class switching. Recently, there has been increasing interest in the role of APRIL and the related cytokine B-cell activating factor in several glomerular diseases, because of their importance in the above processes. The therapeutic inhibition of APRIL represents a potentially attractive immunomodulatory approach that may abrogate deleterious host immune responses in autoimmune diseases while leaving other important functions of humoral immunity intact, such as memory B-cell function and responses to vaccination, in contrast to B-cell-depleting strategies. In this review, we describe the physiological roles of APRIL in B-cell development and their relevance to glomerular diseases, and outline emerging clinical trial data studying APRIL inhibition, with a focus on IgA nephropathy where the clinical development of APRIL inhibitors is in its most advanced stage.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; John Walls Renal Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; John Walls Renal Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Richard Lafayette
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Adrian Liew
- The Kidney and Transplant Practice, Mount Elizabeth Novena Hospital, Singapore
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Vladimír Tesař
- Department of Nephrology, General University Hospital, Charles University, Prague, Czech Republic
| | - Hernán Trimarchi
- Nephrology Service and Kidney Transplant Unit, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, Australia; Department of Medicine, University of Sydney, Camperdown, Australia
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People's Republic of China
| | - Dana V Rizk
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
2
|
Tagami N, Yuda J, Goto Y. Current status of BAFF targeting immunotherapy in B-cell neoplasm. Int J Clin Oncol 2024; 29:1676-1683. [PMID: 39222149 PMCID: PMC11511695 DOI: 10.1007/s10147-024-02611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
B-cell activating factor belonging to the TNF family (BAFF), also known as B-lymphocyte stimulator (BLyS), plays a crucial role in B-cell development. It has multiple receptors, including BCMA, TACI, and BAFF-R, with diverse roles in different cell types. BAFF induces B-cell proliferation and immunoglobulin secretion, and acts as a survival factor for immature, naive, and activated B cells. Consequently, BAFF-deficient mice often show suppressed humoral responses, while BAFF-overexpressing mice show the higher number of mature B cells and may develop autoimmune-like manifestations and B-cell lymphoproliferative diseases. Elevated BAFF levels are also associated with various hematological malignancies, and its expression correlates with disease progression in some cases. Therefore, BAFF-targeted therapies, such as belimumab, atacicept, and tabalumab, are being explored in clinical trials for conditions like chronic lymphocytic leukemia (CLL) and multiple myeloma. Belimumab, an anti-BAFF monoclonal antibody, is being investigated in combination with rituximab/venetoclax for CLL. Atacicept, a decoy receptor for BAFF and APRIL, showed tolerability in a phase 1b trial for CLL. Tabalumab, another monoclonal antibody targeting BAFF, did not demonstrate significant efficacy in a phase 2 study for relapsed/refractory multiple myeloma. BAFF ligand-based CAR-T cells are designed to target BAFF receptors and show promise in preclinical studies, particularly for B-cell malignancies. The review emphasizes the importance of understanding the roles of BAFF and its receptors in the microenvironment of hematologic malignancies. Targeting BAFF and its receptors presents potential therapeutic avenues, and ongoing clinical trials provide valuable insights.
Collapse
MESH Headings
- Humans
- B-Cell Activating Factor
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- B-Cell Activation Factor Receptor/metabolism
- Immunotherapy/methods
- Multiple Myeloma/drug therapy
- Multiple Myeloma/therapy
- Multiple Myeloma/immunology
- Mice
- Recombinant Fusion Proteins/therapeutic use
- B-Lymphocytes/immunology
- B-Cell Maturation Antigen/immunology
- Molecular Targeted Therapy
Collapse
Affiliation(s)
- Nami Tagami
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Qie Y, Gadd ME, Shao Q, To T, Liu A, Li S, Rivera‐Valentin R, Yassine F, Murthy HS, Dronca R, Kharfan‐Dabaja MA, Qin H, Luo Y. Targeting chronic lymphocytic leukemia with B-cell activating factor receptor CAR T cells. MedComm (Beijing) 2024; 5:e716. [PMID: 39224539 PMCID: PMC11366826 DOI: 10.1002/mco2.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The challenge of disease relapsed/refractory (R/R) remains a therapeutic hurdle in chimeric antigen receptor (CAR) T-cell therapy, especially for hematological diseases, with chronic lymphocytic leukemia (CLL) being particularly resistant to CD19 CAR T cells. Currently, there is no approved CAR T-cell therapy for CLL patients. In this study, we aimed to address this unmet medical need by choosing the B-cell activating factor receptor (BAFF-R) as a promising target for CAR design against CLL. BAFF-R is essential for B-cell survival and is consistently expressed on CLL tumors. Our research discovered that BAFF-R CAR T-cell therapy exerted the cytotoxic effects on both CLL cell lines and primary B cells derived from CLL patients. In addition, the CAR T cells exhibited cytotoxicity against CD19-knockout CLL cells that are resistant to CD19 CAR T therapy. Furthermore, we were able to generate BAFF-R CAR T cells from small blood samples collected from CLL patients and then demonstrated the cytotoxic effects of these patient-derived CAR T cells against autologous tumor cells. Given these promising results, BAFF-R CAR T-cell therapy has the potential to meet the long-standing need for an effective treatment on CLL patients.
Collapse
Affiliation(s)
- Yaqing Qie
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Martha E. Gadd
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Qing Shao
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Tommy To
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Andrew Liu
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
| | - Shuhua Li
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Rocio Rivera‐Valentin
- Department of Pediatric Hematology‑OncologyUniversity of Florida‐JacksonvilleJacksonvilleFloridaUSA
| | - Farah Yassine
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Hemant S. Murthy
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
- Blood and Marrow Transplantation and Cellular Therapy ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Roxana Dronca
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Mohamed A. Kharfan‐Dabaja
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
- Blood and Marrow Transplantation and Cellular Therapy ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Hong Qin
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
- Division of Hematology and Medical OncologyDepartment of Internal MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Yan Luo
- Regenerative Immunotherapy and CAR‐T Translational Research ProgramMayo ClinicJacksonvilleFloridaUSA
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
4
|
Skarlis C, Papadopoulos V, Raftopoulou S, Mavragani CP, Evangelopoulos ME. B-cell activating factor gene variants in multiple sclerosis: Possible associations with disease susceptibility among females. Clin Immunol 2023; 257:109847. [PMID: 37995946 DOI: 10.1016/j.clim.2023.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Although B cells and B cell activating factor (BAFF) have been previously implicated in MS pathogenesis, data regarding the genetic influence of BAFF polymorphisms on MS susceptibility are limited. Here we aim to explore whether BAFF polymorphisms could contribute to MS susceptibility. 156 RRMS patients fulfilling the revised McDonald criteria for MS diagnosis and 220 HCs were enrolled. Clinical, laboratory, and imaging characteristics were recorded. BAFF rs9514827, rs1041569, and rs9514828 polymorphisms were assessed by RFLP-PCR in DNA samples extracted from whole peripheral blood. The BAFF rs1041569 TT genotype along with the CTT and TTC haplotypes were associated with significantly increased risk for MS development in female MS patients compared to healthy female counterparts. These findings were not confirmed in males. The rs1041569 BAFF variant together with the CTT and TTC BAFF haplotypes derived from the BAFF rs9514827, rs1041569, and rs9514828 polymorphisms may represent novel genetic contributors to the development of MS in females.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens (NKUA), M. Asias 75, 11527, Athens, Greece
| | - Vassilis Papadopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sylvia Raftopoulou
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens (NKUA), M. Asias 75, 11527, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens (NKUA), M. Asias 75, 11527, Athens, Greece; Joint Academic Rheumatology Program, NKUA, Greece.
| | - Maria-Eleftheria Evangelopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Mathur M, Chan TM, Oh KH, Kooienga L, Zhuo M, Pinto CS, Chacko B. A PRoliferation-Inducing Ligand (APRIL) in the Pathogenesis of Immunoglobulin A Nephropathy: A Review of the Evidence. J Clin Med 2023; 12:6927. [PMID: 37959392 PMCID: PMC10650434 DOI: 10.3390/jcm12216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A PRoliferation-Inducing Ligand (APRIL), the thirteenth member of the tumor necrosis factor superfamily, plays a key role in the regulation of activated B cells, the survival of long-lived plasma cells, and immunoglobulin (Ig) isotype class switching. Several lines of evidence have implicated APRIL in the pathogenesis of IgA nephropathy (IgAN). Globally, IgAN is the most common primary glomerulonephritis, and it can progress to end-stage kidney disease; yet, disease-modifying treatments for this condition have historically been lacking. The preliminary data in ongoing clinical trials indicate that APRIL inhibition can reduce proteinuria and slow the rate of kidney disease progression by acting at an upstream level in IgAN pathogenesis. In this review, we examine what is known about the physiologic roles of APRIL and evaluate the experimental and epidemiological evidence describing how these normal biologic processes are thought to be subverted in IgAN. The weight of the preclinical, clinical, and genetic data supporting a key role for APRIL in IgAN has galvanized pharmacologic research, and several anti-APRIL drug candidates have now entered clinical development for IgAN. Herein, we present an overview of the clinical results to date. Finally, we explore where more research and evidence are needed to transform potential therapies into clinical benefits for patients with IgAN.
Collapse
Affiliation(s)
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Laura Kooienga
- Colorado Kidney and Vascular Care, Denver, CO 80012, USA;
| | - Min Zhuo
- Visterra, Inc., Waltham, MA 02451, USA;
- Division of Renal Medicine, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cibele S. Pinto
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ 08540, USA;
| | - Bobby Chacko
- Nephrology and Transplantation Unit, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
6
|
Parodis I, Long X, Karlsson MCI, Huang X. B Cell Tolerance and Targeted Therapies in SLE. J Clin Med 2023; 12:6268. [PMID: 37834911 PMCID: PMC10573616 DOI: 10.3390/jcm12196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70281 Örebro, Sweden
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| |
Collapse
|
7
|
Salvadori M. Update on Desensitization Strategies and Drugs on Hyperimmune Patients for Kidney Transplantation. TRANSPLANTOLOGY 2023; 4:139-150. [DOI: 10.3390/transplantology4030014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The presence in a recipient of antibodies directed against donor-specific antigens represents a major obstacle to transplantation. Removal of these antibodies represents a challenge for physicians dealing with kidney transplantation. Several strategies, techniques, and old and new drugs are currently used for desensitizing these patients. Desensitization may either occur before transplantation, at the time of transplantation, or after transplantation according to whether physicians are dealing with living or deceased donors. Different techniques may be used to reveal the presence of antibodies in the recipients; each technique has different sensitivities and specificities, and different advantages and drawbacks. The targets of the drugs used to desensitize are B cells, plasma cells, the antibodies themselves, and, finally, the complement that is the final actor causing tissue disruption. B cells are relatively easy to target; targeting the plasma cell is more difficult. Indeed, several new drugs are also used in randomized trials to defeat plasma cells. Antibodies may be removed easily, but their removal is often followed by antibody rebound. The complement is not easy to defeat and new drugs are currently used for this aim. Overall, despite difficulties, desensitization is currently possible in many cases, to obtain a safe and successful transplantation.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Renal Unit, Department of Transplantation, Careggi University Hospital, 50139 Florence, Italy
| |
Collapse
|
8
|
Alturaiki W. Considerations for Novel COVID-19 Mucosal Vaccine Development. Vaccines (Basel) 2022; 10:1173. [PMID: 35893822 PMCID: PMC9329946 DOI: 10.3390/vaccines10081173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Mucosal surfaces are the first contact sites of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most SARS-CoV-2 vaccines induce specific IgG responses but provide limited mucosal immunity. Cytokine B-cell activation factor (BAFF) and A proliferation-inducing ligand (APRIL) in the tumor necrosis factor (TNF) superfamily play key immunological functions during B cell development and antibody production. Furthermore, homeostatic chemokines, such as C-X-C motif chemokine ligand 13 (CXCL13), chemokine (C-C motif) ligand 19 (CCL19), and CCL21, can induce B- and T-cell responses to infection and promote the formation of inducible bronchus-associated lymphoid tissues (iBALT), where specific local immune responses and memory cells are generated. We reviewed the role of BAFF, APRIL, CXCL13, CCL19, and CCL21 in the activation of local B-cell responses and antibody production, and the formation of iBALT in the lung following viral respiratory infections. We speculate that mucosal vaccines may offer more efficient protection against SARS-CoV-2 infection than systematic vaccines and hypothesize that a novel SARS-CoV-2 mRNA mucosal vaccine using BAFF/APRIL or CXCL13 as immunostimulants combined with the spike protein-encoding mRNA may enhance the efficiency of the local immune response and prevent the early stages of SARS-CoV-2 replication and the rapid viral clearance from the airways.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
9
|
Ahmadian E, Khatibi SMH, Vahed SZ, Ardalan M. Novel treatment options in rituximab-resistant membranous nephropathy patients. Int Immunopharmacol 2022; 107:108635. [DOI: 10.1016/j.intimp.2022.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
|
10
|
Mortazavi SE, Lugaajju A, Kaddumukasa M, Tijani MK, Kironde F, Persson KEM. Osteopontin and malaria: no direct effect on parasite growth, but correlation with P. falciparum-specific B cells and BAFF in a malaria endemic area. BMC Microbiol 2021; 21:307. [PMID: 34742229 PMCID: PMC8571855 DOI: 10.1186/s12866-021-02368-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background The dysregulation of B cell activation is prevalent during naturally acquired immunity against malaria. Osteopontin (OPN), a protein produced by various cells including B cells, is a phosphorylated glycoprotein that participates in immune regulation and has been suggested to be involved in the immune response against malaria. Here we studied the longitudinal concentrations of OPN in infants and their mothers living in Uganda, and how OPN concentrations correlated with B cell subsets specific for P. falciparum and B cell activating factor (BAFF). We also investigated the direct effect of OPN on P. falciparum in vitro. Results The OPN concentration was higher in the infants compared to the mothers, and OPN concentration in infants decreased from birth until 9 months. OPN concentration in infants during 9 months were independent of OPN concentrations in corresponding mothers. OPN concentrations in infants were inversely correlated with total atypical memory B cells (MBCs) as well as P. falciparum-specific atypical MBCs. There was a positive correlation between OPN and BAFF concentrations in both mothers and infants. When OPN was added to P. falciparum cultured in vitro, parasitemia was unaffected regardless of OPN concentration. Conclusions The concentrations of OPN in infants were higher and independent of the OPN concentrations in corresponding mothers. In vitro, OPN does not have a direct effect on P. falciparum growth. Our correlation analysis results suggest that OPN could have a role in the B cell immune response and acquisition of natural immunity against malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02368-y.
Collapse
Affiliation(s)
- Susanne E Mortazavi
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Allan Lugaajju
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mark Kaddumukasa
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Muyideen Kolapo Tijani
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.,Cellular Parasitology Program, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Fred Kironde
- Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
11
|
Levy RA, Gonzalez-Rivera T, Khamashta M, Fox NL, Jones-Leone A, Rubin B, Burriss SW, Gairy K, van Maurik A, Roth DA. 10 Years of belimumab experience: What have we learnt? Lupus 2021; 30:1705-1721. [PMID: 34238087 PMCID: PMC8564244 DOI: 10.1177/09612033211028653] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease affecting both adults and children. Belimumab is the only biologic approved for SLE, and the first in a class of drugs known as B-lymphocyte stimulator-specific inhibitors. The introduction of intravenous belimumab in 2011 was a major advance, being the first new therapy approved for SLE in over 50 years. As of April 2021, more than 7200 people with SLE have received belimumab in clinical studies, and it is approved in over 75 countries for the treatment of adults with SLE. A subcutaneous, self-injectable belimumab formulation was licensed in 2017 by both the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). Belimumab was then approved for use in children in Europe, the USA and Japan in 2019, and China and Brazil in 2020. Recently, belimumab became the first FDA-approved drug for the treatment of adults with active lupus nephritis (LN), the most-common severe manifestation of SLE.Over the past 10 years, belimumab has established its position as a disease modifier in the SLE treatment paradigms. Robust evidence from randomised clinical studies and observational, real-world studies has demonstrated the tolerability and efficacy of belimumab for reducing disease activity and the risk of new, severe SLE flares. This enables patients to taper their glucocorticoid use, which limits damage accumulation. Significantly more patients with active LN met the criteria for renal responses and were at less risk of a renal-related event or death after receiving belimumab plus standard therapy, compared with standard therapy on top of mandatory steroid reduction. Ongoing clinical studies are evaluating belimumab's effectiveness in various indications beyond SLE. Post-marketing and registry studies are gathering additional data on key areas such as pregnancy outcomes after belimumab exposure and belimumab co-administration with other biologics.
Collapse
|
12
|
Safarzadeh Kozani P, Safarzadeh Kozani P, O'Connor RS. In Like a Lamb; Out Like a Lion: Marching CAR T Cells Toward Enhanced Efficacy in B-ALL. Mol Cancer Ther 2021; 20:1223-1233. [PMID: 33903140 PMCID: PMC8285067 DOI: 10.1158/1535-7163.mct-20-1089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Combining synthetic biology with adoptive T-cell transfer has led to promising advances in the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Chimeric antigen receptors (CARs) are synthetic receptors that redirect T-cell specificity against cancer. CARs include "built-in" signaling domains that reprogram T-cell metabolism, enhance effector function, and support long-term persistence. Despite their success in blood-based malignancies, relapse can occur in CD19-redirected CAR T-cell therapies for several reasons, including poor engraftment, impaired in vivo proliferation, and T-cell senescence. Herein, we explain how subtle alterations in CAR design may overcome barriers to effective adoptive immunotherapy. We also discuss how the physiochemical properties of the single-chain variable fragment (scFv) affect differentiation and persistence. Moreover, we describe innovative advances in CAR engineering and provide insight into the development of humanized scFvs whose proposed benefits include increased persistence and improved clinical outcomes. Tumor cells can evade CAR T-cell-mediated detection and elimination due to the emergence or presence of CD19-negative leukemic cell subpopulations. We also discuss the opportunities and challenges in targeting other B-ALL-associated antigens. Identifying alternate targets is fundamentally necessary to restore the success of CAR T-cell therapies in CD19-negative patients with B-ALL.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Disease Management
- Genetic Engineering
- Humans
- Immunity
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Research Design
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
14
|
Liang L, Huang Z, Li N, Wang D, Ding L, Shi H, Hong M. Effects of ammonia exposure on antioxidant function, immune response and NF-κB pathway in Chinese Strip-necked Turtle (Mauremys sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105621. [PMID: 33129562 DOI: 10.1016/j.aquatox.2020.105621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
As one of the main toxic substances in aquaculture water, ammonia causes seriously physiological harm to aquatic animals. In order to investigate the effects of ammonia exposure on the antioxidant defense, immune response, and NF-κB signaling pathway in Chinese Strip-necked Turtle (Mauremys sinensis), we designed two experimental groups (control and 6.45 mM ammonia), and sampled at 6 h, 24 h, 48 h, re 24 h (recover 24 h), and re 48 h. The results showed that the blood ammonia (BA) content was significantly increased when the turtles were subjected to ammonia, and the activities of cholinesterase (CHE) and aspartate aminotransferase (AST) in the serum also showed a significant upward trend. The malondialdehyde (MDA) content continuously increased during ammonia exposure, and more than doubled at 48 h compared with the control group. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and their corresponding relative mRNA expression levels in the liver during ammonia exposure were obviously increased when compared to the control group, but most decreased to the normal levels at re 48 h. In addition, the relative mRNA and protein expression levels of NF-E2 related factor 2 (Nrf2) showed similar up-regulation patterns to antioxidase during ammonia exposed periods; whereas kelch-like ECH-binding protein 1 (Keap1), as Nrf2 negative regulator, showed opposite patterns. Moreover, the relative mRNA expression levels of heat shock proteins (HSP70, HSP90) significantly elevated upon the exposure of ammonia. Furthermore, ammonia increased the relative mRNA and protein expression levels of p50 and p65 at different exposed times. The reative mRNA expression levels of immune cytokines (BAFF and IL-6) were upregulated during ammonia exposured time, while there was a decline but did not return to normal levels, in the recovery periods. Taken together, these results indicated that antioxidation, immunity, and NF-κB signaling played a certain protective role for Mauremys sinensis under ammonia exposure. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in turtles.
Collapse
Affiliation(s)
- Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Dongmei Wang
- Tropical Biological Technology Research Institute, Chinese Academy of Tropical Agriculture Science, Haikou 571101, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
15
|
Lodde V, Floris M, Beerman I, Munk R, Guha R, Steri M, Orrù V, Abdelmohsen K, Crompton PD, Gorospe M, Idda ML, Cucca F. Evolutionarily Selected Overexpression of the Cytokine BAFF Enhances Mucosal Immune Response Against P. falciparum. Front Immunol 2020; 11:575103. [PMID: 33123155 PMCID: PMC7573158 DOI: 10.3389/fimmu.2020.575103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022] Open
Abstract
We have previously shown that a variant of the TNFSF13B gene that we called BAFF-var increases the production of the cytokine BAFF, upregulating humoral immunity and increasing the risk for certain autoimmune diseases. In addition, genetic population signatures revealed that BAFF-var was evolutionarily advantageous, most likely by increasing resistance to malaria infection, which is a prime candidate for selective pressure. To evaluate whether the increased soluble BAFF (sBAFF) production confers protection, we experimentally assessed the role of BAFF-var in response to malaria antigens. Lysates of erythrocytes infected with Plasmodium falciparum (iRBCs) or left uninfected (uRBCs, control) were used to treat peripheral blood mononuclear cells (PBMCs) with distinct BAFF genotypes. The PBMCs purified from BAFF-var donors and treated with iRBCs showed different levels of specific cells, immunoglobulins, and cytokines as compared with BAFF-WT. In particular, a relevant differential effect on mucosal immunity B subpopulations have been observed. These findings point to specific immune cells and molecules through which the evolutionary selected BAFF-var may have improved fitness during P. falciparum infection.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Rajan Guha
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Maria Laura Idda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| |
Collapse
|
16
|
Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE? J Autoimmun 2020; 112:102490. [PMID: 32535128 PMCID: PMC7384952 DOI: 10.1016/j.jaut.2020.102490] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a systemic autoimmune disease driven by a complex combination of genetic, environmental, and other immunoregulatory factors. The development of targeted therapies is complicated by heterogeneous clinical manifestations, varying organ involvement, and toxicity. Despite advances in understanding the mechanisms contributing to SLE, only one biologic drug, belimumab, is FDA-approved. The identification and development of potential therapies have largely been driven by studies in lupus animal models. Therefore, direct comparison of both the therapeutic and immunological findings in human and murine SLE studies is critical and can reveal important insights into indeed how useful and relevant are murine studies in SLE drug development. Studies involving belimumab, mycophenolate mofetil, abatacept, rituximab, and anti-interferon strategies generally demonstrated analogous findings in the attenuation of SLE manifestations and modulation of select immune cell populations in human and murine SLE. While further basic and translational studies are needed to identify SLE patient subsets likely to respond to particular therapeutic modalities and in dissecting complex mechanisms, we believe that despite some inherent weaknesses SLE mouse models will continue to be integral in developing targeted SLE therapies.
Collapse
Affiliation(s)
- Erica Moore
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA; Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
17
|
Alturaiki W. The roles of B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) in allergic asthma. Immunol Lett 2020; 225:25-30. [PMID: 32522667 DOI: 10.1016/j.imlet.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Allergic asthma, which is the most common type of asthma, is mediated by the IgE response, and B cells are key drivers of allergic inflammation in the lungs. B cell activation factor (BAFF) and proliferation inducing ligand (APRIL) are members of the TNF superfamily. BAFF and APRIL interact with three receptors, namely the B cell activation factor receptor (BAFF-r), B cell maturation antigen (BCMA), and transmembrane activator; calcium modulator; and cyclophilin ligand interactor (TACI). The interaction of BAFF and APRIL with their receptors induces B cell activation, differentiation, and antibody production. BAFF and APRIL are produced by airway epithelial cells during the response to allergens or infectious agents, and have shown to induce local IgE production, thus establishing allergic inflammation in the airways. BAFF can maintain in inflamed airways during infection and can inhibit regulatory T cells (Tregs), thereby promoting allergic inflammation in the airways. This review aims to outline current knowledge about BAFF/APRIL systems in humans as well as in murine models of allergic asthma. The precise role of BAFF and APRIL and their receptors in allergic asthma remains unclear. Therefore, further studies are required to identify and elucidate their roles in enhancing IgE production and activating immune cells that drive the Th2 effector response and initiate allergic inflammation in asthma. Targeting BAFF/APRIL or their cognate receptors may offer a novel therapeutic approach in asthma treatment.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| |
Collapse
|
18
|
Dong Z, Cheng WA, Smith DL, Huang B, Zhang T, Chang WC, Wang X, Forman SJ, Kwak LW, Qin H. Antitumor efficacy of BAFF-R targeting CAR T cells manufactured under clinic-ready conditions. Cancer Immunol Immunother 2020; 69:2139-2145. [PMID: 32451682 PMCID: PMC7511472 DOI: 10.1007/s00262-020-02614-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022]
Abstract
B-cell malignancies can potentially be cured by CD19 chimeric antigen receptor (CAR) T-cell therapy. Although clinical response rates can be up to 93% in acute lymphoblastic leukemia, treatment-related antigen loss and lack of therapeutic persistence contribute to disease relapse. These shortcomings of current CAR T-cell therapy indicate the need for biologically relevant target selection and for improving the efficacy and persistence of the CAR T cells, which we have addressed by developing a novel B-cell activating factor receptor (BAFF-R) CAR T-cell therapy with improved therapeutic persistence. BAFF-R is a B-cell survival receptor and highly expressed in B-cell malignancies. We developed a prototype CAR T cell that efficiently and specifically eliminated BAFF-R expressing human B-cell tumors in several xenogeneic mouse models, including models of CD19 antigen loss. We proceeded with translational development and validation of BAFF-R CAR T cells produced under current good manufacturing practices (cGMP). cGMP-grade BAFF-R CAR T cells underwent in vitro and in vivo validation in established models to confirm that the potency and efficacy of our original research modeling was replicated. Food and Drug Administration required release testing was performed to ensure our BAFF-R CAR T cells meet specifications for new drug products. Completing and exceeding these requirements, the data fully support the initiation of a first-in-human Phase 1 trial for BAFF-R-positive relapsed/refractory (r/r) B-ALL.
Collapse
Affiliation(s)
- Zhenyuan Dong
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Wesley A Cheng
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - D Lynne Smith
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Brian Huang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Tiantian Zhang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Wen-Chung Chang
- Center for CAR T Cell Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiuli Wang
- Center for CAR T Cell Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Stephen J Forman
- Center for CAR T Cell Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Larry W Kwak
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hong Qin
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
19
|
Lee WS, Amengual O. B cells targeting therapy in the management of systemic lupus erythematosus. Immunol Med 2019; 43:16-35. [PMID: 32107989 DOI: 10.1080/25785826.2019.1698929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which affects the majority of organs and systems. Traditional therapies do not lead to complete remission of disease but only relieve symptoms and inflammation. B cells are the most important effector cell types in the pathogenesis of SLE. Therefore, therapies targeting B cells and their related cytokines are a very important milestone for SLE treatment. Several biologics that modulate B cells, either depleting B cells or blocking B cell functions, have been developed and evaluated in clinical trials. Belimumab, a fully humanized monoclonal antibody that specifically binds B cells activating factor (BAFF), was the first of these agents approved for SLE treatment. In this review, we explore the currently available evidence in B cell targeted therapies in SLE including agents that target B cell surface antigens (CD19, CD20, CD22), B cell survival factors (BAFF and a proliferation-inducing ligand, APRIL), cytokines (interleukin-1 and type 1 interferons) and co-stimulatory molecules (CD40 ligand). We highlighted the mechanisms of action and the individual characteristics of these biologics, and present an update on the clinical trials that have evaluated their efficacy and safety. Finally, we describe some of the emerging and promising therapies for SLE treatment.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Olga Amengual
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome: Old and new therapeutic targets. J Autoimmun 2019; 110:102364. [PMID: 31831255 DOI: 10.1016/j.jaut.2019.102364] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
Sjögren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
21
|
Bath NM, Ding X, Verhoven BM, Wilson NA, Coons L, Sukhwal A, Zhong W, Redfield III RR. Autoantibody production significantly decreased with APRIL/BLyS blockade in murine chronic rejection kidney transplant model. PLoS One 2019; 14:e0223889. [PMID: 31647850 PMCID: PMC6812745 DOI: 10.1371/journal.pone.0223889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic antibody mediated rejection (cAMR) remains a significant barrier to achieving long-term graft survival in kidney transplantation, which results from alloantibody production from B lymphocytes and plasma cells. APRIL (A proliferation-inducing ligand) and BLyS (B lymphocyte stimulator) are critical survival factors for B lymphocytes and plasma cells. Here we describe the results of APRIL/BLyS blockade in a murine cAMR kidney transplant model. c57/B6 mice underwent kidney transplantation with Bm12 kidneys (minor MHC mismatch), a well-described model for chronic rejection where animals cannot make donor specific antibody but rather make antinuclear antibody (ANA). Following transplantation, animals received TACI-Ig (to block APRIL and BLyS) or no treatment. Animals were continued on treatment until harvest 4 weeks following transplant. Serum was analyzed for circulating anti-nuclear autoantibodies using HEp-2 indirect immunofluorescence. Spleen and transplanted kidneys were analyzed via H&E. ANA production was significantly decreased in APRIL/BLyS blockade treated animals (p<0.0001). No significant difference in autoantibody production was found between syngeneic transplant control (B6 to B6) and APRIL/BLyS blockade treated animals (p = 0.90). Additionally, disruption of splenic germinal center architecture was noted in the APRIL/BLyS blockade treated animals. Despite the significant decrease in autoantibody production and germinal center disruption, no significant difference in lymphocyte infiltration was noted in the transplanted kidney. APRIL/BLyS blockade resulted in a significant decrease of autoantibody production and disrupted splenic germinal center formation in a chronic kidney transplant model, however in this model no difference in kidney transplant pathology was seen, which may have to do with the absence of any T cell centric immunosuppression. Regardless, these findings suggest that APRIL/BLyS blockade may play a role in decreasing antibody formation long-term in kidney transplantation. Future investigations will use APRIL/BLyS blockade in conjunction with T lymphocyte depleting agents to determine its efficacy in chronic rejection.
Collapse
Affiliation(s)
- Natalie M. Bath
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiang Ding
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret M. Verhoven
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy A. Wilson
- Department of Medicine, Division of Nephrology, University of Wisconsin-Madison, Madison, Wisconsin, Unites States of America
| | - Lauren Coons
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adarsh Sukhwal
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Robert R. Redfield III
- Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
Skarlis C, Marketos N, Mavragani CP. Biologics in Sjögren's syndrome. Pharmacol Res 2019; 147:104389. [DOI: 10.1016/j.phrs.2019.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
23
|
Lee WH, Seo D, Lim SG, Suk K. Reverse Signaling of Tumor Necrosis Factor Superfamily Proteins in Macrophages and Microglia: Superfamily Portrait in the Neuroimmune Interface. Front Immunol 2019; 10:262. [PMID: 30838001 PMCID: PMC6389649 DOI: 10.3389/fimmu.2019.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type II transmembrane proteins commonly containing the TNF homology domain. The superfamily contains more than 20 protein members, which can be released from the cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines and regulate diverse biological processes, including immune responses, proliferation, differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many TNFSF proteins are also known to be responsible for the regulation of innate immunity and inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse signaling play important roles in these processes. In this review, we discuss the functional expression and roles of various reverse signaling molecules and pathways of TNFSF members in macrophages and microglia in the central nervous system (CNS). A thorough understanding of the roles of TNFSF ligands and receptors in the activation of macrophages and microglia may improve the treatment of inflammatory diseases in the brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited to gain further insights into the functions of the neuroimmune interface in physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Su-Geun Lim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
24
|
Fava A, Petri M. Systemic lupus erythematosus: Diagnosis and clinical management. J Autoimmun 2019; 96:1-13. [PMID: 30448290 PMCID: PMC6310637 DOI: 10.1016/j.jaut.2018.11.001] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a worldwide chronic autoimmune disease which may affect every organ and tissue. Genetic predisposition, environmental triggers, and the hormonal milieu, interplay in disease development and activity. Clinical manifestations and the pattern of organ involvement are widely heterogenous, reflecting the complex mosaic of disrupted molecular pathways converging into the SLE clinical phenotype. The SLE complex pathogenesis involves multiple cellular components of the innate and immune systems, presence of autoantibodies and immunocomplexes, engagement of the complement system, dysregulation of several cytokines including type I interferons, and disruption of the clearance of nucleic acids after cell death. Use of immunomodulators and immunosuppression has altered the natural course of SLE. In addition, morbidity and mortality in SLE not only derive from direct immune mediated tissue damage but also from SLE and treatment associated complications such as accelerated coronary artery disease and increased infection risk. Here, we review the diagnostic approach as well as the etiopathogenetic rationale and clinical evidence for the management of SLE. This includes 1) lifestyle changes such as avoidance of ultraviolet light; 2) prevention of comorbidities including coronary artery disease, osteoporosis, infections, and drug toxicities; 3) use of immunomodulators (i.e. hydroxychloroquine and vitamin D); and 4) immunosuppressants and targeted therapy. We also review new upcoming agents and regimens currently under study.
Collapse
Affiliation(s)
- Andrea Fava
- Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 7500, Baltimore, MD 21205, USA
| | - Michelle Petri
- Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 7500, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Yiwen Z, Shilin G, Yingshi C, Lishi S, Baohong L, Chao L, Linghua L, Ting P, Hui Z. Efficient generation of antigen-specific CTLs by the BAFF-activated human B Lymphocytes as APCs: a novel approach for immunotherapy. Oncotarget 2018; 7:77732-77748. [PMID: 27780916 PMCID: PMC5363617 DOI: 10.18632/oncotarget.12792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Efficient antigen presentation is indispensable for cytotoxic T lymphocyte (CTL)-mediated immunotherapy. B-lymphocytes propagated with CD40L have been developed as antigen-presenting cells (APCs), but this capacity needs further optimization. Here, we aimed to expand human B-lymphocytes on a large scale while maintaining their antigen-presenting ability by using both CD40L and B-cell activating factor (BAFF). The addition of BAFF enhanced the expansion efficiency and prolonged the culture time without causing apoptosis of the expanded B-cells. This method thus provided an almost unlimited source of cellular adjuvant to achieve sufficient expansion of CTLs in cases where several rounds of stimulation are required. We also showed that the addition of BAFF significantly enhanced the expression of major costimulatory molecules, CD80 and CD86. Subsequently, the antigen-presenting ability of the B-lymphocytes also increased. Consequently, these B-lymphocytes showed robust CTL responses to inhibit tumor growth after tumor-specific peptide pulses. A similar method induced potent antigen-specific CTL responses, which effectively eradicated human immunodeficiency virus type 1 (HIV-1) latency in CD4 T-lymphocytes isolated from patients receiving suppressive anti-retroviral therapy (ART). Together, our findings indicate that potent antigen-specific CTLs can be generated using BAFF-activated B-lymphocytes as APCs ex vivo. This approach can be applied for CTL-mediated immunotherapy in patients with cancers or chronic viral infections.
Collapse
Affiliation(s)
- Zhang Yiwen
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Gao Shilin
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Chen Yingshi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Su Lishi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Luo Baohong
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Liu Chao
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Li Linghua
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, Guangdong, 510080, China
| | - Pan Ting
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhang Hui
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
26
|
Pinna RA, Dos Santos AC, Perce-da-Silva DS, da Silva LA, da Silva RNR, Alves MR, Santos F, de Oliveira Ferreira J, Lima-Junior JC, Villa-Verde DM, De Luca PM, Carvalho-Pinto CE, Banic DM. Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:207-220. [PMID: 29314720 PMCID: PMC5946147 DOI: 10.1002/iid3.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Adriana C Dos Santos
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Daiana S Perce-da-Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Luciene A da Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Rodrigo N Rodrigues da Silva
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Marcelo R Alves
- Laboratory of Research in Pharmacogenetics, National Institute of Infectology, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Fátima Santos
- Laboratory of Entomology, LACEN/RO, Rua Anita Garibalde, 4130 - Costa e Silva, Porto Velho, RO, Brazil, 76803-620
| | - Joseli de Oliveira Ferreira
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Josué C Lima-Junior
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Déa M Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Paula M De Luca
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Carla E Carvalho-Pinto
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Dalma M Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| |
Collapse
|
27
|
Giordano D, Draves KE, Young LB, Roe K, Bryan MA, Dresch C, Richner JM, Diamond MS, Gale M, Clark EA. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization. PLoS Pathog 2017; 13:e1006743. [PMID: 29176765 PMCID: PMC5720816 DOI: 10.1371/journal.ppat.1006743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/07/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Kevin E. Draves
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Lucy B. Young
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Marianne A. Bryan
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Christiane Dresch
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Justin M. Richner
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Edward A. Clark
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Walker JA, Vuyyuru R, Manser T, Alugupalli KR. Humoral Immunity in Mice Transplanted with Hematopoietic Stem Cells Derived from Human Umbilical Cord Blood Recapitulates That of Human Infants. Stem Cells Dev 2017; 26:1715-1723. [PMID: 29099340 DOI: 10.1089/scd.2017.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immunodeficient mice transplanted with human hematopoietic stem cells (HSCs) have been referred to as "Human Immune System" (HIS) mice and are a translational platform for studying human immune responses in vivo. Human HSC sources used in generating HIS mice include fetal liver (FL), umbilical cord blood (CB), and adult bone marrow (BM). Since HSCs from FL, CB, and BM are produced at various stages of human development, we tested whether mice transplanted with these three HSCs differ in their immune responses. We found that compared with CB HSCs or FL HSCs, adult BM HSCs reconstitute the immune system poorly. The resulting HIS mice do not mount an antibody response to Borrelia hermsii infection and as a consequence suffer persistently high levels of bacteremia. While both CB and FL HSCs yield comparable levels of immune reconstitution of HIS mice resulting in robust anti-B. hermsii immune responses, FL HSC-transplanted mice exhibited a discernable difference in their human B cell maturity as identified by an increased frequency of CD10+ immature B cells and relatively smaller lymphoid follicles compared with CB HSC-transplanted mice. Although CB HSC-transplanted mice generated robust antibody responses to B. hermsii and specific protein antigens of B. hermsii, they failed to respond to Salmonella typhi Vi polysaccharide, a classical T cell-independent antigen. This situation resembles that seen in human infants and young children. Therefore, CB HSC-transplanted mice may serve as a translation platform to explore approaches to overcome the impaired antipolysaccharide responses characteristic of human infants.
Collapse
Affiliation(s)
- Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Raja Vuyyuru
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Tim Manser
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Abstract
Crosstalk between B and T cells in transplantation is increasingly recognized as being important in the alloimmune response. T cell activation of B cells occurs by a 3-stage pathway, culminating with costimulation signals. We review the distinct T cell subtypes required for B-cell activation and discuss the formation of the germinal center (GC) after transplantation, with particular reference to the repopulation of the GC after depletional induction, and the subsequent effect of immunosuppressive manipulation of T cell-B cell interactions. In addition, ectopic GCs are seen in transplantation, but their role is not fully understood. Therapeutic options to target T cell-B cell interactions are of considerable interest, both as immunosuppressive tools, and to aid in the further understanding of these important alloimmune mechanisms.
Collapse
|
30
|
Abstract
Belimumab is the only approved biological agent for the treatment of systemic lupus erythematosus (SLE). It is a fully humanized IgG1γ monoclonal antibody directed against soluble B lymphocyte stimulator (BLyS). It is indicated as an add-on therapy for the treatment of adult patients with active, autoantibody-positive SLE, who are receiving standard therapy. Belimumab is generally well-tolerated, common adverse effects include infections, infusion reactions, hypersensitivity, headache, nausea, and fatigue. Psychiatric events including suicidal tendency, progressive multifocal leukoencephalopathy and malignancies too have been reported. Apart from SLE, the drug is also being tried for other autoimmune disorders.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Skin and VD, RUHS College of Medical Sciences and Government RDBP Jaipuria Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
31
|
Yong PF, Dziadzio M, Grimbacher B. Defects in B Cell Survival and Activation. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016:466-478. [DOI: 10.1016/b978-0-12-374279-7.18014-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Li R, Redmond AK, Wang T, Bird S, Dooley H, Secombes CJ. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula). FISH & SHELLFISH IMMUNOLOGY 2015; 47:381-389. [PMID: 26386192 DOI: 10.1016/j.fsi.2015.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Anthony K Redmond
- Centre for Genome-Enabled Biology & Medicine (CGEBM), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Helen Dooley
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
33
|
Valor L, López-Longo FJ. [Modulating the survival and maturation system of B lymphocytes: Current and future new therapeutic strategies in systemic lupus erythematosus]. Med Clin (Barc) 2015; 145:206-10. [PMID: 25433780 DOI: 10.1016/j.medcli.2014.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/30/2014] [Accepted: 08/19/2014] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease associated with an aberrant production of autoantibodies by self-reactive B lymphocytes. The study of the phenotypic characteristics of B lymphocytes and the identification of their surface receptors such as BAFF-R, TACI and BCMA, which are responsible of their survival and maturation, have contributed to the development of new therapeutic strategies in recent years.
Collapse
Affiliation(s)
- Lara Valor
- Servicio de Reumatología, Hospital General Universitario Gregorio Marañón, Madrid, España.
| | | |
Collapse
|
34
|
B-Cell Activating Factor as a Cancer Biomarker and Its Implications in Cancer-Related Cachexia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:792187. [PMID: 26339644 PMCID: PMC4538579 DOI: 10.1155/2015/792187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/28/2015] [Indexed: 01/21/2023]
Abstract
B-cell activating factor (BAFF) is a cytokine and adipokine of the TNF ligand superfamily. The main biological function of BAFF in maintaining the maturation of B-cells to plasma cells has recently made it a target of the first FDA-approved selective BAFF antibody, belimumab, for the therapy of systemic lupus erythematosus. Concomitantly, the role of BAFF in cancer has been a subject of research since its discovery. Here we review BAFF as a biomarker of malignant disease activity and prognostic factor in B-cell derived malignancies such as multiple myeloma. Moreover, anti-BAFF therapy seems to be a promising approach in treatment of B-cell derived leukemias/lymphomas. In nonhematologic solid tumors, BAFF may contribute to cancer progression by mechanisms both dependent on and independent of BAFF's proinflammatory role. We also describe ongoing research into the pathophysiological link between BAFF and cancer-related cachexia. BAFF has been shown to contribute to inflammation and insulin resistance which are known to worsen cancer cachexia syndrome. Taking all the above together, BAFF is emerging as a biomarker of several malignancies and a possible hallmark of cancer cachexia.
Collapse
|
35
|
Szili D, Bankó Z, Tóth EA, Nagy G, Rojkovich B, Gáti T, Simon M, Hérincs Z, Sármay G. TGFβ activated kinase 1 (TAK1) at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells. PLoS One 2014; 9:e96381. [PMID: 24801688 PMCID: PMC4011794 DOI: 10.1371/journal.pone.0096381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR), receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R) and the innate receptor, Toll-like receptor 9 (TLR9). However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF) and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs), ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1) is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.
Collapse
Affiliation(s)
- Dániel Szili
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Bankó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - György Nagy
- Buda Hospital of Hospitaller Brothers of St. John, Budapest, Hungary
- Department of Rheumatology, Semmelweis University, Budapest, Hungary
| | | | - Tamás Gáti
- Buda Hospital of Hospitaller Brothers of St. John, Budapest, Hungary
| | - Melinda Simon
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Hérincs
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Sármay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
36
|
Sindhava VJ, Scholz JL, Stohl W, Cancro MP. APRIL mediates peritoneal B-1 cell homeostasis. Immunol Lett 2014; 160:120-7. [PMID: 24512739 DOI: 10.1016/j.imlet.2014.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 01/13/2023]
Abstract
BLyS (B lymphocyte stimulator) family cytokines and receptors play key roles in B-2 cell maturation and survival, but their importance for B-1 cells remains less clear. Here we use knockout mice to show that APRIL (A proliferation-inducing ligand), but not BLyS, plays a role in peritoneal B-1 cell maintenance. APRIL likely exerts its effects on peritoneal B-1 cells through binding to HSPG (heparan sulfate proteoglycans) rather than to the TACI (transmembrane activator and cyclophilin ligand interactor) receptor. Finally, we show that peritoneal macrophages express high levels of APRIL message, and are a likely local source of the cytokine in this anatomic locale.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - William Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| |
Collapse
|
37
|
Parsons RF, Vivek K, Redfield RR, Migone TS, Cancro MP, Naji A, Noorchashm H. B-cell tolerance in transplantation: is repertoire remodeling the answer? Expert Rev Clin Immunol 2014; 5:703. [PMID: 20161663 DOI: 10.1586/eci.09.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T lymphocytes are the primary targets of immunotherapy in clinical transplantation; however, B lymphocytes and their secreted alloantibodies are also highly detrimental to the allograft. Therefore, the achievement of sustained organ transplant survival will likely require the induction of B-lymphocyte tolerance. During development, acquisition of B-cell tolerance to self-antigens relies on clonal deletion in the early stages of B-cell compartment ontogeny. We contend that this mechanism should be recapitulated in the setting of alloantigens and organ transplantation to eliminate the alloreactive B-cell subset from the recipient. Clinically feasible targets of B-cell-directed immunotherapy, such as CD20 and B-lymphocyte stimulator (BLyS), should drive upcoming clinical trials aimed at remodeling the recipient B-cell repertoire.
Collapse
Affiliation(s)
- Ronald F Parsons
- 329 Stemmler Hall, 36th and Hamilton Walk, University of Pennsylvania School of Medicine, Harrison Department of Surgical Research, Philadelphia, PA 19104, USA, Tel.: +1 215 400 1806
| | | | | | | | | | | | | |
Collapse
|
38
|
Goenka R, Scholz JL, Sindhava VJ, Cancro MP. New roles for the BLyS/BAFF family in antigen-experienced B cell niches. Cytokine Growth Factor Rev 2014; 25:107-13. [PMID: 24507939 DOI: 10.1016/j.cytogfr.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
BLyS family members govern selection and survival of cells in the pre-immune B cell compartment, and emerging evidence suggests similar roles in antigen-experienced B cell pools. We review the features of this family, with particular emphasis on recent findings of how BLyS influences affinity maturation in germinal centers, which lie at the intersection of the pre-immune and antigen-experienced B cell compartments. We propose a model whereby tolerogenic selection at the transitional stage and affinity maturation in the germinal center employ the same BLyS driven mechanism.
Collapse
Affiliation(s)
- Radhika Goenka
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, United States.
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| | - Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| |
Collapse
|
39
|
B lymphocytes: development, tolerance, and their role in autoimmunity-focus on systemic lupus erythematosus. Autoimmune Dis 2013; 2013:827254. [PMID: 24187614 PMCID: PMC3804284 DOI: 10.1155/2013/827254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/06/2013] [Indexed: 01/10/2023] Open
Abstract
B lymphocytes are the effectors of humoral immunity, providing defense against pathogens through different functions including antibody production. B cells constitute approximately 15% of peripheral blood leukocytes and arise from hemopoietic stem cells in the bone marrow. It is here that their antigen receptors (surface immunoglobulin) are assembled. In the context of autoimmune diseases defined by B and/or T cell autoreactive that upon activation lead to chronic tissue inflammation and often irreversible structural and functional damage, B lymphocytes play an essential role by not only producing autoantibodies but also functioning as antigen-presenting cells (APC) and as a source of cytokines. In this paper, we describe B lymphocyte functions in autoimmunity and autoimmune diseases with a special focus on their abnormalities in systemic lupus erythematosus.
Collapse
|
40
|
Scholz JL, Oropallo MA, Sindhava V, Goenka R, Cancro MP. The role of B lymphocyte stimulator in B cell biology: implications for the treatment of lupus. Lupus 2013; 22:350-60. [PMID: 23553778 DOI: 10.1177/0961203312469453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
B lymphocyte stimulator (BLyS; also known as B cell activating factor (BAFF)) plays a key role in peripheral B cell tolerance. Mounting evidence indicates that B cell tolerance can be either broken or modulated by deliberately manipulating BLyS levels, and belimumab, a BLyS-neutralizing antibody, was recently approved for the treatment of systemic lupus erythematosus (SLE). Thus, intense investigation has focused on understanding how therapeutics targeting BLyS may work, and accumulating evidence suggests multiple points of action. BLyS signaling, in conjunction with B cell receptor (BCR) signaling, determines the size and quality of the mature primary B cell compartment. Moreover, BLyS family members play roles in antigen-experienced B cell selection and differentiation. Together, these findings have implications for the continued development of novel therapeutics that target BLyS.
Collapse
Affiliation(s)
- J L Scholz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA
| | | | | | | | | |
Collapse
|
41
|
Todeschini M, Cortinovis M, Perico N, Poli F, Innocente A, Cavinato RA, Gotti E, Ruggenenti P, Gaspari F, Noris M, Remuzzi G, Casiraghi F. In Kidney Transplant Patients, Alemtuzumab but Not Basiliximab/Low-Dose Rabbit Anti-Thymocyte Globulin Induces B Cell Depletion and Regeneration, Which Associates with a High Incidence of De Novo Donor-Specific Anti-HLA Antibody Development. THE JOURNAL OF IMMUNOLOGY 2013; 191:2818-28. [DOI: 10.4049/jimmunol.1203261] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Fabris M, Quartuccio L, Vital E, Pontarini E, Salvin S, Fabro C, Zabotti A, Benucci M, Manfredi M, Ravagnani V, Biasi D, Atzeni F, Sarzi-Puttini P, Morassi P, Fischetti F, Bazzicchi L, Saracco M, Pellerito R, Cimmino M, Carraro V, Semeraro A, Schiavon F, Caporali R, Bortolotti R, Govoni M, Fogolari F, Tonutti E, Bombardieri S, Emery P, De Vita S. The TTTT B lymphocyte stimulator promoter haplotype is associated with good response to rituximab therapy in seropositive rheumatoid arthritis resistant to tumor necrosis factor blockers. ACTA ACUST UNITED AC 2013; 65:88-97. [PMID: 23001900 DOI: 10.1002/art.37707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 09/11/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the polymorphisms in the promoter region of the B lymphocyte stimulator (BLyS) gene as markers of response to rituximab (RTX) in rheumatoid arthritis (RA). METHODS The study was first conducted in 152 Italian RA patients and then replicated in an additional 117 RA patients (73 Italian, 44 British). The European League Against Rheumatism response criteria were used to evaluate the response rate at months 4 and 6 after the first cycle of RTX, by means of the Disease Activity Score in 28 joints using the erythrocyte sedimentation rate; patients were classified according to the best response shown between months 4 and 6. BLyS promoter polymorphisms were analyzed by polymerase chain reaction followed by the analysis of the restriction fragments, BLyS promoter haplotypes were analyzed using the expectation-maximization algorithm, and BLyS serum levels were analyzed using enzyme-linked immunosorbent assay. Odds ratios (ORs) were calculated with 95% confidence intervals (95% CIs). RESULTS The TTTT BLyS promoter haplotype appeared to be significantly associated with response to RTX only in the subset of seropositive patients (those positive for rheumatoid factor and/or anti-cyclic citrullinated peptide). The replication study confirmed that this association was limited to seropositive RA patients in whom treatment with anti-tumor necrosis factor (anti-TNF) agents had previously failed. In the whole series of seropositive patients in whom anti-TNF agents had previously failed, patients carrying the TTTT BLyS promoter haplotype were more prevalent in good responders (18 of 43 [41.9%]) than in moderate responders (20 of 83 [24.1%]) or in nonresponders (1 of 21 [4.8%]) (for good responders versus nonresponders, OR 14.4 [95% CI 1.77-117.39], P=0.0028). Furthermore, multivariate analysis selected the TTTT BLyS promoter haplotype as an independent marker of good response to RTX (for good responders versus nonresponders, OR 16.2 [95% CI 1.7-152.5], P=0.01; for good responders versus moderate responders and nonresponders combined, OR 3.1 [95% CI 1.2-7.8], P=0.02). The relationship between BLyS polymorphisms and BLyS serum levels remained unclear. CONCLUSION BLyS promoter genotyping may be suitable for identifying seropositive RA patients who may have a good response to RTX after anti-TNF agents have failed.
Collapse
Affiliation(s)
- Martina Fabris
- DSMB, Azienda Ospedaliero Universitaria of Udine, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sindhava VJ, Scholz JL, Cancro MP. Roles for BLyS family members in meeting the distinct homeostatic demands of innate and adaptive B cells. Front Immunol 2013; 4:37. [PMID: 23443938 PMCID: PMC3580333 DOI: 10.3389/fimmu.2013.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
B-1 and B-2 B cell populations have different progenitors, receptor diversity, anatomic location, and functions – suggesting vastly differing requisites for homeostatic regulation. There is evidence that the B lymphocyte stimulator (BLyS) family of cytokines and receptors, key factors in the homeostatic regulation of B-2 B cell subsets, is also a major player in the B-1 compartment. Here we review the development and differentiation of these two primary B cell lineages and their immune functions. We discuss evidence that BLyS or a proliferation-inducing ligand (APRIL) availability in different anatomic sites, coupled with signature BLyS receptor expression patterns on different B cell subsets, may be important for homeostatic regulation of B-1 as well as B-2 populations. Finally, we extend our working model of B cell homeostasis to integrate B-1s.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | |
Collapse
|
44
|
Abstract
Inhibitors of tumour necrosis factor (TNF) are among the most successful protein-based drugs (biologics) and have proven to be clinically efficacious at reducing inflammation associated with several autoimmune diseases. As a result, attention is focusing on the therapeutic potential of additional members of the TNF superfamily of structurally related cytokines. Many of these TNF-related cytokines or their cognate receptors are now in preclinical or clinical development as possible targets for modulating inflammatory diseases and cancer as well as other indications. This Review focuses on the biologics that are currently in clinical trials for immune-related diseases and other syndromes, discusses the successes and failures to date as well as the expanding therapeutic potential of modulating the activity of this superfamily of molecules.
Collapse
Affiliation(s)
- Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
45
|
Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Colliver JA, Ness JM, Ransohoff RM. BAFF/APRIL system in pediatric OMS: relation to severity, neuroinflammation, and immunotherapy. J Neuroinflammation 2013; 10:10. [PMID: 23324534 PMCID: PMC3610127 DOI: 10.1186/1742-2094-10-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/08/2013] [Indexed: 01/16/2023] Open
Abstract
Background B-cell dysregulation has been implicated but not fully characterized in pediatric opsoclonus-myoclonus syndrome (OMS), a neuroblastoma-associated neuroinflammatory disorder. Objective To assess the role of B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), two critical B cell-modulating cytokines, as potential biomarkers of disease activity and treatment biomarkers in OMS. Methods Soluble BAFF and APRIL were measured in cerebrospinal fluid (CSF) and serum by ELISA in 433 children (296 OMS, 109 controls, 28 other inflammatory neurological disorders (OIND)). BAFF-R receptors on circulating CD19+ B cells were measured by flow cytometry. A blinded scorer rated motor severity on the OMS Evaluation Scale. Immunotherapies were evaluated cross-sectionally and longitudinally. Results The mean CSF BAFF concentration, which was elevated in untreated OMS and OIND, correlated with OMS severity category (P = 0.006), and reduction by adrenocorticotropic hormone or corticotropin (ACTH) (−61%) or corticosteroids (−38%) was seen at each level of severity. In contrast, CSF APRIL was normal in OMS and OIND and unaffected by immunotherapy. When the entire OMS dataset was dichotomized into ‘high’ versus ‘normal’ CSF BAFF concentration, the phenotype of the high group included greater motor severity and number of CSF oligoclonal bands, and a higher concentration of inflammatory chemokines CXCL13 and CXCL10 in CSF and CXCL9 and CCL21 in serum. Serum APRIL was 6.7-fold higher in the intravenous immunoglobulins (IVIg) group, whereas serum BAFF was 2.6-fold higher in the rituximab group. The frequency of B cell BAFF-R expression was similar in untreated and treated OMS. Longitudinal studies of CSF BAFF revealed a significant decline in ACTH-treated patients (with or without rituximab) (P < 0.0001). Longitudinal studies of serum APRIL showed a 2.9-fold increase after 1 to 2 g/kg IVIg monotherapy (P = 0.0003). Conclusions Striking distinctions in BAFF/APRIL signaling were found. OMS displayed heterogeneity in CSF BAFF expression, which met many but not all criteria as a potential biomarker of disease activity. We speculate that CSF BAFF may have more utility in a biomarker panel than as a stand-alone biomarker, and that the selective upregulation of both serum APRIL by IVIg and BAFF by rituximab, as well as downregulation of CSF BAFF by ACTH/steroids, may have utility as treatment biomarkers.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- Department of Neurology, National Pediatric Myoclonus Center and Neuroimmunology Laboratory, and Southern Illinois University School of Medicine, PO Box 19643, Springfield, IL 62794-9643, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ware CF. Protein therapeutics targeted at the TNF superfamily. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:51-80. [PMID: 23433455 DOI: 10.1016/b978-0-12-404717-4.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-based drugs with their unequivocal specificity achieved the long sought milestone of selectively disrupting cytokine pathways to alleviate ongoing inflammation. Tumor necrosis factor (TNF), a member of the superfamily of cytokines involved in regulating immune and inflammatory processes, provides an exemplary model of protein therapeutics. Antibody and receptor-based inhibitors of TNF modify inflammation leading to dramatic improvement in patients with certain autoimmune diseases. Collectively, the structure, specificity and valence of these protein-based drugs provide direct evidence that the essential mechanism of action is antagonism of the ligand-receptor interaction. Accumulating clinical knowledge regarding TNF inhibitors also provide insights into the mechanisms involved in different autoimmune diseases. Experience in the development of an arsenal of biologics directed at TNF has additionally contributed to knowledge toward overcoming the challenges of protein drugs, which include production, delivery, antigenicity and pharmacodynamics. Dramatic clinical outcomes with TNF inhibitors are driving investigation and development of biologics toward other members of the TNF superfamily to selectively alter functional properties of the immune system.
Collapse
Affiliation(s)
- Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
47
|
Abstract
Systemic lupus erythematosus (SLE), a complex autoimmune disease with multisystem involvement, is characterised by recurring flares and remissions throughout the course of illness. The agents currently being used for management include corticosteroids, antimalarials and various immunosuppressants. Belimumab, a B lymphocyte stimulator (BLyS) inhibitor has been recently approved for the treatment of SLE. This review aims to discuss the role of belimumab in the treatment of SLE and the trials leading to its FDA approval. Belimumab demonstrated high degree of activity in patients with autoantibody-positive active SLE disease on a stable treatment regimen. There was a significantly greater response compared to placebo as assessed with the SLE Responder Index (SRI) in two randomized, double-blind, phase III trials (BLISS-52 and BLISS-76). The treatment was well tolerated. Additional studies are required to evaluate belimumab in special populations and assess its long-term safety. This therapy could change the focus of management from symptomatic treatment to targeting an important step in the disease pathogenesis. It could enable development of treatment which could halt long-term progression, minimize target organ damage and thus provide a better quality of life for these patients.
Collapse
Affiliation(s)
- Preeta K Chugh
- Department of Pharmacology, Maulana Azad Medical College and Associated Hospitals, New Delhi, India.
| | | |
Collapse
|
48
|
Luster TA, Mukherjee I, Carrell JA, Cho YH, Gill J, Kelly L, Garcia A, Ward C, Oh L, Ullrich SJ, Migone TS, Humphreys R. Fusion toxin BLyS-gelonin inhibits growth of malignant human B cell lines in vitro and in vivo. PLoS One 2012; 7:e47361. [PMID: 23056634 PMCID: PMC3467252 DOI: 10.1371/journal.pone.0047361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/11/2012] [Indexed: 12/28/2022] Open
Abstract
B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells.
Collapse
Affiliation(s)
- Troy A. Luster
- Department of Oncology Research, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Ipsita Mukherjee
- Department of Oncology Research, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Jeffrey A. Carrell
- Department of Lead Development, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Yun Hee Cho
- Department of Lead Development, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Jeffrey Gill
- Department of Lead Development, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Lizbeth Kelly
- Department of Immunology Research, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Andy Garcia
- Department of Lead Development, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Christopher Ward
- Department of Lead Development, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Luke Oh
- Department of Immunology Research, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Stephen J. Ullrich
- Department of Lead Development, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Thi-Sau Migone
- Department of Immunology Research, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
| | - Robin Humphreys
- Department of Oncology Research, Human Genome Sciences, Inc., Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Molecular signature in HCV-positive lymphomas. Clin Dev Immunol 2012; 2012:623465. [PMID: 22952554 PMCID: PMC3431075 DOI: 10.1155/2012/623465] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL). Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.
Collapse
|
50
|
Fragioudaki M, Boula A, Tsirakis G, Psarakis F, Spanoudakis M, Papadakis IS, Pappa CA, Alexandrakis MG. B cell-activating factor: its clinical significance in multiple myeloma patients. Ann Hematol 2012; 91:1413-8. [PMID: 22526370 DOI: 10.1007/s00277-012-1470-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/02/2012] [Indexed: 11/27/2022]
Abstract
B cell-activating factor (BAFF) is a cytokine that plays a major role in the maintenance of normal B-cell development and homeostasis. It has been suggested that in multiple myeloma (MM) it might have regulatory effects on the proliferation and viability of malignant plasma cells. The aim of this study was to evaluate serum levels of BAFF in 52 newly diagnosed MM patients, with varying disease severity, in order to see the correlations between BAFF and indices of MM activity, such as interleukin-6, C-reactive protein, lactate dehydrogenase, and beta-2 microglobulin, and to explore the clinical significance of BAFF in predicting the disease activity of MM. We found increased BAFF serum levels in MM patients, increased in advanced stages, and decreased in plateau phase. We also found significant correlations between BAFF serum levels with the above parameters of disease activity. We conclude that BAFF may play an important role in pathogenesis of MM, could be used as a marker of disease activity, and a possible therapeutic target.
Collapse
Affiliation(s)
- M Fragioudaki
- Hematology Department, University Hospital of Heraklion, PO Box 1352, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|