1
|
Dagnino APA, Rübensam G, Silva JB, Campos MM. Stem cells from tooth apical papilla modulate fibromyalgia-like changes in mice. Brain Res Bull 2025; 222:111257. [PMID: 39952442 DOI: 10.1016/j.brainresbull.2025.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The treatment of fibromyalgia remains a current challenge. While the analgesic effects of mesenchymal stem cells have been the subject of previous research, their potential in managing fibromyalgia symptoms needs further investigation. In this study, we investigated the effects of human stem cells from tooth apical papilla (SCAP), when administered systemically, in a mouse model of fibromyalgia induced by reserpine. METHODS The effects of repeated intraperitoneal (i.p.) treatment with SCAP were evaluated in the mouse model of fibromyalgia induced by reserpine, by assessing behavioral and biochemical parameters. RESULTS The systemic treatment with SCAP significantly reduced the mechanical and thermal hypersensitivity induced by reserpine in mice. Moreover, the SCAP treatment also reversed depression-like behavior, as assessed in the forced swimming test (FST). The SCAP administration partly restored the reduction in the total number of entries in the elevated plus maze but failed to alter the fatigue intensity or the grip strength. The treatment with SCAP significantly increased dopamine, glutamate, and glutathione levels in the masseter muscle compared to the vehicle-treated control animals. Conversely, the SCAP administration decreased the glutathione levels in the prefrontal cortex and spinal cord compared to the control mice. Finally, the repeated treatment with SCAP led to a significant increase in the spinal cord levels of the chemokine CXCL1/KC. CONCLUSIONS Our research findings offer new insights into the efficacy of human SCAP in a pre-clinical model of fibromyalgia, likely through the modulation of both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Ana P A Dagnino
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil.
| | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
| | - Jefferson B Silva
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
| | - Maria M Campos
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil; Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil.
| |
Collapse
|
2
|
Jeong DH, Kim MJ, Park CH. Effect of Combining Exercise with Adipose-Derived Mesenchymal Stem Cells in Muscle Atrophy Model of Sarcopenia. Int J Mol Sci 2025; 26:451. [PMID: 39859165 PMCID: PMC11764817 DOI: 10.3390/ijms26020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Deterioration in muscle mass, strength, and physical performance due to conditions such as sarcopenia can affect daily activities and quality of life in the elderly. Exercise and mesenchymal stem cells (MSCs) are potential therapies for sarcopenia. This study evaluates the combined effects of exercise and adipose-derived MSCs (ADMSCs) in aged rats with sarcopenia. Eighteen-month-old rats were randomly divided into four groups: control, exercise (Ex), ADMSCs injection (MSC), and ADMSCs injection with exercise (MSC + Ex). Gastrocnemius (GCM) muscle mass increased in the Ex, MSC, and MSC + Ex groups compared to the control group. Although the mean CSA did not differ significantly between the groups, the size distribution of myofibers shifted toward larger sizes in the Ex and MSC + Ex groups. The MSC + Ex group performed best in functional tests, including the rotarod and hot plate tests. The protein expression levels of tumor necrosis factor (TNF) and the p-AMP-activated protein kinase (AMPK)/AMPK ratio in the GCM muscle were the lowest in the MSC + Ex group. This study demonstrates that combining exercise and ADMSC interventions was the most effective treatment for aged sarcopenic rats, suggesting a potential synergistic approach for sarcopenia treatment.
Collapse
Affiliation(s)
- Dong-Hwa Jeong
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Min-Jeong Kim
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
3
|
Jović D, Preradović L, Jović F, Kremenović M, Lukić D, Antonić M, Unčanin N, Jović M. Optimizing adipose-derived stromal vascular fraction storage: Temperature and time impact on cell viability in regenerative medicine. Medicine (Baltimore) 2024; 103:e39859. [PMID: 39312305 PMCID: PMC11419534 DOI: 10.1097/md.0000000000039859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND The adipose-derived stromal vascular fraction (SVF) plays a crucial role in regenerative medicine owing to its regenerative and immunomodulatory properties. However, the effective utilization of SVF in therapeutic applications requires careful consideration of storage conditions to maintain cell viability. METHODS We conducted a research on 43 patients of different ages and sexes who were older than 18 years. This study explored the impact of different temperatures (-80, -20, and 4 °C) on SVF storage in platelet-poor plasma for 1 and 6 months. SVF extracted using a semi-UNISTATION™ system was subjected to rigorous analysis of cell count and viability using a LUNA-STEM™ Dual Fluorescence Cell Counter. RESULTS The results indicated a significant correlation between the storage conditions and SVF viability. Notably, storing SVF at 4 °C demonstrated the highest cell viability and count, while -80 °C storage exhibited the least favorable outcomes. This study emphasizes the importance of minimizing storage time to preserve SVF viability, as evidenced by a decline in both cell count and viability over a 6-month period. Comparisons with the existing literature underscore the need for precise protocols for SVF storage, with considerations for temperature and cryoprotective agents. These findings provide valuable insights for developing optimal SVF storage protocols to enhance therapeutic outcomes and reduce the need for repeated adipose tissue harvesting. Despite the limitations of the study, such as the use of a cell counter instead of flow cytometry, the results establish the foundation for further research on refining SVF storage methods. CONCLUSION The ideal storage temperature is from 4 °C, while the length of storage time inversely affects the viability of SVF; the longer the storage time, the lower the number and the viability of SVF cells, regardless of the temperature at which they are preserved.
Collapse
Affiliation(s)
- Darko Jović
- University of Banja Luka, Faculty of Medicine, Banja Luka, Bosnia and Herzegovina
- Special Hospital S-tetik, Banja Luka, Bosnia and Herzegovina
| | - Ljubiša Preradović
- University of Banja Luka, Faculty of Medicine, Banja Luka, Bosnia and Herzegovina
| | - Filip Jović
- University of Ulm, Faculty of Medicine, Ulm, Germany
| | - Mićo Kremenović
- Special Hospital S-tetik, Banja Luka, Bosnia and Herzegovina
| | - Darko Lukić
- University of Banja Luka, Faculty of Medicine, Banja Luka, Bosnia and Herzegovina
| | - Milica Antonić
- Special Hospital S-tetik, Banja Luka, Bosnia and Herzegovina
| | - Nikola Unčanin
- University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Matija Jović
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| |
Collapse
|
4
|
Deppen JN, Ginn SC, Tang EO, Wang L, Brockman ML, Levit RD. Alginate-Encapsulated Mesenchymal Stromal Cells Improve Hind Limb Ischemia in a Translational Swine Model. J Am Heart Assoc 2024; 13:e029880. [PMID: 38639336 PMCID: PMC11179867 DOI: 10.1161/jaha.123.029880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.
Collapse
Affiliation(s)
- Juline N. Deppen
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Sydney C. Ginn
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Erica O. Tang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Lanfang Wang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | | | - Rebecca D. Levit
- Division of CardiologyEmory University School of MedicineAtlantaGA
| |
Collapse
|
5
|
Takegaki J, Sase K, Kono Y, Fujita T, Konishi S, Fujita S. Intramuscular injection of mesenchymal stem cells augments basal muscle protein synthesis after bouts of resistance exercise in male mice. Physiol Rep 2024; 12:e15991. [PMID: 38605421 PMCID: PMC11009371 DOI: 10.14814/phy2.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Skeletal muscle mass is critical for activities of daily living. Resistance training maintains or increases muscle mass, and various strategies maximize the training adaptation. Mesenchymal stem cells (MSCs) are multipotent cells with differential potency in skeletal muscle cells and the capacity to secrete growth factors. However, little is known regarding the effect of intramuscular injection of MSCs on basal muscle protein synthesis and catabolic systems after resistance training. Here, we measured changes in basal muscle protein synthesis, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after bouts of resistance exercise by intramuscular injection of MSCs. Mice performed three bouts of resistance exercise (each consisting of 50 maximal isometric contractions elicited by electrical stimulation) on the right gastrocnemius muscle every 48 h, and immediately after the first bout, mice were intramuscularly injected with either MSCs (2.0 × 106 cells) labeled with green fluorescence protein (GFP) or vehicle only placebo. Seventy-two hours after the third exercise bout, GFP was detected only in the muscle injected with MSCs with concomitant elevation of muscle protein synthesis. The injection of MSCs also increased protein ubiquitination. These results suggest that the intramuscular injection of MSCs augmented muscle protein turnover at the basal state after consecutive resistance exercise.
Collapse
Affiliation(s)
- Junya Takegaki
- Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsuShigaJapan
- Graduate School of Agricultural ScienceKobe UniversityKobeHyogoJapan
| | - Kohei Sase
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Yusuke Kono
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsuShigaJapan
- Faculty of Pharmaceutical SciencesKobe Pharmaceutical UniversityKobeHyogoJapan
| | - Takuya Fujita
- College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Konishi
- Faculty of Science and EngineeringRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
6
|
Zhang YC, Yang YX, Liu Y, Liu XJ, Dai JH, Gao RS, Hu YY, Fei WY. Combining Porous Se@SiO 2 Nanocomposites and dECM Enhances the Myogenic Differentiation of Adipose-Derived Stem Cells. Int J Nanomedicine 2023; 18:7661-7676. [PMID: 38111844 PMCID: PMC10726970 DOI: 10.2147/ijn.s436081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
Background Volumetric Muscle Loss (VML) denotes the traumatic loss of skeletal muscle, a condition that can result in chronic functional impairment and even disability. While the body can naturally repair injured skeletal muscle within a limited scope, patients experiencing local and severe muscle loss due to VML surpass the compensatory capacity of the muscle itself. Currently, clinical treatments for VML are constrained and demonstrate minimal efficacy. Selenium, a recognized antioxidant, plays a crucial role in regulating cell differentiation, anti-inflammatory responses, and various other physiological functions. Methods We engineered a porous Se@SiO2 nanocomposite (SeNPs) with the purpose of releasing selenium continuously and gradually. This nanocomposite was subsequently combined with a decellularized extracellular matrix (dECM) to explore their collaborative protective and stimulatory effects on the myogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). The influence of dECM and NPs on the myogenic level, reactive oxygen species (ROS) production, and mitochondrial respiratory chain (MRC) activity of ADSCs was evaluated using Western Blot, ELISA, and Immunofluorescence assay. Results Our findings demonstrate that the concurrent application of SeNPs and dECM effectively mitigates the apoptosis and intracellular ROS levels in ADSCs. Furthermore, the combination of dECM with SeNPs significantly upregulated the expression of key myogenic markers, including MYOD, MYOG, Desmin, and myosin heavy chain in ADSCs. Notably, this combination also led to an increase in both the number of mitochondria and the respiratory chain activity in ADSCs. Conclusion The concurrent application of SeNPs and dECM effectively diminishes ROS production, boosts mitochondrial function, and stimulates the myogenic differentiation of ADSCs. This study lays the groundwork for future treatments of VML utilizing the combination of SeNPs and dECM.
Collapse
Affiliation(s)
- Yu-Cheng Zhang
- Clinical Medical College, Dalian Medical University, Dalian, 116044, People’s Republic of China
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People’s Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Yu-Xia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People’s Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, People’s Republic of China
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Yu Liu
- Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, 214062, People’s Republic of China
| | - Xi-Jian Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People’s Republic of China
| | - Ji-Hang Dai
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People’s Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Rang-Shan Gao
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People’s Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Yang-Yang Hu
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People’s Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, People’s Republic of China
| | - Wen-Yong Fei
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People’s Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, People’s Republic of China
| |
Collapse
|
7
|
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. NANO CONVERGENCE 2023; 10:48. [PMID: 37864632 PMCID: PMC10590364 DOI: 10.1186/s40580-023-00398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sebastián Herrera Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Alheib O, da Silva LP, Mesquita KA, da Silva Morais A, Pirraco RP, Reis RL, Correlo VM. Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment. Biomed Mater 2023; 18:065005. [PMID: 37604159 DOI: 10.1088/1748-605x/acf25b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. METHODS in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). RESULTS in vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (β-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. CONCLUSIONS taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
Collapse
Affiliation(s)
- Omar Alheib
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia P da Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katia A Mesquita
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Jovic D, Preradovic L, Kremenovic M, Jovic F, Antonic M, Aleksic Z, Ljubojevic V. Effect of Donor Site Selection for Fat Grafting on the Yield and Viability of the Stromal Vascular Fraction. Aesthet Surg J 2023; 43:NP704-NP712. [PMID: 37289983 DOI: 10.1093/asj/sjad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The efficacy of stromal vascular fraction (SVF) treatment, or stem cell treatment, directly depends on the SVF cell count and the cells' viability. The SVF cell count and viability are in direct correlation with the adipose tissue harvesting site that yields SVF cells, making this research a contribution to developing tissue guidance. OBJECTIVES The aim of this study was to investigate the importance of harvesting subcutaneous adipose tissue-derived SVF cells on the concentration and viability of SVF. METHODS Adipose tissue was collected by vibration-assisted liposuction from the regions of the upper and lower abdomen, lumbar region, and inner thigh region. With the semiautomatic UNISTATION 2nd Version system, the obtained fat was chemically processed (with collagenase enzyme) and a concentrate of SVF cells was obtained by centrifugation. These samples were then analyzed with the Luna-Stem Counter device to measure the number and viability of SVF cells. RESULTS When comparing the regions of the upper abdomen, lower abdomen, lumbar region, and inner thigh, the highest concentration of SVF was found in the lumbar region, specifically at an average of 97,498.00 per 1.0 mL of concentrate. The lowest concentration was found in the upper abdominal region. When ranking the viability values, the highest cell viability of SVF was observed in the lumbar region, measuring 36.6200%. The lowest viability was found in the upper abdominal region, measuring 24.4967%. CONCLUSIONS By comparing the upper and lower abdominal, lumbar, and inner thigh regions, the authors have come to the conclusion that, on average, the largest number of cells with the highest viability was obtained from the lumbar region.
Collapse
|
10
|
Orthobiologic Interventions for Muscle Injuries. Phys Med Rehabil Clin N Am 2023; 34:181-198. [DOI: 10.1016/j.pmr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
12
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
13
|
Takegaki J, Sase K, Kono Y, Nakano D, Fujita T, Konishi S, Fujita S. Intramuscular injection of mesenchymal stem cells activates anabolic and catabolic systems in mouse skeletal muscle. Sci Rep 2021; 11:21224. [PMID: 34707171 PMCID: PMC8551189 DOI: 10.1038/s41598-021-00627-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle mass is critical for good quality of life. Mesenchymal stem cells (MSCs) are multipotent stem cells distributed across various tissues. They are characterized by the capacity to secrete growth factors and differentiate into skeletal muscle cells. These capabilities suggest that MSCs might be beneficial for muscle growth. Nevertheless, little is known regarding the effects on muscle protein anabolic and catabolic systems of intramuscular injection of MSCs into skeletal muscle. Therefore, in the present study, we measured changes in mechanistic target of rapamycin complex 1 (mTORC1) signaling, the ubiquitin–proteasome system, and autophagy-lysosome system-related factors after a single intramuscular injection of MSCs with green fluorescence protein (GFP) into mouse muscles. The intramuscularly-injected MSCs were retained in the gastrocnemius muscle for 7 days after the injection, indicated by detection of GFP and expression of platelet-derived growth factor receptor-alpha. The injection of MSCs increased the expression of satellite cell-related genes, activated mTORC1 signaling and muscle protein synthesis, and increased protein ubiquitination and autophagosome formation (indicated by the expression of microtubule-associated protein 1 light chain 3-II). These results suggest that the intramuscular injection of MSCs activated muscle anabolic and catabolic systems and accelerated muscle protein turnover.
Collapse
Affiliation(s)
- Junya Takegaki
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kohei Sase
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Kono
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daiki Nakano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Konishi
- Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
14
|
Elhussieny A, Nogami K, Sakai-Takemura F, Maruyama Y, Takemura N, Soliman WT, Takeda S, Miyagoe-Suzuki Y. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther 2021; 12:532. [PMID: 34627382 PMCID: PMC8501581 DOI: 10.1186/s13287-021-02594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disease caused by mutations in the dystrophin gene. Transplantation of myogenic stem cells holds great promise for treating muscular dystrophies. However, poor engraftment of myogenic stem cells limits the therapeutic effects of cell therapy. Mesenchymal stem cells (MSCs) have been reported to secrete soluble factors necessary for skeletal muscle growth and regeneration. Methods We induced MSC-like cells (iMSCs) from induced pluripotent stem cells (iPSCs) and examined the effects of iMSCs on the proliferation and differentiation of human myogenic cells and on the engraftment of human myogenic cells in the tibialis anterior (TA) muscle of NSG-mdx4Cv mice, an immunodeficient dystrophin-deficient DMD model. We also examined the cytokines secreted by iMSCs and tested their effects on the engraftment of human myogenic cells. Results iMSCs promoted the proliferation and differentiation of human myogenic cells to the same extent as bone marrow-derived (BM)-MSCs in coculture experiments. In cell transplantation experiments, iMSCs significantly improved the engraftment of human myogenic cells injected into the TA muscle of NSG-mdx4Cv mice. Cytokine array analysis revealed that iMSCs produced insulin-like growth factor-binding protein 2 (IGFBP2), urokinase-type plasminogen activator receptor (uPAR), and brain-derived neurotrophic factor (BDNF) at higher levels than did BM-MSCs. We further found that uPAR stimulates the migration of human myogenic cells in vitro and promotes their engraftment into the TA muscles of immunodeficient NOD/Scid mice. Conclusions Our results indicate that iMSCs are a new tool to improve the engraftment of myogenic progenitors in dystrophic muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02594-1.
Collapse
Affiliation(s)
- Ahmed Elhussieny
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ken'ichiro Nogami
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fusako Sakai-Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yusuke Maruyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsumi Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Wael Talaat Soliman
- Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
15
|
Wharton's Jelly-Derived Mesenchymal Stem Cells Reduce Fibrosis in a Mouse Model of Duchenne Muscular Dystrophy by Upregulating microRNA 499. Biomedicines 2021; 9:biomedicines9091089. [PMID: 34572277 PMCID: PMC8469349 DOI: 10.3390/biomedicines9091089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to evaluate the therapeutic effects and mechanisms of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in an animal model of Duchenne muscular dystrophy (DMD). Mdx mice (3-5 months old) were administered five different doses of WJ-MSCs through their tail veins. A week after injection, grip strength measurements, creatine kinase (CK) assays, immunohistochemistry, and western blots were performed for comparison between healthy mice, mdx control mice, and WJ-MSC-injected mdx mice. WJ-MSCs exerted dose-dependent multisystem therapeutic effects in mdx mice, by decreasing CK, recovering normal behavior, regenerating muscle, and reducing apoptosis and fibrosis in skeletal muscle. We also confirmed that miR-499-5p is significantly downregulated in mdx mice, and that intravenous injection of WJ-MSCs enhanced its expression, leading to anti-fibrotic effects via targeting TGFβR 1 and 3. Thus, WJ-MSCs may represent novel allogeneic "off-the-shelf" cellular products for the treatment of DMD and possibly other muscle disorders.
Collapse
|
16
|
Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021; 22:5929. [PMID: 34072959 PMCID: PMC8198586 DOI: 10.3390/ijms22115929] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey;
| | - Ayca Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Hüseyin Avci
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
- Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
| | - Ali Akpek
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Gözde Yesiltas
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Tuba Canak-Ipek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| |
Collapse
|
17
|
Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Front Bioeng Biotechnol 2021; 9:652970. [PMID: 34095095 PMCID: PMC8172230 DOI: 10.3389/fbioe.2021.652970] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells found in different tissues: bone marrow, peripheral blood, adipose tissues, skeletal muscle, perinatal tissues, and dental pulp. MSCs are able to self-renew and to differentiate into multiple lineages, and they have been extensively used for cell therapy mostly owing to their anti-fibrotic and immunoregulatory properties that have been suggested to be at the basis for their regenerative capability. MSCs exert their effects by releasing a variety of biologically active molecules such as growth factors, chemokines, and cytokines, either as soluble proteins or enclosed in extracellular vesicles (EVs). Analyses of MSC-derived secretome and in particular studies on EVs are attracting great attention from a medical point of view due to their ability to mimic all the therapeutic effects produced by the MSCs (i.e., endogenous tissue repair and regulation of the immune system). MSC-EVs could be advantageous compared with the parental cells because of their specific cargo containing mRNAs, miRNAs, and proteins that can be biologically transferred to recipient cells. MSC-EV storage, transfer, and production are easier; and their administration is also safer than MSC therapy. The skeletal muscle is a very adaptive tissue, but its regenerative potential is altered during acute and chronic conditions. Recent works demonstrate that both MSCs and their secretome are able to help myofiber regeneration enhancing myogenesis and, interestingly, can be manipulated as a novel strategy for therapeutic interventions in muscular diseases like muscular dystrophies or atrophy. In particular, MSC-EVs represent promising candidates for cell free-based muscle regeneration. In this review, we aim to give a complete picture of the therapeutic properties and advantages of MSCs and their products (MSC-derived EVs and secreted factors) relevant for skeletal muscle regeneration in main muscular diseases.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Alessia Ventura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
18
|
Kono Y, Takegaki J, Ohba T, Matsuda K, Negoro R, Fujita S, Fujita T. Magnetization of mesenchymal stem cells using magnetic liposomes enhances their retention and immunomodulatory efficacy in mouse inflamed skeletal muscle. Int J Pharm 2021; 596:120298. [PMID: 33529784 DOI: 10.1016/j.ijpharm.2021.120298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Sarcopenia, an age-related reduction in skeletal muscle mass and strength, is mainly caused by chronic inflammation. Because mesenchymal stem cells (MSCs) have the capacity to both promote myogenic cell differentiation and suppress inflammation, they are a promising candidate for sarcopenia treatment. In this study, to achieve the long-term retention of MSCs in skeletal muscle, we prepared magnetized MSCs using magnetic anionic liposome/atelocollagen complexes that we had previously developed, and evaluated their retention efficiency and immunomodulatory effects in mouse inflamed skeletal muscle. Mouse MSCs were efficiently magnetized by incubation with magnetic anionic liposome/atelocollagen complexes for 30 min under a magnetic field. The magnetized MSCs differentiated normally into osteoblasts and adipocytes. Additionally, non-magnetized MSCs and magnetized MSCs increased IL-6 and inducible nitric oxide synthase mRNA expression and decreased TNF-α and IL-1β mRNA expression in C2C12 mouse skeletal muscle myotubes through paracrine effects. Moreover, magnetized MSCs were significantly retained in cell culture plates and mouse skeletal muscle after their local injection in the presence of a magnetic field. Furthermore, magnetized MSCs significantly increased IL-6 and IL-10 mRNA expression and decreased TNF-α and IL-1β mRNA expression in inflamed skeletal muscle. These results suggest that magnetized MSCs may be useful for effective sarcopenia treatment.
Collapse
Affiliation(s)
- Yusuke Kono
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan.
| | - Junya Takegaki
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takeshi Ohba
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Koji Matsuda
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Satoshi Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takuya Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
19
|
Jiang M, Liu L, Liu R, Lam KS, Lane NE, Yao W. A new anabolic compound, LLP2A-Ale, reserves periodontal bone loss in mice through augmentation of bone formation. BMC Pharmacol Toxicol 2020; 21:76. [PMID: 33187558 PMCID: PMC7664094 DOI: 10.1186/s40360-020-00454-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/27/2020] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Currently, there are no effective medications to reverse periodontal disease (PD)-induced bone loss. The objective of this study was to test a new anabolic compound, LLP2A-Ale, or with the combination treatment of mesenchymal stromal cell (MSC), in the treatment of bone loss secondary to PD. METHODS PD was induced in mice by placing a ligature around the second right molar. At one week after disease induction, the mice were treated with placebo, LLP2A-Ale, MSCs, or combination of LLP2A-Ale + MSCs, and euthanized at week 4. RESULTS We found that PD induced alveolar bone loss that was associated with reduced bone formation. LLP2A-Ale alone or in combination with MSCs sustained alveolar bone formation and reversed alveolar bone loss. Additionally, PD alone caused systemic inflammation and increased the circulating levels of G-CSF, IP-10, MIP-1a, and MIP2, which were suppressed by LLP2A-Ale +/- MSCs. LLP2A-Ale +/- MSCs increased bone formation at the peripheral skeletal site (distal femur), which was otherwise suppressed by PD. CONCLUSION Our findings indicated that LLP2A-Ale treatment rescued alveolar bone loss caused by PD, primarily by increasing bone formation. LLP2A-Ale also attenuated the circulating levels of a series of inflammatory cytokines and reversed the PD-induced suppression of systemic bone formation.
Collapse
Affiliation(s)
- Min Jiang
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lixian Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Yunan Vocational and Technical College of Agriculture, Kunming, 650031, Yunan, China
| | - Ruiwu Liu
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
20
|
Alexeev V, Olavarria J, Bonaldo P, Merlini L, Igoucheva O. Congenital muscular dystrophy-associated inflammatory chemokines provide axes for effective recruitment of therapeutic adult stem cell into muscles. Stem Cell Res Ther 2020; 11:463. [PMID: 33138863 PMCID: PMC7607684 DOI: 10.1186/s13287-020-01979-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Congenital muscular dystrophies (CMD) are a clinically and genetically heterogeneous group of neuromuscular disorders characterized by muscle weakness. The two most prevalent forms of CMD, collagen VI-related myopathies (COL6RM) and laminin α2 deficient CMD type 1A (MDC1A), are both caused by deficiency or dysfunction of extracellular matrix proteins. Previously, we showed that an intramuscular transplantation of human adipose-derived stem cells (ADSC) into the muscle of the Col6a1−/− mice results in efficient stem cell engraftment, migration, long-term survival, and continuous production of the collagen VI protein, suggesting the feasibility of the systemic cellular therapy for COL6RM. In order for this therapeutic approach to work however, stem cells must be efficiently targeted to the entire body musculature. Thus, the main goal of this study is to test whether muscle homing of systemically transplanted ADSC can be enhanced by employing muscle-specific chemotactic signals originating from CMD-affected muscle tissue. Methods Proteomic screens of chemotactic molecules were conducted in the skeletal muscles of COL6RM- and MDC1A-affected patients and CMD mouse models to define the inflammatory and immune activities, thus, providing potential markers of disease activity or treatment effect. Also using a pre-clinical animal model, recapitulating mild Ullrich congenital muscular dystrophy (UCMD), the therapeutic relevance of identified chemotactic pathways was investigated in vivo, providing a basis for future clinical investigations. Results Comprehensive proteomic screens evaluating relevant human and mouse skeletal muscle biopsies offered chemotactic axes to enhance directional migration of systemically transplanted cells into CMD-affected muscles, including CCL5-CCR1/3/5, CCL2-CCR2, CXCL1/2-CXCR1,2, and CXCL7-CXCR2. Also, the specific populations of ADSC selected with an affinity for the chemokines being released by damaged muscle showed efficient migration to injured site and presented their therapeutic effect. Conclusions Collectively, identified molecules provided insight into the mechanisms governing directional migration and intramuscular trafficking of systemically infused stem cells, thus, permitting broad and effective application of the therapeutic adult stem cells for CMD treatment.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB, Rm. 430, Philadelphia, PA, 19107, USA
| | - Jacquelyn Olavarria
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB, Rm. 430, Philadelphia, PA, 19107, USA
| | - Paolo Bonaldo
- Departments of Molecular Medicine, University of Padova, Padova, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB, Rm. 430, Philadelphia, PA, 19107, USA.
| |
Collapse
|
21
|
Systemic Administration of Rejuvenated Adipose-Derived Mesenchymal Stem Cells Improves Liver Metabolism in Equine Metabolic Syndrome (EMS)- New Approach in Veterinary Regenerative Medicine. Stem Cell Rev Rep 2020; 15:842-850. [PMID: 31620992 PMCID: PMC6925066 DOI: 10.1007/s12015-019-09913-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Equine metabolic syndrome (EMS) is characterized by adiposity, insulin dysregulation and increased risk for laminitis. Increased levels of specific liver enzymes in the peripheral blood are typical findings in horses diagnosed with EMS. Current management of EMS is based on caloric restriction and increased physical activity. However, new potential treatment options are arising such as the transplantation of autologous adipose stem cells (ASC). However, cytophysiological properties of ASC derived from EMS horses are impaired which strongly limits their therapeutic potential. We hypothesized, that in vitro pharmacotherapy of those cells with 5-azacytidine (AZA) and resveratrol (RES) before their clinical application can reverse the aged phenotype of those cells and improve clinical outcome of autologous therapy. A 9 year old Dutch Warmblood Horse used for driving, was presented with severe obesity, insulin resistance. After EMS diagnosis, the animal received three intravenous injections of autologous, AZA/RES treated ASCs at weekly intervals. The therapeutic effect was assessed by the analysis of liver specific enzymes in the blood. ASC-transplantation reduced levels of glutamate dehydrogenase (GLDH), gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH) and aspartate transaminase (AST). This case report demonstrates the therapeutic potential of this intervention for EMS as well as apt utility of autologous, rejuvenated ASC injections.
Collapse
|
22
|
Cantini G, Di Franco A, Mannelli M, Scimè A, Maggi M, Luconi M. The Role of Metabolic Changes in Shaping the Fate of Cancer-Associated Adipose Stem Cells. Front Cell Dev Biol 2020; 8:332. [PMID: 32478073 PMCID: PMC7242628 DOI: 10.3389/fcell.2020.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue in physiological and in metabolically altered conditions (obesity, diabetes, metabolic syndrome) strictly interacts with the developing tumors both systemically and locally. In addition to the cancer-associated fibroblasts, adipose cells have also recently been described among the pivotal actors of the tumor microenvironment responsible for sustaining tumor development and progression. In particular, emerging evidence suggests that not only the mature adipocytes but also the adipose stem cells (ASCs) are able to establish a strict crosstalk with the tumour cells, thus resulting in a reciprocal reprogramming of both the tumor and adipose components. This review will focus on the metabolic changes induced by this interaction as a driver of fate determination occurring in cancer-associated ASCs (CA-ASCs) to support the tumor metabolic requirements. We will showcase the major role played by the metabolic changes occurring in the adipose tumor microenvironment that regulates ASC fate and consequently cancer progression. Our new results will also highlight the CA-ASC response in vitro by using a coculture system of primary ASCs grown with cancer cells originating from two different types of adrenal cancers [adrenocortical carcinoma (ACC) and pheochromocytoma]. In conclusion, the different factors involved in this crosstalk process will be analyzed and their effects on the adipocyte differentiation potential and functions of CA-ASCs will be discussed.
Collapse
Affiliation(s)
- Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
23
|
IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. Int J Mol Sci 2020; 21:ijms21093302. [PMID: 32392778 PMCID: PMC7246596 DOI: 10.3390/ijms21093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.
Collapse
|
24
|
Fujiwara O, Prasai A, Perez-Bello D, El Ayadi A, Petrov IY, Esenaliev RO, Petrov Y, Herndon DN, Finnerty CC, Prough DS, Enkhbaatar P. Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow. BURNS & TRAUMA 2020; 8:tkaa009. [PMID: 32346539 PMCID: PMC7175768 DOI: 10.1093/burnst/tkaa009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/22/2020] [Accepted: 01/30/2000] [Indexed: 01/08/2023]
Abstract
BACKGROUND Researchers have explored the use of adipose-derived stem cells (ASCs) as a cell-based therapy to cover wounds in burn patients; however, underlying mechanistic aspects are not completely understood. We hypothesized that ASCs would improve post-burn wound healing after eschar excision and grafting by increasing wound blood flow via induction of angiogenesis-related pathways. METHODS To test the hypothesis, we used an ovine burn model. A 5 cm2 full thickness burn wound was induced on each side of the dorsum. After 24 hours, the burned skin was excised and a 2 cm2 patch of autologous donor skin was grafted. The wound sites were randomly allocated to either topical application of 7 million allogeneic ASCs or placebo treatment (phosphate-buffered saline [PBS]). Effects of ASCs culture media was also compared to those of PBS. Wound healing was assessed at one and two weeks following the application of ASCs. Allogeneic ASCs were isolated, cultured and characterized from non-injured healthy sheep. The identity of the ASCs was confirmed by flow cytometry analysis, differentiation into multiple lineages and gene expression via real-time polymerase chain reaction. Wound blood flow, epithelialization, graft size and take and the expression of vascular endothelial growth factor (VEGF) were determined via enzyme-linked immunosorbent assay and Western blot. RESULTS Treatment with ASCs accelerated the patch graft growth compared to the control (p < 0.05). Topical application of ASCs significantly increased wound blood flow (p < 0.05). Expression of VEGF was significantly higher in the wounds treated with ASCs compared to control (p < 0.05). CONCLUSIONS ASCs accelerated grafted skin growth possibly by increasing the blood flow via angiogenesis induced by a VEGF-dependent pathway.
Collapse
Affiliation(s)
- Osamu Fujiwara
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| | - Dannelys Perez-Bello
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, and the Institute for Translational Sciences, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Irene Y Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
| | - Rinat O Esenaliev
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Yuriy Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, and the Institute for Translational Sciences, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| |
Collapse
|
25
|
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 2019; 204:107399. [DOI: 10.1016/j.pharmthera.2019.107399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
|
26
|
Grabowska I, Zimowska M, Maciejewska K, Jablonska Z, Bazga A, Ozieblo M, Streminska W, Bem J, Brzoska E, Ciemerych MA. Adipose Tissue-Derived Stromal Cells in Matrigel Impacts the Regeneration of Severely Damaged Skeletal Muscles. Int J Mol Sci 2019; 20:E3313. [PMID: 31284492 PMCID: PMC6651806 DOI: 10.3390/ijms20133313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
In case of large injuries of skeletal muscles the pool of endogenous stem cells, i.e., satellite cells, might be not sufficient to secure proper regeneration. Such failure in reconstruction is often associated with loss of muscle mass and excessive formation of connective tissue. Therapies aiming to improve skeletal muscle regeneration and prevent fibrosis may rely on the transplantation of different types of stem cell. Among such cells are adipose tissue-derived stromal cells (ADSCs) which are relatively easy to isolate, culture, and manipulate. Our study aimed to verify applicability of ADSCs in the therapies of severely injured skeletal muscles. We tested whether 3D structures obtained from Matrigel populated with ADSCs and transplanted to regenerating mouse gastrocnemius muscles could improve the regeneration. In addition, ADSCs used in this study were pretreated with myoblasts-conditioned medium or anti-TGFβ antibody, i.e., the factors modifying their ability to proliferate, migrate, or differentiate. Analyses performed one week after injury allowed us to show the impact of 3D cultured control and pretreated ADSCs at muscle mass and structure, as well as fibrosis development immune response of the injured muscle.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Maciejewska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zuzanna Jablonska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bazga
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Ozieblo
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
27
|
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L, Sopena JJ. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int J Mol Sci 2019; 20:ijms20123105. [PMID: 31242644 PMCID: PMC6627452 DOI: 10.3390/ijms20123105] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
28
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
29
|
García-Vázquez MD, Herrero de la Parte B, García-Alonso I, Morales MC. [Analysis of Biological Properties of Human Adult Mesenchymal Stem Cells and Their Effect on Mouse Hind Limb Ischemia]. J Vasc Res 2019; 56:77-91. [PMID: 31079101 DOI: 10.1159/000498919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Due to their self-renewal, proliferation, differentiation, and angiogenesis-inducing capacity, human adipose mesenchymal stem cells (AMSC) have potential clinical applications in the treatment of limb ischemia. AMSC from healthy donors have been shown to induce neovascularization in animal models. However, when cells were obtained from donors suffering from any pathology, their autologous application showed limited effectiveness. We studied whether liposuction niche and obesity could determine the regenerative properties of cells meaning that not all cell batches are suitable for clinical practice. METHODS AMSC obtained from 10 donors, obese and healthy, were expanded in vitro following a good manufacturing practice-like production protocol. Cell viability, proliferation kinetics, morphological analysis, phenotype characterization, and stemness potency were assessed over the course of the expansion process. AMSC selected for having the most suitable biological properties were used as an experimental treatment in a preclinical mouse model of hind limb ischemia. RESULT All cell batches were positively characterized as mesenchymal stem cells, but not all of them showed the same properties or were successfully expanded in vitro, depending on the characteristics of the donor and the extraction area. Notably, AMSC from the abdomen of obese donors showed undesirable biological properties. AMSC with low duplication times and multilineage differentiation potential and forming large densely packed colonies, were able, following expansion in vitro, to increase neovascularization and repair when implanted in the ischemic tissue of mice. CONCLUSION An extensive AMSC biological properties study could be useful to predict the potential clinical efficacy of cells before in vivo transplantation. Thus, peripheral ischemia and possibly other pathologies could benefit from stem cell treatments as shown in our preclinical model in terms of tissue damage repair and regeneration after ischemic injury.
Collapse
Affiliation(s)
| | - Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, University of the Basque Country, Leioa, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, University of the Basque Country, Leioa, Spain
| | - María-Celia Morales
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain,
| |
Collapse
|
30
|
Filippi M, Garello F, Pasquino C, Arena F, Giustetto P, Antico F, Terreno E. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation. JOURNAL OF BIOPHOTONICS 2019; 12:e201800035. [PMID: 30471202 DOI: 10.1002/jbio.201800035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The transplantation of mesenchymal stem cells (MSCs) holds great promise for the treatment of a plethora of human diseases, but new noninvasive procedures are needed to monitor the cell fate in vivo. Already largely used in medical diagnostics, the fluorescent dye indocyanine green (ICG) is an established dye to track limited numbers of cells by optical imaging (OI), but it can also be visualized by photoacoustic imaging (PAI), which provides a higher spatial resolution than pure near infrared fluorescence imaging (NIRF). Because of its successful use in clinical and preclinical examinations, we chose ICG as PAI cell labeling agent. Optimal incubation conditions were defined for an efficient and clinically translatable MSC labeling protocol, such that no cytotoxicity or alterations of the phenotypic profile were observed, and a consistent intracellular uptake of the molecule was achieved. Suspensions of ICG-labeled cells were both optically and optoacoustically detected in vitro, revealing a certain variability in the photoacoustic spectra acquired by varying the excitation wavelength from 680 to 970 nm. Intramuscular engraftments of ICG-labeled MSCs were clearly visualized by both PAI and NIRF over few days after transplantation in the hindlimb of healthy mice, suggesting that the proposed technique retains a considerable potential in the field of transplantation-focused research and therapy. Stem cells were labeled with the Food and Drug Administration (FDA)-approved fluorescent dye ICG, and detected by both PAI and OI, enabling to monitor the cell fate safely, in dual modality, and with good sensitivity and improved spatial resolution.
Collapse
Affiliation(s)
- Miriam Filippi
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Chiara Pasquino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesca Arena
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Pierangela Giustetto
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Federica Antico
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | | |
Collapse
|
31
|
Gao WH, Gao HY, Li YT, Huang PP. Effectiveness of umbilical cord mesenchymal stem cells in patients with critical limb ischemia. Med Clin (Barc) 2019; 153:341-346. [PMID: 30926157 DOI: 10.1016/j.medcli.2019.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION AND OBJECTIVE Transplantation of umbilical cord mesenchymal stem cells (UC-MSCs) has been shown to be effective in treating critical limb ischemia (CLI). However, the mechanism of MSCs-mediated improvements, especially on the immune-inflammatory aspects of this disease, is still unknown. In this study, we investigated the changes in T-lymphocyte subpopulations and inflammatory mediators (such as IL-6, IL-10 and TNF-α) in PBMCs from CLI patients after UC-MSCs treatment and correlation between inflammatory mediators and EPCs. PATIENTS AND METHODS 8 patients received UC-MSCs transplantation. Before the treatment, at 24h and 1 month thereafter, peripheral blood samples were collected from 8 patients and 8 healthy volunteers. Patients were evaluated for changes in IL-6, IL-10, TNF-α and levels of circulating EPCs. RESULTS TNF-α and IL-6 serum levels increased at 24h (p=0.017, p=0.099) after treatment and then decreased at 1 month (p=0.031, p=0.072) compared with those before treatment. The percentages of CD3+T, CD3+CD4+T-lymphocytes and NK cells decreased significantly after UC-MSCs treatment (p=0.002, p=0.012 and p=0.029, respectively). TNF-α (r=-0.602, p=0.038) was shown to be inversely correlated with the number of circulating EPCs. CONCLUSIONS This study demonstrates that UC-MSCs have anti-inflammatory and immunomodulation properties in CLI and suggests that UC-MSCs promote healing of non-healing wounds.
Collapse
Affiliation(s)
- Wen-Hui Gao
- Institute of Hematology, General Medical Center, Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hong-Ye Gao
- Institute of Hematology, General Medical Center, Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yue-Tong Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping-Ping Huang
- Institute of Hematology, General Medical Center, Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
32
|
Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 2019; 114:108765. [PMID: 30921703 DOI: 10.1016/j.biopha.2019.108765] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a subset of mesenchymal stem cells (MSCs) that can be obtained easily from adipose tissues and possess many of the same regenerative properties as other MSCs. ASCs easily adhere to plastic culture flasks, expand in vitro, and have the capacity to differentiate into multiple cell lineages, offering the potential to repair, maintain, or enhance various tissues. Since human adipose tissue is ubiquitous and easily obtained in large quantities using a minimally invasive procedure, the use of autologous ASCs is promising for both regenerative medicine and organs damaged by injury and disease, leading to a rapidly increasing field of research. ASCs are effective for the treatment of severe symptoms such as atrophy, fibrosis, retraction, and ulcers induced by radiation therapy. Moreover, ASCs have been shown to be effective for pathological wound healing such as aberrant scar formation. Additionally, ASCs have been shown to be effective in treating severe refractory acute graft-versus-host disease and hematological and immunological disorders such as idiopathic thrombocytopenic purpura and refractory pure red cell aplasia, indicating that ASCs may have immunomodulatory function. Although many experimental procedures have been proposed, standardized harvesting protocols and processing techniques do not yet exist. Therefore, in this review we focus on the current landscape of ASC isolation, identification, location, and differentiation ability, and summarize the recent progress in ASC applications, the latest preclinical and clinical research, and future approaches for the use of ASCs.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuchun Kang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiakun Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
33
|
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Chuang CH, Lin PC, Lin SZ. Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats. Redox Biol 2019; 27:101170. [PMID: 31164286 PMCID: PMC6859583 DOI: 10.1016/j.redox.2019.101170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Left ventricular hypertrophy (LVH) in hypertension has prognostic significance on cardiovascular mortality and morbidity. Recently, we have shown that n-butylidenephthalide (BP) improves human adipose-derived stem cell (hADSC) engraftment via attenuated reactive oxygen species (ROS) production. This prompted us to investigate whether remote transplantation of BP-pretreated hADSCs confers attenuated LVH at an established phase of hypertension. Male spontaneously hypertensive rats (SHRs) aged 12 weeks were randomly allocated to receive right hamstring injection of vehicle, clinical-grade hADSCs, and BP-preconditioned hADSCs for 8 weeks. As compared with untreated SHRs, naïve hADSCs decreased the ratio of LV weight to tibia, cardiomyocyte cell size, and collagen deposition independent of hemodynamic changes. These changes were accompanied by attenuated myocardial ROS production and increased p-STAT3 levels. Compared with naïve hADSCs, BP-preconditioned hADSCs provided a further decrease of ROS and LVH and an increase of local hADSC engraftment, STAT3 phosphorylation, STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels, and the percentage of M2 macrophage infiltration. SIN-1 or S3I-201 reversed the effects of BP-preconditioned ADSCs increase on myocardial IL-10 levels. Furthermore, SIN-1 abolished the phosphorylation of STAT3, whereas superoxide levels were not affected following the inhibition of STAT3. Our results highlighted the feasibility of remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy even at an established phase of hypertension. BP-pretreated hADSCs polarize macrophages into M2 immunoregulatory cells more efficiently than naïve hADSCs via ROS/STAT3 pathway. Hypertension was associated with left ventricular hypertrophy. Compared with untreated SHRs, naïve hADSCs injected at the right hamstring decreased LV mass and cardiomyocyte cell size. BP-preconditioned ADSCs provided a further increase of the M2 macrophage infiltration. The beneficial effects of BP-preconditioned stem cell administration can be abolished by exogenous SIN-1 or 3SI-201. Remote transplantation of hADSCs can be considered as an alternative procedure to reverse cardiac hypertrophy.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi Chuang
- Department of Technology Management, Chung Hua University, Hsinchu, Taiwan; Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Taiwan.
| |
Collapse
|
34
|
Rojas-Rodriguez R, Lujan-Hernandez J, Min SY, DeSouza T, Teebagy P, Desai A, Tessier H, Slamin R, Siegel-Reamer L, Berg C, Baez A, Lalikos J, Corvera S. Generation of Functional Human Adipose Tissue in Mice from Primed Progenitor Cells. Tissue Eng Part A 2019; 25:842-854. [PMID: 30306830 PMCID: PMC6590775 DOI: 10.1089/ten.tea.2018.0067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue (AT) is used extensively in reconstructive and regenerative therapies, but transplanted fat often undergoes cell death, leading to inflammation, calcification, and requirement for further revision surgery. Previously, we have found that mesenchymal progenitor cells within human AT can proliferate in three-dimensional culture under proangiogenic conditions. These cells (primed ADipose progenitor cells, PADS) robustly differentiate into adipocytes in vitro (ad-PADS). The goal of this study is to determine whether ad-PADS can form structured AT in vivo, with potential for use in surgical applications. Grafts formed from ad-PADS were compared to grafts formed from AT obtained by liposuction after implantation into nude mice. Graft volume was measured by microcomputed tomography scanning, and the functionality of cells within the graft was assessed by quantifying circulating human adiponectin. The degree of graft vascularization by donor or host vessels and the content of human or mouse adipocytes within the graft were measured using species-specific endothelial and adipocyte-specific quantitative real time polymerase chain reaction probes, and histochemistry with mouse and human-specific lectins. Our results show that ad-PADS grafted subcutaneously into nude mice induce robust vascularization from the host, continue to increase in volume over time, express the human adipocyte marker PLIN1 at levels comparable to human AT, and secrete increasing amounts of human adiponectin into the mouse circulation. In contrast, grafts composed of AT fragments obtained by liposuction become less vascularized, develop regions of calcification and decreased content of PLIN1, and secrete lower amounts of adiponectin per unit volume. Enrichment of liposuction tissue with ad-PADS improves vascularization, indicating that ad-PADS may be proangiogenic. Mechanistically, ad-PADS express an extracellular matrix gene signature that includes elements previously associated with small vessel development (COL4A1). Thus, through the formation of a proangiogenic environment, ad-PADS can form functional AT with capacity for long-term survival, and can potentially be used to improve outcomes in reconstructive and regenerative medicine.
Collapse
Affiliation(s)
- Raziel Rojas-Rodriguez
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jorge Lujan-Hernandez
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - So Yun Min
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tiffany DeSouza
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Teebagy
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Anand Desai
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Heather Tessier
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Robert Slamin
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Leah Siegel-Reamer
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Cara Berg
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Angel Baez
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Janice Lalikos
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Silvia Corvera
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
35
|
Wang QQ, Jing XM, Bi YZ, Cao XF, Wang YZ, Li YX, Qiao BJ, Chen Y, Hao YL, Hu J. Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stromal Cells May Attenuate Sarcopenia in Aged Mice Induced by Hindlimb Suspension. Med Sci Monit 2018; 24:9272-9281. [PMID: 30571669 PMCID: PMC6320659 DOI: 10.12659/msm.913362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Since the use of human umbilical cord Wharton’s Jelly derived mesenchymal stromal cells (hWJ-MSCs) to treat sarcopenia has not been explored, we studied the effects of hWJ-MSCs in aged male C57BL/6J mice with sarcopenia induced by hindlimb suspension, and explored the potential mechanism. Material/Methods Hindlimb suspension was used to induce sarcopenia in 24-month-old C57BL/6J mice and green fluorescent protein-tagged hWJ-MSCs and controls were transplanted into mice via tail vein or local intramuscular injection. After hWJ-MSC transplantation, changes in whole body muscle strength and endurance, gastrocnemius muscle weight and myofiber cross-sectional area (CSA) were studied. Proliferation of skeletal muscle stem cell, apoptosis, and chronic inflammation were also investigated. Results We demonstrated that whole body muscle strength and endurance, gastrocnemius muscle mass, and CSA were significantly increased in hWJ-MSC-transplanted mice than in controls (P<0.05). In hWJ-MSC-transplanted mice, apoptotic myonuclei was reduced, and BrdU and Pax-7 expression indices of gastrocnemius muscles were increased (P<0.05). Tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated, and IL-4 and IL-10 were upregulated (P<0.05). Conclusions hWJ-MSCs may ameliorate sarcopenia in aged male C57BL/6J mice induced by hindlimb suspension, and this may be via activation of resident skeletal muscle satellite cells, reduction of apoptosis, and less chronic inflammation.
Collapse
Affiliation(s)
- Quan-Quan Wang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Xiao-Ma Jing
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Yan-Zhen Bi
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xiao-Fu Cao
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yu-Zhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yan-Xin Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Bao-Jun Qiao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yun Chen
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
36
|
Gorecka A, Salemi S, Haralampieva D, Moalli F, Stroka D, Candinas D, Eberli D, Brügger L. Autologous transplantation of adipose-derived stem cells improves functional recovery of skeletal muscle without direct participation in new myofiber formation. Stem Cell Res Ther 2018; 9:195. [PMID: 30016973 PMCID: PMC6050693 DOI: 10.1186/s13287-018-0922-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Skeletal muscle has a remarkable regenerative capacity. However, extensive damage that exceeds the self-regenerative ability of the muscle can lead to irreversible fibrosis, scarring, and significant loss of function. Adipose-derived stem cells (ADSC) are a highly abundant source of progenitor cells that have been previously reported to support the regeneration of various muscle tissues, including striated muscles. The aim of this study was to evaluate the effect of ADSC transplantation on functional skeletal muscle regeneration in an acute injury model. METHODS Mouse ADSC were isolated from subcutaneous fat tissue and transplanted with a collagen hydrogel into the crushed tibialis anterior muscle of mice. Recovering muscles were analyzed for gene and protein expression by real-time quantitative polymerase chain reaction and immunohistochemistry. The muscle contractility was assessed by myography in an organ bath system. RESULTS Intramuscular transplantation of ADSC into crushed tibialis anterior muscle leads to an improved muscle regeneration with ADSC residing in the damaged area. We did not observe ADSC differentiation into new muscle fibers or endothelial cells. However, the ADSC-injected muscles had improved contractility in comparison with the collagen-injected controls 28 days post-transplantation. Additionally, an increase in fiber cross-sectional size and in the number of mature fibers with centralized nuclei was observed. CONCLUSIONS ADSC transplantation into acute damaged skeletal muscle significantly improves functional muscle tissue regeneration without direct participation in muscle fiber formation. Cellular therapy with ADSC represents a novel approach to promote skeletal muscle regeneration.
Collapse
Affiliation(s)
- Agata Gorecka
- Department of Clinical Research, Laboratory for Visceral Surgery and Medicine, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Souzan Salemi
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zurich, Zurich, Switzerland
| | - Deana Haralampieva
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zurich, Zurich, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
- Current address: Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Deborah Stroka
- Department of Clinical Research, Laboratory for Visceral Surgery and Medicine, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Daniel Candinas
- Department of Clinical Research, Laboratory for Visceral Surgery and Medicine, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- University Clinic for Visceral Surgery and Medicine, Bauchzentrum Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Daniel Eberli
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Brügger
- Department of Clinical Research, Laboratory for Visceral Surgery and Medicine, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
- University Clinic for Visceral Surgery and Medicine, Bauchzentrum Bern, Inselspital, CH-3010 Bern, Switzerland
| |
Collapse
|
37
|
Riccobono D, Nikovics K, François S, Favier AL, Jullien N, Schrock G, Scherthan H, Drouet M. First Insights Into the M2 Inflammatory Response After Adipose-Tissue-Derived Stem Cell Injections in Radiation-Injured Muscles. HEALTH PHYSICS 2018; 115:37-48. [PMID: 29787429 DOI: 10.1097/hp.0000000000000822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cutaneous radiation syndrome is the clinical consequence of local high-dose irradiation. It is characterized by extensive inflammation, necrosis, and poor revascularization of the skin, resulting in muscle inflammation and fibrosis. Based on these physiopathological processes, subcutaneous injections of adipose-tissue-derived stem/stromal cells have shown favorable effects on skin-wound healing in a minipig model of cutaneous radiation syndrome, in which muscle fibrosis persisted. Since fibrosis is mainly due to the inflammatory processes that often affect underlying tissues as well, the beneficial effects of intramuscular injections of adipose-tissue-derived stem/stromal cells on tissue recovery were evaluated. The polarization of the inflammatory response of irradiated muscle in a minipig model of cutaneous radiation syndrome was determined after acute local irradiation with 50 Gy gamma rays in a preliminary study (six minipigs). Analysis of the main inflammatory cytokines of the inflammatory response M1 (IL-1-beta and IL-6) and M2 (IL-10 and TGF-beta) by western blotting and in situ hybridization, as well as analysis of CD80/CD206 M1/M2 macrophage-specific markers by immunohistochemistry on minipig muscle samples, was performed 76 d after irradiation. The treatment of irradiated muscles with autologous adipose-tissue-derived stem/stromal cells led to an increase in IL-10 and TGF-beta, being associated with an increase in CD68+/CD206+ cells in this area. This highlights a polarization of M2 in the inflammatory response and indicates that adipose-tissue-derived stem/stromal cells may direct the irradiated tissues' inflammatory response towards a proregenerative outcome.
Collapse
Affiliation(s)
- Diane Riccobono
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| | - Krisztina Nikovics
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Services, Unité Imagerie, Brétigny sur Orge Cedex, France
| | - Sabine François
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Services, Unité Imagerie, Brétigny sur Orge Cedex, France
| | - Nicolas Jullien
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| | - Gerrit Schrock
- Institut für Radiobiologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Michel Drouet
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| |
Collapse
|
38
|
Chhetri JK, de Souto Barreto P, Fougère B, Rolland Y, Vellas B, Cesari M. Chronic inflammation and sarcopenia: A regenerative cell therapy perspective. Exp Gerontol 2018; 103:115-123. [DOI: 10.1016/j.exger.2017.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/06/2023]
|
39
|
Gilbert-Honick J, Iyer SR, Somers SM, Lovering RM, Wagner K, Mao HQ, Grayson WL. Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials 2018; 164:70-79. [PMID: 29499437 DOI: 10.1016/j.biomaterials.2018.02.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
Tissue engineering strategies to treat patients with volumetric muscle loss (VML) aim to recover the structure and contractile function of lost muscle tissue. Here, we assessed the capacity of novel electrospun fibrin hydrogel scaffolds seeded with murine myoblasts to regenerate the structure and function of damaged muscle within VML defects to the mouse tibialis anterior muscle. The electrospun fibrin scaffolds provide pro-myogenic alignment and stiffness cues, myomimetic hierarchical structure, suturability, and scale-up capabilities. Myoblast-seeded scaffolds enabled remarkable muscle regeneration with high myofiber and vascular densities after 2 and 4 weeks, mimicking that of native skeletal muscle, while acellular scaffolds lacked muscle regeneration. Both myoblast-seeded and acellular scaffolds fully recovered muscle contractile function to uninjured values after 2 and 4 weeks. Electrospun scaffolds pre-vascularized with co-cultured human endothelial cells and human adipose-derived stem cells implanted into VML defects for 2 weeks anastomosed with host vasculature and were perfused with host red blood cells. These data demonstrate the significant potential of electrospun fibrin scaffolds seeded with myoblasts to fully regenerate the structure and function of volumetric muscle defects and these scaffolds offer a promising treatment option for patients with VML.
Collapse
Affiliation(s)
- Jordana Gilbert-Honick
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sarah M Somers
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathryn Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, 21205, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science & Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Vitzel KF, Fortes MA, Marzuca-Nassr GN, Scervino MVM, Pinheiro CH, Silveira LR, Curi R. In Vivo Electrical Stimulation for the Assessment of Skeletal Muscle Contractile Function in Murine Models. Methods Mol Biol 2018; 1735:381-395. [PMID: 29380329 DOI: 10.1007/978-1-4939-7614-0_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle electrical stimulation is commonly used for clinical purposes, assisting recovery, preservation, or even improvement of muscle mass and function in healthy and pathological conditions. Additionally, it is a useful research tool for evaluation of skeletal muscle contractile function. It may be applied in vitro, using cell culture or isolated fibers/muscles, and in vivo, using human subjects or animal models (neuromuscular electrical stimulation - NMES). This chapter focuses on the electrical stimulation of the sciatic nerve as a research method for evaluation of the contractile properties of murine hind limb muscles. Variations of this protocol allow for the assessment of muscle force, fatigue resistance, contraction and relaxation times, and can be used as a model of contraction-induced muscle injury, reactive oxygen species production, and muscle adaptation to contractile activity.
Collapse
Affiliation(s)
- Kaio F Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand.
| | - Marco A Fortes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria V M Scervino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos H Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, Institute of Biology, Unicamp, Campinas, Sao Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil
| |
Collapse
|
41
|
Lewis FC, Cottle BJ, Shone V, Marazzi G, Sassoon D, Tseng CCS, Dankers PYW, Chamuleau SAJ, Nadal-Ginard B, Ellison-Hughes GM. Transplantation of Allogeneic PW1 pos/Pax7 neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle. ACTA ACUST UNITED AC 2017; 2:717-736. [PMID: 30062184 PMCID: PMC6059014 DOI: 10.1016/j.jacbts.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
Allogeneic PICs express and secrete an array of pro-regenerative paracrine factors that stimulate a regenerative response in a preclinical muscle injury model applicable to humans. Paracrine factors secreted by allogeneic PICs stimulate endogenous progenitor cell activation and differentiation, leading to accelerated and improved myofiber regeneration and microvessel formation. Allogeneic PICs survive long enough to exert their action before being cleared by the host immune system. Therefore, the cells transplanted are allogeneic but the regeneration is completely autologous. Administration of HGF and IGF-1 improves skeletal muscle regeneration, but not to the same extent as PIC transplantation.
Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs) express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs) significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.
Collapse
Key Words
- BrdU, 5-bromo-2′-deoxyuridine
- CM, pPIC conditioned medium
- CSA, cross sectional area
- CSC, cardiac stem cell
- CTRL, control
- CTX, cardiotoxin
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle's medium
- FBS, fetal bovine serum
- GFPpPIC, GFP-positive porcine PW1pos/Pax7neg interstitial cell
- GM, growth medium
- HUVEC, human umbilical vein endothelial cell
- HVG, hematoxylin and van Gieson
- ICM, heat-inactivated conditioned medium
- IV, intravenous
- MHC, myosin heavy chain
- MI, myocardial infarction
- P, passage
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate buffered saline
- PIC, PW1pos/Pax7neg interstitial cell
- PICs
- TA, tibialis anterior
- UM, unconditioned medium
- allogeneic progenitor cells
- growth factors
- nMHC, neonatal myosin heavy chain
- pPIC, porcine PW1pos/Pax7neg interstitial cell
- porcine preclinical model
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- regeneration
- skeletal muscle
- vWF, Von Willebrand factor
Collapse
Affiliation(s)
- Fiona C Lewis
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Beverley J Cottle
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Victoria Shone
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Cheyenne C S Tseng
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia Y W Dankers
- Supramolecular Biomaterials for Translational Biomedical Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bernardo Nadal-Ginard
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Georgina M Ellison-Hughes
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
42
|
Pelatti MV, Gomes JPA, Vieira NMS, Cangussu E, Landini V, Andrade T, Sartori M, Petrus L, Zatz M. Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure. Stem Cell Rev Rep 2017; 12:448-53. [PMID: 27193781 DOI: 10.1007/s12015-016-9659-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials.
Collapse
Affiliation(s)
- M V Pelatti
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - J P A Gomes
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - N M S Vieira
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - E Cangussu
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - V Landini
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - T Andrade
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - M Sartori
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - L Petrus
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - Mayana Zatz
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090.
| |
Collapse
|
43
|
Marzuca-Nassr GN, Murata GM, Martins AR, Vitzel KF, Crisma AR, Torres RP, Mancini-Filho J, Kang JX, Curi R. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy. Nutrients 2017; 9:nu9101100. [PMID: 28984836 PMCID: PMC5691716 DOI: 10.3390/nu9101100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/16/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022] Open
Abstract
The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001). Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Gilson Masahiro Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- School of Health Sciences, College of Health, Massey University, Auckland 0632, New Zealand.
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rosângela Pavan Torres
- Laboratory of Lipids, Department of Food Science and Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Jorge Mancini-Filho
- Laboratory of Lipids, Department of Food Science and Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Jing Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
44
|
Preferred M2 Polarization by ASC-Based Hydrogel Accelerated Angiogenesis and Myogenesis in Volumetric Muscle Loss Rats. Stem Cells Int 2017; 2017:2896874. [PMID: 28694827 PMCID: PMC5488492 DOI: 10.1155/2017/2896874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023] Open
Abstract
Volumetric muscle loss (VML) injury resulted from massive muscle defects and diseases for which there are still no effective therapeutic treatments. This study aimed to investigate the effects of rat adipose-derived mesenchymal stem cells (rASCs) and rASCs-conditioned medium- (CM-) based type I collagen hydrogel on macrophage (MP) transition, myogenesis, and vascularization in the rat VML model. Laser Doppler results demonstrated much higher blood flow in the rASC- and CM-based hydrogel groups. qRT-PCR, hematoxylin and eosin, immunofluorescence, and Sirius Red staining manifested that both rASCs and CM-based hydrogel implantation accelerated muscle repair with upregulated angiogenesis and myogenesis, attenuated inflammation while facilitating M2 transition, and decreased the collagen deposition compared with the hydrogel group. In vitro experiments indicated that factors secreted from polarized M2 MPs could accelerate the migration and tube formation capacities of HUVECs. These results suggested that rASCs exerted immunomodulatory effects on MPs which further enhanced the proangiogenic potential on ECs to promote myogenesis and angiogenesis during muscle repair. These fundamental results support further clinical applications of ASCs for muscle loss injury.
Collapse
|
45
|
Assoni A, Coatti G, Valadares MC, Beccari M, Gomes J, Pelatti M, Mitne-Neto M, Carvalho VM, Zatz M. Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use. Stem Cells Dev 2016; 26:206-214. [PMID: 27762666 DOI: 10.1089/scd.2016.0218] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by null mutations in the dystrophin gene. Although the primary defect is the deficiency of muscle dystrophin, secondary events, including chronic inflammation, fibrosis, and muscle regeneration failure are thought to actively contribute to disease progression. Despite several advances, there is still no effective therapy for DMD. Therefore, the potential regenerative capacities, and immune-privileged properties of mesenchymal stromal cells (MSCs), have been the focus of intense investigation in different animal models aiming the treatment of these disorders. However, these studies have shown different outcomes according to the sources from which MSCs were obtained, which raise the question whether stem cells from distinct sources have comparable clinical effects. Here, we analyzed the protein content of the secretome of MSCs, isolated from three different sources (adipose tissue, skeletal muscle, and uterine tubes), obtained from five donors and evaluated their in vitro properties when cocultured with DMD myoblasts. All MSC lineages showed pathways enrichment related to protein metabolic process, oxidation-reduction process, cell proliferation, and regulation of apoptosis. We found that MSCs secretome proteins and their effect in vitro vary significantly according to the tissue and donors, including opposite effects in apoptosis assay, indicating the importance of characterizing MSC secretome profile before its use in animal and clinical trials. Despite the individual differences a pool of conditioned media from all MSCs lineages was able to delay apoptosis and enhance migration when in contact with DMD myoblasts.
Collapse
Affiliation(s)
- Amanda Assoni
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Giuliana Coatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Marcos C Valadares
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Melinda Beccari
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Juliana Gomes
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Mayra Pelatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Miguel Mitne-Neto
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil .,2 Fleury Group (Research and Development Department), São Paulo, Brazil
| | | | - Mayana Zatz
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| |
Collapse
|
46
|
Marzuca-Nassr GN, Vitzel KF, De Sousa LG, Murata GM, Crisma AR, Rodrigues Junior CF, Abreu P, Torres RP, Mancini-Filho J, Hirabara SM, Newsholme P, Curi R. Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats. Physiol Rep 2016; 4:e12958. [PMID: 27650250 PMCID: PMC5037913 DOI: 10.14814/phy2.12958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil Massey Institute of Food Science and Technology, College of Health Massey University, Albany, New Zealand
| | - Luís Gustavo De Sousa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Gilson M Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | | | - Phablo Abreu
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Rosângela Pavan Torres
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science University of São Paulo, São Paulo, Brazil
| | - Jorge Mancini-Filho
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science University of São Paulo, São Paulo, Brazil
| | - Sandro M Hirabara
- Institute of Physical Activity Sciences and Sport, Cruzeiro do Sul University, São Paulo, Brazil
| | - Philip Newsholme
- School of Biomedical Sciences, CHIRI Biosciences Curtin University, Perth, Australia
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Riccobono D, Agay D, François S, Scherthan H, Drouet M, Forcheron F. Contribution of INTRAMUSCULAR Autologous Adipose Tissue-Derived Stem Cell Injections to Treat Cutaneous Radiation Syndrome: Preliminary Results. HEALTH PHYSICS 2016; 111:117-126. [PMID: 27356055 DOI: 10.1097/hp.0000000000000515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cutaneous radiation syndrome caused by high dose located irradiation is characterized by delayed symptoms, incomplete wound healing, and poor revascularization. Subcutaneous adipose tissue derived stromal/stem cells have been shown to improve skin repair in a minipig model of cutaneous radiation syndrome despite a subcutaneous defect being a consequence of radio-induced muscular fibrosis. Based on the pro-myogenic potential of stromal/stem cells, a new protocol combining subcutaneous and intramuscular injections was evaluated in a preliminary study. Six female minipigs were locally irradiated at the dose of 50 Gy using a Co source (0.6 Gy min) and randomly divided into two groups. Three animals received the vehicle (phosphate-buffer-saline solution) and three animals received three injections of 75 × 10 adipose tissue derived stromal/stem cells each time (day 25, 46, and 66 post-irradiation). Pigs were euthanized on day 76 post-irradiation before development of clinical skin symptoms. All minipigs exhibited a homogeneous skin evolution. Macroscopic observation of irradiated muscles showed prominent fibrosis and necrosis areas in controls as opposed to adipose tissue-derived stromal/stem cells injected animals. Moreover, muscle biopsy analysis highlighted a recruitment of myofibroblasts (Immune Reactive Score: p < 0.01), an interleukin 10 secretion and a muscle regeneration pathway activation after intramuscular injections of adipose tissue-derived stromal/stem cells (western-blot: respectively, 200-fold change difference and twofold higher in treated animals). Globally, these preliminary data suggest that intramuscular injections of adipose tissue-derived stromal/stem cells improve muscle regeneration in the cutaneous-radiation syndrome. Further work is ongoing to evaluate this therapeutic strategy on a larger animal number with a longer clinical follow-up.
Collapse
Affiliation(s)
- Diane Riccobono
- *Institut de Recherche Biomédicale des Armées (IRBA), Département des Effets Biologiques des Rayonnements, BP 73, Brétigny sur Orge Cedex, France; †Clinatec, 17 rue des Martyrs 38054, Grenoble cedex, France; ‡Institut für Radiobiologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Kesireddy V. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. Int J Nanomedicine 2016; 11:1461-73. [PMID: 27114706 PMCID: PMC4833361 DOI: 10.2147/ijn.s101955] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Volumetric muscle loss (VML) can occur from congenital defects, muscle wasting diseases, civilian or military injuries, and as a result of surgical removal of muscle tissue (eg, cancer), all of which can lead to irrevocable functional and cosmetic defects. Current tissue engineering strategies to repair VML often employ muscle-derived progenitor cells (MDCs) as one component. However, there are some inherent limitations in their in vitro culture expansion. Thus, this study explores the potential of adipose-derived stem cells (ADSCs) as an alternative cell source to MDCs for tissue engineering of skeletal muscle. A reproducible VML injury model in murine latissimus dorsi muscle was used to evaluate tissue-engineered muscle repair (TEMR) constructs incorporating MDCs or ADSCs. Importantly, histological analysis revealed that ADSC-seeded constructs displayed regeneration potential that was comparable to those seeded with MDCs 2 months postrepair. Furthermore, morphological analysis of retrieved constructs demonstrated signs of neotissue formation, including cell fusion, fiber formation, and scaffold remodeling. Immunohistochemistry demonstrated positive staining for both structural and functional proteins. Positive staining for vascular structures indicated the potential for long-term neotissue survival and integration with existing musculature. Qualitative observation of lentivirus-Cherry-labeled donor cells by immunohistochemistry indicates that participation of ADSCs in new hybrid myofiber formation incorporating donor cells was relatively low, compared to donor MDCs. However, ADSCs appear to participate in vascularization. In summary, I have demonstrated that TEMR constructs generated with ADSCs displayed skeletal muscle regeneration potential comparable to TEMR–MDC constructs as previously reported.
Collapse
Affiliation(s)
- Venu Kesireddy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Winston Salem, NC, USA; Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
49
|
Salibian AA, Rosario ATD, Severo LDAM, Nguyen L, Banyard DA, Toranto JD, Evans GRD, Widgerow AD. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns. Burns 2016; 42:1025-1035. [PMID: 26787127 DOI: 10.1016/j.burns.2015.11.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/16/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023]
Abstract
Burn wound conversion describes the process by which superficial partial thickness burns convert into deeper burns necessitating surgical intervention. Fully understanding and thus controlling this phenomenon continues to defy burn surgeons. However, potentially guiding burn wound progression so as to obviate the need for surgery while still bringing about healing with limited scarring is the major unmet challenge. Comprehending the pathophysiologic background contributing to deeper progression of these burns is an essential prerequisite to planning any intervention. In this study, a review of articles examining burn wound progression over the last five years was conducted to analyze trends in recent burn progression research, determine changes in understanding of the pathogenesis of burn conversion, and subsequently examine the direction for future research in developing therapies. The majority of recent research focuses on applying therapies from other disease processes to common underlying pathogenic mechanisms in burn conversion. While ischemia, inflammation, and free oxygen radicals continue to demonstrate a critical role in secondary necrosis, novel mechanisms such as autophagy have also been shown to contribute affect significantly burn progression significantly. Further research will have to determine whether multiple mechanisms should be targeted when developing clinical therapies.
Collapse
Affiliation(s)
- Ara A Salibian
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Angelica Tan Del Rosario
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Lucio De Almeida Moura Severo
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Long Nguyen
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Derek A Banyard
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Jason D Toranto
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Gregory R D Evans
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States.
| |
Collapse
|
50
|
Luan A, Duscher D, Whittam AJ, Paik KJ, Zielins ER, Brett EA, Atashroo DA, Hu MS, Lee GK, Gurtner GC, Longaker MT, Wan DC. Cell-Assisted Lipotransfer Improves Volume Retention in Irradiated Recipient Sites and Rescues Radiation-Induced Skin Changes. Stem Cells 2016; 34:668-73. [PMID: 26661694 DOI: 10.1002/stem.2256] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/11/2015] [Indexed: 01/09/2023]
Abstract
Radiation therapy is not only a mainstay in the treatment of many malignancies but also results in collateral obliteration of microvasculature and dermal/subcutaneous fibrosis. Soft tissue reconstruction of hypovascular, irradiated recipient sites through fat grafting remains challenging; however, a coincident improvement in surrounding skin quality has been noted. Cell-assisted lipotransfer (CAL), the enrichment of fat with additional adipose-derived stem cells (ASCs) from the stromal vascular fraction, has been shown to improve fat volume retention, and enhanced outcomes may also be achieved with CAL at irradiated sites. Supplementing fat grafts with additional ASCs may also augment the regenerative effect on radiation-damaged skin. In this study, we demonstrate the ability for CAL to enhance fat graft volume retention when placed beneath the irradiated scalps of immunocompromised mice. Histologic metrics of fat graft survival were also appreciated, with improved structural qualities and vascularity. Finally, rehabilitation of radiation-induced soft tissue changes were also noted, as enhanced amelioration of dermal thickness, collagen content, skin vascularity, and biomechanical measures were all observed with CAL compared to unsupplemented fat grafts. Supplementation of fat grafts with ASCs therefore shows promise for reconstruction of complex soft tissue defects following adjuvant radiotherapy.
Collapse
Affiliation(s)
- Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Kevin J Paik
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Elizabeth R Zielins
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Elizabeth A Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - David A Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Gordon K Lee
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| |
Collapse
|