1
|
Esmaeili A, Esmaeili V, Shahverdi A, Eslaminejad MB. Engineered extracellular vesicles: a breakthrough approach to overcoming sperm cryopreservation challenges. Reprod Biol Endocrinol 2025; 23:75. [PMID: 40399922 PMCID: PMC12093887 DOI: 10.1186/s12958-025-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Freezing sperm for artificial insemination (AI) has been common for decades, but this method causes damage to sperm, which affects its viability and fertility. Various strategies have been used to treat sperm cryopreservation complications, but their results are still not satisfactory. The latest approach in this field is using extracellular vesicles (EVs). The role of EVs in reproduction, such as spermatogenesis, sperm capacitation, and fertility has been proven. EVs can deliver proteins, lipids, nucleic acids, and other molecules to the sperm for repair. The EVs carry proteins, lipids, nucleic acids, and other molecules, which could be involved in sperm quality, functionality or fertility. The application of EV derived from animal and human cell sources for cryoinjury treatment indicates the improvement of sperm quality after freeze-thawing. In addition, different EV engineering methods regarding various EV cargos could be more influential for cryopreserved sperm treatment because they could provide EV customized content for delivering to cryoinjured sperm, according to their unique needs to enhance viability and fertility. In this review, first, we reminded the sperm cryopreservation complications, and next explained the conventional and modern strategies for overcoming them. Then, we have pointed out the role of EV in sperm development and the following mentioned the study results of using EV from different cell sources in sperm cryoinjuries repair. Also, we suggested several predisposing molecules (including microRNAs and proteins) for EV engineering to treat sperm cryopreservation complications by indirect engineering procedure, including genetic manipulation and incubation with therapeutic molecules, and direct engineering procedure, including electroporation, sonication, incubation, saponin permeabilization, extrusion, CaCl2-heat shock, and freeze/thawing. Finally, we discussed the limitations of EV application and ethical considerations in this context. In the meantime, despite these limitations, we pointed out the promising potential of the EV engineering strategies to reduce infertility rates by helping to overcome sperm cryopreservation challenges.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Zheng B, Wang X, Guo M, Tzeng CM. Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Cell Transplant 2025; 34:9636897241297623. [PMID: 39874070 PMCID: PMC11775985 DOI: 10.1177/09636897241297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 01/30/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs). The EVs contain much DNA, messenger RNA (mRNA), microRNA, and protein components, which can exert intracellular communication to target cells. In clinical applications, the MSC-EVs have been widely used in tissue repair and immune disorder diseases. However, there are serval issues need to be considered such as how to accomplish the large-scale production of EVs and how to verify the exact mechanism of EVs. In this review, we summarize the current progress of MSC-EVs and discuss the challenges and future of MSC-EVs.
Collapse
Affiliation(s)
- Bingyi Zheng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xueting Wang
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Meizhai Guo
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chi-Meng Tzeng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Bahrami M, Abbaszadeh HA, Norouzian M, Abdollahifar MA, Roozbahany NA, Saber M, Azimi M, Ehsani E, Bakhtiyari M, Serra AL, Moghadasali R. Enriched human embryonic stem cells-derived CD133 +, CD24 + renal progenitors engraft and restore function in a gentamicin-induced kidney injury in mice. Regen Ther 2024; 27:506-518. [PMID: 38745839 PMCID: PMC11091464 DOI: 10.1016/j.reth.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is a common health problem that leads to high morbidity and potential mortality. The failure of conventional treatments to improve forms of this condition highlights the need for innovative and effective treatment approaches. Regenerative therapies with Renal Progenitor Cells (RPCs) have been proposed as a promising new strategy. A growing body of evidence suggests that progenitor cells differentiated from different sources, including human embryonic stem cells (hESCs), can effectively treat AKI. Methods Here, we describe a method for generating RPCs and directed human Embryoid Bodies (EBs) towards CD133+CD24+ renal progenitor cells and evaluate their functional activity in alleviating AKI. Results The obtained results show that hESCs-derived CD133+CD24+ RPCs can engraft into damaged renal tubules and restore renal function and structure in mice with gentamicin-induced kidney injury, and significantly decrease blood urea nitrogen levels, suppress oxidative stress and inflammation, and attenuate histopathological disturbances, including tubular necrosis, tubular dilation, urinary casts, and interstitial fibrosis. Conclusion The results suggest that RPCs have a promising regenerative potential in improving renal disease and can lay the foundation for future cell therapy and disease modeling.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Private Practice, Bradford ON, Canada
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ehsan Ehsani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Mohsen Bakhtiyari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L. Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
5
|
Souza ILM, Suzukawa AA, Josino R, Marcon BH, Robert AW, Shigunov P, Correa A, Stimamiglio MA. Cellular In Vitro Responses Induced by Human Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Obtained from Suspension Culture. Int J Mol Sci 2024; 25:7605. [PMID: 39062847 PMCID: PMC11277484 DOI: 10.3390/ijms25147605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-β and IL-1β was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.
Collapse
Affiliation(s)
- Ingrid L. M. Souza
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Andreia A. Suzukawa
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Raphaella Josino
- Albert Einstein Israelite Hospital, São Paulo 05652-900, SP, Brazil
| | - Bruna H. Marcon
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
- Confocal and Electronic Microscopy Facility (RPT07C), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil
| | - Anny W. Robert
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
- Confocal and Electronic Microscopy Facility (RPT07C), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil
| | - Patrícia Shigunov
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Marco A. Stimamiglio
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| |
Collapse
|
6
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
8
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
9
|
McDonald J, Mohak S, Fabian Z. Stem Cell-Derived Extracellular Vesicles in the Treatment of Cardiovascular Diseases. Pharmaceutics 2024; 16:381. [PMID: 38543275 PMCID: PMC10974254 DOI: 10.3390/pharmaceutics16030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease constitutes a noteworthy public health challenge characterized by a pronounced incidence, frequency, and mortality rate, particularly impacting specific demographic groups, and imposing a substantial burden on the healthcare infrastructure. Certain risk factors, such as age, gender, and smoking, contribute to the prevalence of fatal cardiovascular disease, highlighting the need for targeted interventions. Current challenges in clinical practice involve medication complexities, the lack of a systematic decision-making approach, and prevalent drug therapy problems. Stem cell-derived extracellular vesicles stand as versatile entities with a unique molecular fingerprint, holding significant therapeutic potential across a spectrum of applications, particularly in the realm of cardio-protection. Their lipid, protein, and nucleic acid compositions, coupled with their multifaceted functions, underscore their role as promising mediators in regenerative medicine and pave the way for further exploration of their intricate contributions to cellular physiology and pathology. Here, we overview our current understanding of the possible role of stem cell-derived extracellular vesicles in the clinical management of human cardiovascular pathologies.
Collapse
Affiliation(s)
- Jennifer McDonald
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Internal Medicine, South Texas Health System, McAllen, TX 78503, USA;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| |
Collapse
|
10
|
Barchiki F, Fracaro L, Dominguez AC, Senegaglia AC, Vaz IM, Soares P, de Moura SAB, Brofman PRS. Biocompatibility of ABS and PLA Polymers with Dental Pulp Stem Cells Enhance Their Potential Biomedical Applications. Polymers (Basel) 2023; 15:4629. [PMID: 38139880 PMCID: PMC10747830 DOI: 10.3390/polym15244629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Polylactic Acid (PLA) and Acrylonitrile-Butadiene-Styrene (ABS) are commonly used polymers in 3D printing for biomedical applications. Dental Pulp Stem Cells (DPSCs) are an accessible and proliferative source of stem cells with significant differentiation potential. Limited knowledge exists regarding the biocompatibility and genetic safety of ABS and PLA when in contact with DPSCs. This study aimed to investigate the impact of PLA and ABS on the adhesion, proliferation, osteogenic differentiation, genetic stability, proteomics, and immunophenotypic profile of DPSCs. A total of three groups, 1- DPSC-control, 2- DPSC+ABS, and 3- DPSC+PLA, were used in in vitro experiments to evaluate cell morphology, proliferation, differentiation capabilities, genetic stability, proteomics (secretome), and immunophenotypic profiles regarding the interaction between DPSCs and polymers. Both ABS and PLA supported the adhesion and proliferation of DPSCs without exhibiting significant cytotoxic effects and maintaining the capacity for osteogenic differentiation. Genetic stability, proteomics, and immunophenotypic profiles were unaltered in DPSCs post-contact with these polymers, highlighting their biosafety. Our findings suggest that ABS and PLA are biocompatible with DPSCs and demonstrate potential in dental or orthopedic applications; the choice of the polymer will depend on the properties required in treatment. These promising results stimulate further studies to explore the potential therapeutic applications in vivo using prototyped polymers in personalized medicine.
Collapse
Affiliation(s)
- Fabiane Barchiki
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Alejandro Correa Dominguez
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-PR, Curitiba 81350-010, Brazil;
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Paulo Soares
- LaBES—Laboratory of Biomaterials and Surface Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil;
| | - Sérgio Adriane Bezerra de Moura
- Departament of Morphology, Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59072-970, Brazil;
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Wen J, Chen Y, Liao C, Ma X, Wang M, Li Q, Wang D, Li Y, Zhang X, Li L, Zhou H, Zou J, Liu L, Peng D. Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells. Cancer Lett 2023; 575:216407. [PMID: 37769796 DOI: 10.1016/j.canlet.2023.216407] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Most patients with acute myeloid leukemia (AML) relapse eventually because of the inability to effectively eliminate leukemia stem cells (LSCs), prompting the search of new therapies to eradicate LSCs. Our previous study demonstrated that miR-34c-5p promotes the clearance of LSCs in an AML mouse model, highlighting its potential as a therapeutic target for eradicating LSCs, but the effective delivery of miR-34c-5p to LSCs remains a great challenge. Here, we employed simultaneous two-step modifications to engineer mesenchymal stem cells (MSCs) and MSC-derived exosomes to create exosomes overexpressing the fused protein lysosome-associated membrane protein 2-interleukin 3 (Lamp2b-IL3) and hematopoietic cell E-selectin/L-selectin ligand (HCELL), and demonstrated that the engineered exosomes exhibited an enhanced ability for bone marrow homing and selective targeting of LSCs. Additionally, using a humanized AML mouse model, we confirmed that the engineered exosomes, loaded with miR-34c-5p, could selectively promote eradication of LSCs and impede the AML development in vivo. In summary, we successfully designed an effective delivery system and provided new insights into the development of novel therapies for delivering miRNA or other molecules to LSCs with greater cellular targeting specificity.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxi Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingnan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Pediatrics, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Peng YQ, Deng XH, Xu ZB, Wu ZC, Fu QL. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: From immunomodulation to therapy. Eur J Immunol 2023; 53:e2149510. [PMID: 37572379 DOI: 10.1002/eji.202149510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.
Collapse
Affiliation(s)
- Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Xu CM, Karbasiafshar C, Brinck Teixeira R, Ahsan N, Blume Corssac G, Sellke FW, Abid MR. Proteomic Assessment of Hypoxia-Pre-Conditioned Human Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Demonstrates Promise in the Treatment of Cardiovascular Disease. Int J Mol Sci 2023; 24:1674. [PMID: 36675188 PMCID: PMC9866304 DOI: 10.3390/ijms24021674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.
Collapse
Affiliation(s)
- Cynthia M. Xu
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | | | - Rayane Brinck Teixeira
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Nagib Ahsan
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Giana Blume Corssac
- Cardiovascular Physiology Laboratory, Basic Health Sciences Institute, UFRGS, Porto Alegre, RS, Brazil
| | - Frank W. Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - M. Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
15
|
Cord Blood Plasma and Placental Mesenchymal Stem Cells-Derived Exosomes Increase Ex Vivo Expansion of Human Cord Blood Hematopoietic Stem Cells While Maintaining Their Stemness. Cells 2023; 12:cells12020250. [PMID: 36672185 PMCID: PMC9857343 DOI: 10.3390/cells12020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been used for ex vivo expansion of umbilical cord blood (UCB) hematopoietic stem cells (HSCs) to maintain their primitive characters and long-term reconstitution abilities during transplantation. Therapeutic effects of MSCs mainly rely on paracrine mechanisms, including secretion of exosomes (Exos). The objective of this study was to examine the effect of cord blood plasma (CBP)-derived Exos (CBP Exos) and Placental MSCs-derived Exos (MSCs Exos) on the expansion of UCB HSCs to increase their numbers and keep their primitive characteristics. METHODS CD34+ cells were isolated from UCB, cultured for 10 days, and the expanded HSCs were sub-cultured in semisolid methylcellulose media for primitive colony forming units (CFUs) assay. MSCs were cultured from placental chorionic plates. RESULTS CBP Exos and MSCs Exos compared with the control group significantly increased the number of total nucleated cells (TNCs), invitro expansion of CD34+ cells, primitive subpopulations of CD34+38+ and CD34+38-Lin- cells (p < 0.001). The expanded cells showed a significantly higher number of total CFUs in the Exos groups (p < 0.01). CONCLUSION CBP- and placental-derived exosomes are associated with significant ex vivo expansion of UCB HSCs, while maintaining their primitive characters and may eliminate the need for transplantation of an additional unit of UCB.
Collapse
|
16
|
de Oliveira MC, Heredia JE, da Silva FRF, Macari S. Extracellular Vesicles in Bone Remodeling and Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:155-168. [PMID: 37603279 DOI: 10.1007/978-981-99-1443-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Osteoporosis is a systemic disorder characterized by bone mass loss, leading to fractures due to weak and brittle bones. The bone tissue deterioration process is related to an impairment of bone remodeling orchestrated mainly by resident bone cells, including osteoblasts, osteoclasts, osteocytes, and their progenitors. Extracellular vesicles (EVs) are nanoparticles emerging as regulatory molecules and potential biomarkers for bone loss. Although the progress in studies relating to EVs and bone loss has increased in the last years, research on bone cells, animal models, and mainly patients is still limited. Here, we aim to review the recent advances in this field, summarizing the effect of EV components such as proteins and miRNAs in regulating bone remodeling and, consequently, osteoporosis progress and treatment. Also, we discuss the potential application of EVs in clinical practice as a biomarker and bone loss therapy, demonstrating that this rising field still needs to be further explored.
Collapse
Affiliation(s)
- Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joyce Elisa Heredia
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Soraia Macari
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Saccu G, Menchise V, Gai C, Bertolin M, Ferrari S, Giordano C, Manco M, Dastrù W, Tolosano E, Bussolati B, Calautti E, Camussi G, Altruda F, Fagoonee S. Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Corneal Wound Repair by Regulating Inflammation and Angiogenesis. Cells 2022; 11:3892. [PMID: 36497151 PMCID: PMC9736484 DOI: 10.3390/cells11233892] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Severe corneal damage leads to complete vision loss, thereby affecting life quality and impinging heavily on the healthcare system. Current clinical approaches to manage corneal wounds suffer from severe drawbacks, thus requiring the development of alternative strategies. Of late, mesenchymal stromal/stem cell (MSC)-derived extracellular vesicles (EVs) have become a promising tool in the ophthalmic field. In the present study, we topically delivered bone-marrow-derived MSC-EVs (BMSC-EVs), embedded in methylcellulose, in a murine model of alkali-burn-induced corneal damage in order to evaluate their role in corneal repair through histological and molecular analyses, with the support of magnetic resonance imaging. Our data show that BMSC-EVs, used for the first time in this specific formulation on the damaged cornea, modulate cell death, inflammation and angiogenetic programs in the injured tissue, thus leading to a faster recovery of corneal damage. These results were confirmed on cadaveric donor-derived human corneal epithelial cells in vitro. Thus, BMSC-EVs modulate corneal repair dynamics and are promising as a new cell-free approach for intervening on burn wounds, especially in the avascularized region of the eye.
Collapse
Affiliation(s)
- Gabriele Saccu
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Valeria Menchise
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center “Guido Tarone”, 10126 Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | | | - Cristina Giordano
- Ophthalmology Veterinary Practice, C.so Galileo Ferraris 121, 10126 Turin, Italy
| | - Marta Manco
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Walter Dastrù
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Benedetta Bussolati
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Enzo Calautti
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
18
|
Almeria C, Kreß S, Weber V, Egger D, Kasper C. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell Biosci 2022; 12:51. [PMID: 35501833 PMCID: PMC9063275 DOI: 10.1186/s13578-022-00786-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/10/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractExtracellular vesicles (EVs) are cell-derived membrane structures exerting major effects in physiological as well as pathological processes by functioning as vehicles for the delivery of biomolecules to their target cells. An increasing number of effects previously attributed to cell-based therapies have been recognized to be actually mediated by EVs derived from the respective cells, suggesting the administration of purified EVs instead of living cells for cell-based therapies. In this review, we focus on the heterogeneity of EVs derived from mesenchymal stem/stromal cells (MSC) and summarize upstream process parameters that crucially affect the resulting therapeutic properties and biological functions. Hereby, we discuss the effects of the cell source, medium composition, 3D culture, bioreactor culture and hypoxia. Furthermore, aspects of the isolation and storage strategies influences EVs are described. Conclusively, optimization of upstream process parameters should focus on controlling MSC-derived EV heterogeneity for specific therapeutic applications.
Graphical Abstract
Collapse
|
19
|
Alberti G, Russo E, Corrao S, Anzalone R, Kruzliak P, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines 2022; 10:2822. [PMID: 36359342 PMCID: PMC9687875 DOI: 10.3390/biomedicines10112822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of parental cells were maintained by isolated EV populations. This review analyzes the recent development in the field of cell-free therapies, focusing on several adult tissues as a source of MSC-derived EVs and the available clinical data from in vivo models.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Peter Kruzliak
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
20
|
Robert AW, Marcon BH, Angulski ABB, Martins SDT, Leitolis A, Stimamiglio MA, Senegaglia AC, Correa A, Alves LR. Selective Loading and Variations in the miRNA Profile of Extracellular Vesicles from Endothelial-like Cells Cultivated under Normoxia and Hypoxia. Int J Mol Sci 2022; 23:ijms231710066. [PMID: 36077462 PMCID: PMC9456085 DOI: 10.3390/ijms231710066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial-like cells may be obtained from CD133+ mononuclear cells isolated from human umbilical cord blood (hUCB) and expanded using endothelial-inducing medium (E-CD133 cells). Their use in regenerative medicine has been explored by the potential not only to form vessels but also by the secretion of bioactive elements. Extracellular vesicles (EVs) are prominent messengers of this paracrine activity, transporting bioactive molecules that may guide cellular response under different conditions. Using RNA-Seq, we characterized the miRNA content of EVs derived from E-CD133 cells cultivated under normoxia (N-EVs) and hypoxia (H-EVs) and observed that changing the O2 status led to variations in the selective loading of miRNAs in the EVs. In silico analysis showed that among the targets of differentially loaded miRNAs, there are transcripts involved in pathways related to cell growth and survival, such as FoxO and HIF-1 pathways. The data obtained reinforce the pro-regenerative potential of EVs obtained from E-CD133 cells and shows that fine tuning of their properties may be regulated by culture conditions.
Collapse
Affiliation(s)
- Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Bruna Hilzendeger Marcon
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Addeli Bez Batti Angulski
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Amanda Leitolis
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Marco Augusto Stimamiglio
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology-School of Medicine, Universidade Católica Paraná-PUCPR, Curitiba 80215-901, PR, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (A.C.); (L.R.A.)
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, PR, Brazil
- Correspondence: (A.C.); (L.R.A.)
| |
Collapse
|
21
|
DiStefano TJ, Vaso K, Danias G, Chionuma HN, Weiser JR, Iatridis JC. Extracellular Vesicles as an Emerging Treatment Option for Intervertebral Disc Degeneration: Therapeutic Potential, Translational Pathways, and Regulatory Considerations. Adv Healthc Mater 2022; 11:e2100596. [PMID: 34297485 PMCID: PMC8783929 DOI: 10.1002/adhm.202100596] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Emergent approaches in regenerative medicine look toward the use of extracellular vesicles (EVs) as a next-generation treatment strategy for intervertebral disc (IVD) degeneration (IVDD) because of their ability to attenuate chronic inflammation, reduce apoptosis, and stimulate proliferation in a number of tissue systems. Yet, there are no Food and Drug Administration (FDA)-approved EV therapeutics in the market with an indication for IVDD, which motivates this article to review the current state of the field and provide an IVD-specific framework to assess its efficacy. In this systematic review, 29 preclinical studies that investigate EVs in relation to the IVD are identified, and additionally, the regulatory approval process is reviewed in an effort to accelerate emerging EV-based therapeutics toward FDA submission and timeline-to-market. The majority of studies focus on nucleus pulposus responses to EV treatment, where the main findings show that stem cell-derived EVs can decelerate the progression of IVDD on the molecular, cellular, and organ level. The findings also highlight the importance of the EV parent cell's pathophysiological and differentiation state, which affects downstream treatment responses and therapeutic outcomes. This systematic review substantiates the use of EVs as a promising cell-free strategy to treat IVDD and enhance endogenous repair.
Collapse
Affiliation(s)
- Tyler J. DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Keti Vaso
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Henry N. Chionuma
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York NY, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
22
|
Treatment of Chronic Kidney Disease with Extracellular Vesicles from Mesenchymal Stem Cells and CD133 + Expanded Cells: A Comparative Preclinical Analysis. Int J Mol Sci 2022; 23:ijms23052521. [PMID: 35269664 PMCID: PMC8910174 DOI: 10.3390/ijms23052521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by structural abnormalities and the progressive loss of kidney function. Extracellular vesicles (EVs) from human umbilical cord tissue (hUCT)-derived mesenchymal stem cells (MSCs) and expanded human umbilical cord blood (hUCB)-derived CD133+ cells (eCD133+) maintain the characteristics of the parent cells, providing a new form of cell-free treatment. We evaluated the effects of EVs from hUCT-derived MSCs and hUCB-derived CD133+ cells on rats with CDK induced by an adenine-enriched diet. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The animals were randomized and divided into the MSC-EV group, eEPC-EV group and control group. Infusions occurred on the seventh and 14th days after CKD induction. Evaluations of kidney function were carried out by biochemical and histological analyses. Intense labeling of the α-SMA protein was observed when comparing the control with MSC-EVs. In both groups treated with EVs, a significant increase in serum albumin was observed, and the increase in cystatin C was inhibited. The results indicated improvements in renal function in CKD, demonstrating the therapeutic potential of EVs derived from MSCs and eCD133+ cells and suggesting the possibility that in the future, more than one type of EV will be used concurrently.
Collapse
|
23
|
Garcia-Martin R, Brandao BB, Thomou T, Altindis E, Kahn CR. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep 2022; 38:110277. [PMID: 35045290 PMCID: PMC8867597 DOI: 10.1016/j.celrep.2021.110277] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes/small extracellular vesicles (sEVs) can serve as multifactorial mediators of cell-to-cell communication through their miRNA and protein cargo. Quantitative proteomic analysis of five cell lines representing metabolically important tissues reveals that each cell type has a unique sEV proteome. While classical sEV markers such as CD9/CD63/CD81 vary markedly in abundance, we identify six sEV markers (ENO1, GPI, HSPA5, YWHAB, CSF1R, and CNTN1) that are similarly abundant in sEVs of all cell types. In addition, each cell type has specific sEV markers. Using fat-specific Dicer-knockout mice with decreased white adipose tissue and increased brown adipose tissue, we show that these cell-type-specific markers can predict the changing origin of the serum sEVs. These results provide a valuable resource for understanding the sEV proteome of the cells and tissues important in metabolic homeostasis, identify unique sEV markers, and demonstrate how these markers can help in predicting the tissue of origin of serum sEVs. By performing comparative proteomics, Garcia-Martin et al. identify markers common to exosomes/sEVs from multiple cell types, as well as markers unique to each cell type. Using a lipodystrophy mouse model, they demonstrate the use of this sEV proteome dataset to predict the tissue of origin of circulating exosomes/sEVs in vivo.
Collapse
Affiliation(s)
- Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Bruna Brasil Brandao
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Thomas Thomou
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Emrah Altindis
- Boston College Biology Department, Higgins Hall, 140 Commonwealth Avenue, Chestnut Hill, MA 02476, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Rezabakhsh A, Sokullu E, Rahbarghazi R. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine. Stem Cell Res Ther 2021; 12:521. [PMID: 34583767 PMCID: PMC8478268 DOI: 10.1186/s13287-021-02596-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in the identification and application of different stem cell types have offered alternative therapeutic approaches for clinicians. The lack of successful engraftment, migration into the injured site, loss of functionality and viability, ethical issues, shortage of donated allogeneic stem cells and the possibility of transmission of infectious are the main challenges associated with direct cell transplantation. The discovery and research on exosomes have led to the rise of hopes for the alleviation of different pathologies in regenerative medicine. Exo are nano-sized extracellular vesicles (40-150 nm) and released by each type. These nanoparticles participate in cell-to-cell communication in a paracrine manner. It is thought that the application of Exo can circumvent several drawbacks related to whole-cell therapies. Because of their appropriate size and stability, Exo are touted as therapeutic bullets transferring signaling factors into the acceptor cells in a paracrine manner. Despite these advantages, technologies associated with Exo isolation and purification are challenging because of heterogeneity in exosomal size and cargo. The lack of standard GMP-grade protocols is the main hurdle that limits the extensive application of Exo in the clinical setting. Here, the authors aimed to inspire a logical and realistic vision about problems associated with Exo application in regenerative medicine.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah St., Tabriz, 5166653431, Iran.
| |
Collapse
|
25
|
Biagini G, Senegaglia AC, Pereira T, Berti LF, Marcon BH, Stimamiglio MA. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Front Bioeng Biotechnol 2021; 9:700862. [PMID: 34568295 PMCID: PMC8455839 DOI: 10.3389/fbioe.2021.700862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering is a branch of regenerative medicine, which comprises the combination of biomaterials, cells and other bioactive molecules to regenerate tissues. Biomaterial scaffolds act as substrate and as physical support for cells and they can also reproduce the extracellular matrix cues. Although tissue engineering applications in cellular therapy tend to focus on the use of specialized cells from particular tissues or stem cells, little attention has been paid to endothelial progenitors, an important cell type in tissue regeneration. We combined 3D printed poly(lactic acid) scaffolds comprising two different pore sizes with human adipose-derived stromal cells (hASCs) and expanded CD133+ cells to evaluate how these two cell types respond to the different architectures. hASCs represent an ideal source of cells for tissue engineering applications due to their low immunogenicity, paracrine activity and ability to differentiate. Expanded CD133+ cells were isolated from umbilical cord blood and represent a source of endothelial-like cells with angiogenic potential. Fluorescence microscopy and scanning electron microscopy showed that both cell types were able to adhere to the scaffolds and maintain their characteristic morphologies. The porous PLA scaffolds stimulated cell cycle progression of hASCs but led to an arrest in the G1 phase and reduced proliferation of expanded CD133+ cells. Also, while hASCs maintained their undifferentiated profile after 7 days of culture on the scaffolds, expanded CD133+ cells presented a reduction of the von Willebrand factor (vWF), which affected the cells’ angiogenic potential. We did not observe changes in cell behavior for any of the parameters analyzed between the scaffolds with different pore sizes, but the 3D environment created by the scaffolds had different effects on the cell types tested. Unlike the extensively used mesenchymal stem cell types, the 3D PLA scaffolds led to opposite behaviors of the expanded CD133+ cells in terms of cytotoxicity, proliferation and immunophenotype. The results obtained reinforce the importance of studying how different cell types respond to 3D culture systems when considering the scaffold approach for tissue engineering.
Collapse
Affiliation(s)
- Giuliana Biagini
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| | | | - Tarciso Pereira
- Department of Mechanical Engineering, Post Graduate Program in Biomedical Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Post Graduate Program in Biomedical Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Bruna Hilzendeger Marcon
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Brazil
| |
Collapse
|
26
|
Pluripotent-derived Mesenchymal Stem/stromal Cells: an Overview of the Derivation Protocol Efficacies and the Differences Among the Derived Cells. Stem Cell Rev Rep 2021; 18:94-125. [PMID: 34545529 DOI: 10.1007/s12015-021-10258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are remarkable tools for regenerative medicine. Therapeutic approaches using these cells can promote increased activity and viability in several cell types through diverse mechanisms such as paracrine and immunomodulatory activities, contributing substantially to tissue regeneration and functional recovery. However, biological samples of human MSCs, usually obtained from adult tissues, often exhibit variable behavior during in vitro culture, especially with respect to cell population heterogeneity, replicative senescence, and consequent loss of functionality. Accordingly, it is necessary to establish standard protocols to generate high-quality, stable cell cultures, for example, by using pluripotent stem cells (PSCs) in derivation protocols of MSC-like cells since PSCs maintain their characteristics consistently during culture. However, the available protocols seem to generate distinct populations of PSC-derivedMSCs (PSC-MSCs) with peculiar attributes, which do not always resemble bona fide primary MSCs. The present review addresses the developmental basis behind some of these derivation protocols, exposing the differences among them and discussing the functional properties of PSC-MSCs, shedding light on elements that may help determine standard characterizations and criteria to evaluate and define these cells.
Collapse
|
27
|
Al Naem M, Bourebaba L, Kucharczyk K, Röcken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Rev Rep 2021; 16:301-322. [PMID: 31797146 DOI: 10.1007/s12015-019-09932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSC) have become a popular treatment modality in equine orthopaedics. Regenerative therapies are especially interesting for pathologies like complicated tendinopathies of the distal limb, osteoarthritis, osteochondritis dissecans (OCD) and more recently metabolic disorders. Main sources for MSC harvesting in the horse are bone marrow, adipose tissue and umbilical cord blood. While the acquisition of umbilical cord blood is fairly easy and non-invasive, extraction of bone marrow and adipose tissue requires more invasive techniques. Characterization of the stem cells as a result of any isolation method, is also a crucial step for the confirmation of the cells' stemness properties; thus, three main characteristics must be fulfilled by these cells, namely: adherence, expression of a series of well-defined differentiation clusters as well as pluripotency. EVs, resulting from the paracrine action of MSCs, also play a key role in the therapeutic mechanisms mediated by stem cells; MSC-EVs are thus largely implicated in the regulation of proliferation, maturation, polarization and migration of various target cells. Evidence that EVs alone represent a complex network 0involving different soluble factors and could then reflect biophysical characteristics of parent cells has fuelled the importance of developing highly specific techniques for their isolation and analysis. All these aspects related to the functional and technical understanding of MSCs will be discussed and summarized in this review.
Collapse
Affiliation(s)
- Mohamad Al Naem
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany. .,Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| |
Collapse
|
28
|
Gutiérrez LM, Valenzuela Alvarez M, Yang Y, Spinelli F, Cantero MJ, Alaniz L, García MG, Kleinerman ES, Correa A, Bolontrade MF. Up-regulation of pro-angiogenic molecules and events does not relate with an angiogenic switch in metastatic osteosarcoma cells but to cell survival features. Apoptosis 2021; 26:447-459. [PMID: 34024019 DOI: 10.1007/s10495-021-01677-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 01/22/2023]
Abstract
Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.
Collapse
Affiliation(s)
- Luciana M Gutiérrez
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina
| | - Matías Valenzuela Alvarez
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina
| | - Yuanzheng Yang
- Division of Pediatrics and Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #853, Houston, TX, 77030, USA
| | | | - María José Cantero
- Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CITNOBA CONICET-UNNOBA, Jorge Newbery 261, B6000, Junín, Argentina
| | - Mariana G García
- Facultad de Ciencias Biomédicas, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina
| | - Eugenie S Kleinerman
- Division of Pediatrics and Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #853, Houston, TX, 77030, USA
| | | | - Marcela F Bolontrade
- Remodeling Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), Potosí 4240, C1199ACL, CABA, Argentina.
| |
Collapse
|
29
|
Lam G, Zhou Y, Wang JX, Tsui YP. Targeting mesenchymal stem cell therapy for severe pneumonia patients. World J Stem Cells 2021; 13:139-154. [PMID: 33708343 PMCID: PMC7933990 DOI: 10.4252/wjsc.v13.i2.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/03/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pneumonia is the inflammation of the lungs and it is the world's leading cause of death for children under 5 years of age. The latest coronavirus disease 2019 (COVID-19) virus is a prominent culprit to severe pneumonia. With the pandemic running rampant for the past year, more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm. Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after. Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity, thus significantly alleviating the severe clinical conditions of pneumonia. In recent clinical trials, mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality; positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a next-generation therapy to counter future challenges.
Collapse
Affiliation(s)
- Guy Lam
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Yuan Zhou
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Jia-Xian Wang
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Yat-Ping Tsui
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China.
| |
Collapse
|
30
|
Tang Y, Zhou Y, Li HJ. Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res Ther 2021; 12:71. [PMID: 33468232 PMCID: PMC7814175 DOI: 10.1186/s13287-021-02138-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cells can be used for regenerative medicine and as treatments for disease. The application of tissue engineering-related transplantation, stem cells, and local changes in the microenvironment is expected to solve major medical problems. Currently, most studies focus on tissue repair and regeneration, and mesenchymal stem cells (MSCs) are among the most common research topics. MSCs are applicable as seed cells, and they represent one of the current hot topics in regenerative medicine research. However, due to storage limitations and because cell senescence occurs during in vitro expansion, their clinical application is challenging. Exosomes, which are secreted by MSCs through paracrine signalling, not only have the same effects as MSCs, but they also have the advantages of targeted delivery, low immunogenicity, and high repairability. This article reviews the acquisition methods, characteristics, biological functions, and clinical applications of exosomes.
Collapse
Affiliation(s)
- Yaya Tang
- Key Laboratory of Vaccine Research and Development for Major Infectious Diseases of Yunnan Province, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 People’s Republic of China
- Kunming Medical University, Kunming, 650500 People’s Republic of China
| | - Yan Zhou
- Key Laboratory of Vaccine Research and Development for Major Infectious Diseases of Yunnan Province, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 People’s Republic of China
| | - Hong-Jun Li
- Key Laboratory of Vaccine Research and Development for Major Infectious Diseases of Yunnan Province, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 People’s Republic of China
| |
Collapse
|
31
|
Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther 2020; 11:377. [PMID: 32883343 PMCID: PMC7469278 DOI: 10.1186/s13287-020-01895-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Various hepatoxic factors, such as viruses, drugs, lipid deposition, and autoimmune responses, induce acute or chronic liver injury, and 3.5% of all worldwide deaths result from liver cirrhosis, liver failure, or hepatocellular carcinoma. Liver transplantation is currently limited by few liver donors, expensive surgical costs, and severe immune rejection. Cell therapy, including hepatocyte transplantation and stem cell transplantation, has recently become an attractive option to reduce the overall need for liver transplantation and reduce the wait time for patients. Recent studies showed that mesenchymal stem cell (MSC) administration was a promising therapeutic approach for promoting liver regeneration and repairing liver injury by the migration of cells into liver sites, hepatogenic differentiation, immunoregulation, and paracrine mechanisms. MSCs secrete a large number of molecules into the extracellular space, and soluble proteins, free nucleic acids, lipids, and extracellular vesicles (EVs) effectively repair tissue injury in response to fluctuations in physiological states or pathological conditions. Cell-free-based therapies avoid the potential tumorigenicity, rejection of cells, emboli formation, undesired differentiation, and infection transmission of MSC transplantation. In this review, we focus on the potential mechanisms of MSC-based cell-free strategies for attenuating liver injury in various liver diseases. Secretome-mediated paracrine effects participate in the regulation of the hepatic immune microenvironment and promotion of hepatic epithelial repair. We look forward to completely reversing liver injury through an MSC-based cell-free strategy in regenerative medicine in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingjian Zhang
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiongling Bao
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Noori L, Arabzadeh S, Mohamadi Y, Mojaverrostami S, Mokhtari T, Akbari M, Hassanzadeh G. Intrathecal administration of the extracellular vesicles derived from human Wharton's jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neurosci Res 2020; 170:87-98. [PMID: 32717259 DOI: 10.1016/j.neures.2020.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Activation of inflammasome complexes during spinal cord injury (SCI) lead to conversion of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and interleukin-18 (IL-18) to their active form to initiates the neuroinflammation. Mesenchymal stem cells (MSCs) showed anti-inflammatory properties through their extracellular vehicles (EVs). We investigated immunomodulatory potential of human Wharton's jelly mesenchymal stem cells derived extracellular vesicles (hWJ-MSC-EVs) on inflammasome activity one week after SCI in rats. The gene expression and protein level of IL-1β, IL-18, tumor necrosis factor alpha (TNF-α) and caspase1, were assessed by QPCR and western blotting. Immunohistochemistry (IHC) was done to measure the glial fibrillary acidic protein (GFAP) and Nestin expression. Cell death, histological evaluation and hind limb locomotion was studied by TUNEL assay, Nissl staining and Basso, Beattie, Bresnaham (BBB), respectively. Our finding represented that intrathecally administrated of hWJ-MSC-EVs significantly attenuated expression of the examined factors in both mRNA (P < 0.05 and P ≤ 0.01) and protein levels (P < 0.05 and P ≤ 0.01), decreased GFAP and increased Nestin expression (P < 0.05), reduced cell death and revealed the higher number of typical neurons in ventral horn of spinal cord. Consequently, progress in locomotion. We came to the conclusion that hWJ-MSC-EVs has the potential to control the inflammasome activity after SCI in rats. Moreover, EVs stimulated the neural progenitor cells and modulate the astrocyte activity.
Collapse
Affiliation(s)
- Leila Noori
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Biology, School of Basic Sciences, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and addiction studies, School of advanced technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| |
Collapse
|
33
|
Tan S, Wong J, Sim S, Tjio C, Wong K, Chew J, Hui J, Toh W. Mesenchymal stem cell exosomes in bone regenerative strategies-a systematic review of preclinical studies. Mater Today Bio 2020; 7:100067. [PMID: 32695985 PMCID: PMC7364174 DOI: 10.1016/j.mtbio.2020.100067] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ability of bone for regeneration has long been recognized. However, once beyond a critical size, spontaneous regeneration of bone is limited. Several studies have focused on enhancing bone regeneration by applying mesenchymal stromal/stem cells (MSCs) in the treatment strategies. Despite the therapeutic efficacy of MSCs in bone regeneration, cell-based therapies are impeded by several challenges in maintaining the optimal cell potency and viability during expansion, storage, and final delivery to patients. Recently, there has been a paradigm shift in therapeutic mechanism of MSCs in tissue repair from one based on cellular differentiation and replacement to one based on secretion and paracrine signaling. Among the broad spectrum of trophic factors, extracellular vesicles particularly the exosomes have been reported to be therapeutically efficacious in several injury/disease indications, including bone defects and diseases. The current systematic review aims to summarize the results of the existing animal studies which were conducted to evaluate the therapeutic efficacy of MSC exosomes for bone regeneration. Following the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines, the PubMed and The Cochrane Library database were searched for relevant controlled preclinical animal studies. A total of 23 studies were identified, with the total sample size being 690 rats or mice and 38 rabbits. Generally, MSC exosomes were found to be efficacious for bone regeneration in animal models of bone defects and diseases such as osteonecrosis and osteoporosis. In these studies, MSC exosomes promoted new bone formation with supporting vasculature and displayed improved morphological, biomechanical, and histological outcomes, coupled with positive effects on cell survival, proliferation, and migration, osteogenesis, and angiogenesis. Unclear-to-low risk in bias and incomplete reporting in the primary studies highlighted the need for standardization in outcome measurements and reporting. Further studies in large animal models to establish the safety and efficacy would provide useful information on guiding the design of clinical trials.
Collapse
Affiliation(s)
- S.H.S. Tan
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - J.R.Y. Wong
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - S.J.Y. Sim
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - C.K.E. Tjio
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - K.L. Wong
- Department of Orthopaedic Surgery, National University Health System, Singapore
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singhealth, Singapore
| | - J.R.J. Chew
- Faculty of Dentistry, National University of Singapore, Singapore
| | - J.H.P. Hui
- Department of Orthopaedic Surgery, National University Health System, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| | - W.S. Toh
- Faculty of Dentistry, National University of Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
34
|
Cai J, Wu J, Wang J, Li Y, Hu X, Luo S, Xiang D. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci 2020; 10:69. [PMID: 32483483 PMCID: PMC7245623 DOI: 10.1186/s13578-020-00427-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were known to have excellent properties in cell therapy. However, the risk of immune rejection associated with cell transplant therapy hampers its use. Extracellular vesicles secreted by MSCs derived from different sources that contain therapeutic molecules such as RNA and proteins, which is a novel strategy for cell-free therapy. Recently, researches show EVs from MSCs (MSC-EVs) of different sources have special functions and effects on different diseases. Here, we collected these researches and compared them to each other. In addition, their potential and possible application in clinical treatment are described.
Collapse
Affiliation(s)
- Jiaxin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Jiemin Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Shifu Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| |
Collapse
|
35
|
Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 2020; 10:5979-5997. [PMID: 32483432 PMCID: PMC7254996 DOI: 10.7150/thno.40122] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are important players in tissue homeostasis and regeneration owing to their immunomodulatory potential and release of trophic factors that promote healing. They have been increasingly used in clinical trials to treat multiple conditions associated with inflammation and tissue damage such as graft versus host disease, orthopedic injuries and cardiac and liver diseases. Recent evidence demonstrates that their beneficial effects are derived, at least in part, from their secretome. In particular, data from animal models and first-in-man studies indicate that MSC-derived extracellular vesicles (MSC-EVs) can exert similar therapeutic potential as their cells of origin. MSC-EVs are membranous structures loaded with proteins, lipids, carbohydrates and nucleic acids, which play an important role in cell-cell communication and may represent an attractive alternative for cell-based therapy. In this article we summarize recent advances in the use of MSC-EVs for tissue repair. We highlight several isolation and characterization approaches used to enrich MSC-derived EVs. We discuss our current understanding of the relative contribution of the MSC-EVs to the immunomodulatory and regenerative effects mediated by MSCs and MSC secretome. Finally we highlight the challenges and opportunities, which come with the potential use of MSC-EVs as cell free therapy for conditions that require tissue repair.
Collapse
|
36
|
Álvarez MV, Gutiérrez LM, Auzmendi J, Correa A, Lazarowski A, Bolontrade MF. Acquisition of stem associated-features on metastatic osteosarcoma cells and their functional effects on mesenchymal stem cells. Biochim Biophys Acta Gen Subj 2020; 1864:129522. [PMID: 31945406 DOI: 10.1016/j.bbagen.2020.129522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children and young adults. Metastases are a major clinical challenge in OS. In this context, 20% of OS patients are diagnosed with metastatic OS, but near 80% of all OS patients could present non-detectable micrometastases at the moment of diagnosis. METHODS Osteogenic differentiation; doxorubicin exclusion assay; fluorescence microscopy; RT-qPCR; proteomic analysis. RESULTS Our results suggest that metastatic OS cells possess a diminished osteoblastic differentiation potential with a gain of metastatic traits like the capacity to modify intracellular localization of chemodrugs and higher levels of expression of stemness-related genes. On the opposite hand, non-metastatic OS cells possess bone-associated traits like higher osteoblastic differentiation and also an osteoblastic-inducer secretome. OS cells also differ in the nature of their interaction with mesenchymal stem cells (MSCs), with opposites impacts on MSCs phenotype and behavior. CONCLUSIONS All this suggests that a major trait acquired by metastatic cells is a switch into a stem-like state that could favor its survival in the pulmonary niche, opening new possibilities for personalized chemotherapeutic schemes. GENERAL SIGNIFICANCE Our work provides new insights regarding differences among metastatic and non-metastatic OS cells, with particular emphasis on differentiation potential, multidrug resistance and interaction with MSCs.
Collapse
Affiliation(s)
- Matías Valenzuela Álvarez
- Remodeling processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET- Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), C1199ACL Buenos Aires, Argentina
| | - Luciana M Gutiérrez
- Remodeling processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET- Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), C1199ACL Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- INFIBIOC, Clinical Biochemistry Department, School of Pharmacy and Biochemistry (FFyB), University of Buenos Aires (UBA), C1113AAD Buenos Aires, Argentina
| | | | - Alberto Lazarowski
- INFIBIOC, Clinical Biochemistry Department, School of Pharmacy and Biochemistry (FFyB), University of Buenos Aires (UBA), C1113AAD Buenos Aires, Argentina
| | - Marcela F Bolontrade
- Remodeling processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET- Hospital Italiano Buenos Aires (HIBA), Instituto Universitario del Hospital Italiano (IUHI), C1199ACL Buenos Aires, Argentina.
| |
Collapse
|
37
|
Wang L, Abhange KK, Wen Y, Chen Y, Xue F, Wang G, Tong J, Zhu C, He X, Wan Y. Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells with Ultrasonication for Skin Rejuvenation. ACS OMEGA 2019; 4:22638-22645. [PMID: 31909348 PMCID: PMC6941387 DOI: 10.1021/acsomega.9b03561] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles of submicron size that are secreted by various cells. As mediators of intercellular communication, EVs can alter the physiological state of recipient cells by delivering encapsulated proteins and nucleic acids. Incontestably, growing evidence has shown important biological roles and the clinical relevance of EVs. The use of stem cell-derived EVs as a cell-free therapeutic modality for skin treatment has emerged as a promising application in dermatology. However, the moderate isolation efficiency of prevalent ultracentrifugation and low secretion rate make the massive low-cost production of EVs difficult. Here, we report development of engineered EVs (eEV) derived from human umbilical cord mesenchymal stem cells (hucMSCs) for skin treatment. Ultrasonication was used to shear intact hucMSCs for only 1 min, followed by regular centrifugation and filtration for producing nanoscale eEVs. This approach has ∼20-fold higher yield and ∼100-fold faster production than that of naturally secreted EVs (nsEV), while the production cost decreased to less than 10%. The eEVs have similar morphology, size distribution, and typical protein markers compared to nsEVs. Moreover, in vitro, both nsEVs and eEVs promote the proliferation and migration of dermal fibroblasts and increase in the expression of collagen, elastin, and fibronectin, whereas the matrix metalloproteinases-1 (MMP-1) and MMP-3 production can be significantly reduced. The wound-healing study in mice showed that both nsEVs and eEVs promote wound recovery in comparison with the controls. In sum, our results indicate that hucMSC-derived eEVs prepared by ultrasonication potentially can be used to increase skin extracellular matrix and enhance skin rejuvenation.
Collapse
Affiliation(s)
- Lixue Wang
- Department
of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of
Cancer Research, The Affiliated Cancer Hospital
of Nanjing Medical University, Nanjing, Jiangsu 210009, China
- Department
of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Komal K. Abhange
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Yi Wen
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Yundi Chen
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Fei Xue
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Guosheng Wang
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Jinlong Tong
- Department
of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Chuandong Zhu
- Department
of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Xia He
- Department
of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of
Cancer Research, The Affiliated Cancer Hospital
of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Yuan Wan
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| |
Collapse
|
38
|
Munshi A, Mehic J, Creskey M, Gobin J, Gao J, Rigg E, Muradia G, Luebbert CC, Westwood C, Stalker A, Allan DS, Johnston MJW, Cyr T, Rosu-Myles M, Lavoie JR. A comprehensive proteomics profiling identifies NRP1 as a novel identity marker of human bone marrow mesenchymal stromal cell-derived small extracellular vesicles. Stem Cell Res Ther 2019; 10:401. [PMID: 31852509 PMCID: PMC6921509 DOI: 10.1186/s13287-019-1516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinical applications have shown extracellular vesicles (EVs) to be a major paracrine effector in therapeutic responses produced by human mesenchymal stromal/stem cells (hMSCs). As the regenerative capacity of EVs is mainly ascribed to the transfer of proteins and RNA composing its cargo, and to the activity attributed by the protein surface markers, we sought to profile the protein composition of small EVs released from hMSCs to identify hMSC-EV biomarkers with potential clinical relevance. METHODS Small EVs were produced and qualified from five human bone marrow MSC donors at low passage following a 48-h culture in exosome-depleted medium further processed by steps of centrifugation, filtration, and precipitation. Quantitative proteomic analysis comparing the protein profile of the EVs released from hMSCs and their parental cell was conducted using tandem mass tag labeling combined to mass spectrometry (LC-MS/MS) to identify enriched EV protein markers. RESULTS Nanoparticle tracking analysis showed no differences in the EV concentration and size among the five hMSC donors (1.83 × 1010 ± 3.23 × 109/mL), with the mode particle size measuring at 109.3 ± 5.7 nm. Transmission electron microscopy confirmed the presence of nanovesicles with bilayer membranes. Flow cytometric analysis identified commonly found exosomal (CD63/CD81) and hMSC (CD105/CD44/CD146) markers from released EVs in addition to surface mediators of migration (CD29 and MCSP). Quantitative proteomic identified 270 proteins significantly enriched by at least twofold in EVs released from hMSCs as compared to parental hMSCs, where neuropilin 1 (NRP1) was identified among 21 membrane-bound proteins regulating the migration and invasion of cells, as well as chemotaxis and vasculogenesis. Validation by western blot of multiple batches of EVs confirmed consistent enrichment of NRP1 in the nanovesicles released from all five hMSC donors. CONCLUSION The identification and verification of NRP1 as a novel enriched surface marker from multiple batches of EVs derived from multiple hMSC donors may serve as a biomarker for the assessment and measurement of EVs for therapeutic uses.
Collapse
Affiliation(s)
- Afnan Munshi
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jelica Mehic
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jonathan Gobin
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jun Gao
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Emma Rigg
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Gauri Muradia
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Christian C Luebbert
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Carole Westwood
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Stalker
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - David S Allan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Michael J W Johnston
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Carleton, Ottawa, Ontario, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
39
|
Systemic Infusion of Expanded CD133 + Cells and Expanded CD133 + Cell-Derived EVs for the Treatment of Ischemic Cardiomyopathy in a Rat Model of AMI. Stem Cells Int 2019; 2019:4802578. [PMID: 31885610 PMCID: PMC6914904 DOI: 10.1155/2019/4802578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction is a leading cause of death among all cardiovascular diseases. Cell therapies using a cell population enriched with endothelial progenitor cells (EPCs), expanded CD133+ cells, have promise as a therapeutic option for the treatment of ischemic areas after infarction. Recently, secreted membrane vesicles, including exosomes and microvesicles, have been recognized as new therapeutic candidates with important roles in intercellular and tissue communication. Expanded CD133+ cells have the ability to produce extracellular vesicles (EVs); however, their effect in the context of the heart is unknown. In the present study, we evaluated the effectiveness of the systemic application of expanded CD133+ cells and expanded CD133+ cell-derived EVs for the treatment of ischemic cardiomyopathy in a rat model of acute myocardial infarction (AMI) and examined the hypothesis that the EVs, because of their critical role in transferring regenerative signals from stem cells to the injured tissues, might elicit an equal or better therapeutic response than the expanded CD133+ cells. We demonstrate that the systemic application of expanded CD133+ cells and EVs has similar effects in infarcted rats. Few animals per group showed improvements in several heart and kidney parameters analyzed, but not significant differences were observed when comparing the groups. The systemic route may not be effective to treat ischemic cardiomyopathy; nonetheless, it may be a beneficial therapy to treat the side effects of AMI such as kidney damage.
Collapse
|
40
|
Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:359. [PMID: 31779700 PMCID: PMC6883709 DOI: 10.1186/s13287-019-1484-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) contain proteins, microRNAs, mRNAs, long non-coding RNAs, and phospholipids, and are a novel mechanism of intercellular communication. It has been proposed that the immunomodulatory and regenerative effects of mesenchymal stem/stromal cells (MSCs) are mainly mediated by soluble paracrine factors and MSC-derived EVs (MSC-EVs). Recent studies suggest that MSC-EVs may serve as a novel and cell-free alternative to whole-cell therapies. The focus of this review is to discuss the functional proteins which facilitate the effects of MSC-EVs. The first section of the review discusses the general functions of EV proteins. Next, we describe the proteomics of MSC-EVs as compared with their parental cells. Then, the review presents the current knowledge that protein contents of MSC-EVs play an essential role in immunomodulation and treatment of various diseases. In summary, functional protein components are at least partially responsible for disease-modulating capacity of MSC-EVs.
Collapse
Affiliation(s)
- Guanguan Qiu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China
| | - Guoping Zheng
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China
| | - Menghua Ge
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China
| | - Jiangmei Wang
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Ruoqiong Huang
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Qiang Shu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang, China.
| | - Jianguo Xu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, 312000, Zhejiang, China. .,The First Affiliated Hospital of Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
41
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
42
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
43
|
Jafari D, Malih S, Eslami SS, Jafari R, Darzi L, Tarighi P, Samadikuchaksaraei A. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie 2019; 165:76-89. [PMID: 31302163 DOI: 10.1016/j.biochi.2019.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
At least, more than half of our understanding of extracellular vesicles owes to the studies conducted over the past few years. When it became clear that the exosomes have various potentials in medicine, extensive research has focused on these potentials in a variety of areas including cancer, drug delivery and regenerative medicine. The growing understanding of molecular structure and functions of exosomes causes the vision to become brighter in the exosomes complexity, and our attitude toward these vesicles has undergone changes accordingly. Proteomic and transcriptomic studies on exosomes have highlighted their molecular diversity. In this review, we explicitly examine the exosomes composition, molecular structure and their therapeutic potentials in some diseases. Due to the very heterogeneous nature of exosomes, the process of their use as a therapeutic agent in the clinic has been challenged. We are still at the beginning of recognizing the molecular composition of exosomes and mechanisms that affect their physiology and biology. The growing trend of engineering of exosomes has shown a promising future to further utilize them in a different field. Molecular profiling of exosomes and their content for their related potentials in regenerative medicine should be done exactly for further defining a minimum content for specific therapeutic potentials.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Darzi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Valenzuela Alvarez M, Gutierrez LM, Correa A, Lazarowski A, Bolontrade MF. Metastatic Niches and the Modulatory Contribution of Mesenchymal Stem Cells and Its Exosomes. Int J Mol Sci 2019; 20:E1946. [PMID: 31010037 PMCID: PMC6515194 DOI: 10.3390/ijms20081946] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent an interesting population due to their capacity to release a variety of cytokines, chemokines, and growth factors, and due to their motile nature and homing ability. MSCs can be isolated from different sources, like adipose tissue or bone marrow, and have the capacity to differentiate, both in vivo and in vitro, into adipocytes, chondrocytes, and osteoblasts, making them even more interesting in the regenerative medicine field. Tumor associated stroma has been recognized as a key element in tumor progression, necessary for the biological success of the tumor, and MSCs represent a functionally fundamental part of this associated stroma. Exosomes represent one of the dominant signaling pathways within the tumor microenvironment. Their biology raises high interest, with implications in different biological processes involved in cancer progression, such as the formation of the pre-metastatic niche. This is critical during the metastatic cascade, given that it is the formation of a permissive context that would allow metastatic tumor cells survival within the new environment. In this context, we explored the role of exosomes, particularly MSCs-derived exosomes as direct or indirect modulators. All this points out a possible new tool useful for designing better treatment and detection strategies for metastatic progression, including the management of chemoresistance.
Collapse
Affiliation(s)
- Matias Valenzuela Alvarez
- Remodelative Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), C1199ACL Buenos Aires, Argentina.
| | - Luciana M Gutierrez
- Remodelative Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), C1199ACL Buenos Aires, Argentina.
| | | | - Alberto Lazarowski
- INFIBIOC, Clinical Biochemistry Department, School of Pharmacy and Biochemistry (FFyB), University of Buenos Aires (UBA), C1113AAD Buenos Aires, Argentina.
| | - Marcela F Bolontrade
- Remodelative Processes and Cellular Niches Laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), C1199ACL Buenos Aires, Argentina.
| |
Collapse
|
45
|
Leitolis A, Suss PH, Roderjan JG, Angulski ABB, da Costa FDA, Stimamiglio MA, Correa A. Human Heart Explant-Derived Extracellular Vesicles: Characterization and Effects on the In Vitro Recellularization of Decellularized Heart Valves. Int J Mol Sci 2019; 20:ijms20061279. [PMID: 30875722 PMCID: PMC6471048 DOI: 10.3390/ijms20061279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are particles released from different cell types and represent key components of paracrine secretion. Accumulating evidence supports the beneficial effects of EVs for tissue regeneration. In this study, discarded human heart tissues were used to isolate human heart-derived extracellular vesicles (hH-EVs). We used nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) to physically characterize hH-EVs and mass spectrometry (MS) to profile the protein content in these particles. The MS analysis identified a total of 1248 proteins. Gene ontology (GO) enrichment analysis in hH-EVs revealed the proteins involved in processes, such as the regulation of cell death and response to wounding. The potential of hH-EVs to induce proliferation, adhesion, angiogenesis and wound healing was investigated in vitro. Our findings demonstrate that hH-EVs have the potential to induce proliferation and angiogenesis in endothelial cells, improve wound healing and reduce mesenchymal stem-cell adhesion. Last, we showed that hH-EVs were able to significantly promote mesenchymal stem-cell recellularization of decellularized porcine heart valve leaflets. Altogether our data confirmed that hH-EVs modulate cellular processes, shedding light on the potential of these particles for tissue regeneration and for scaffold recellularization.
Collapse
Affiliation(s)
- Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| | - Paula Hansen Suss
- Pontifical Catholic University of Paraná-PUCPR, Curitiba 80215-901, Brazil.
| | | | - Addeli Bez Batti Angulski
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| | | | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba 81350-010, Brazil.
| |
Collapse
|
46
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
47
|
Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep 2019; 46:1533-1549. [PMID: 30623280 DOI: 10.1007/s11033-019-04588-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
In autoimmune disease body's own immune system knows healthy cells as undesired and foreign cells. Over 80 types of autoimmune diseases have been recognized. Currently, at clinical practice, treatment strategies for autoimmune disorders are based on relieving symptoms and preventing difficulties. In other words, there is no effective and useful therapy up to now. It has been well-known that mesenchymal stem cells (MSCs) possess immunomodulatory effects. This strongly suggests that MSCs might be as a novel modality for treatment of autoimmune diseases. Supporting this notion a few preclinical and clinical studies indicate that MSCs ameliorate autoimmune disorders. Interestingly, it has been found that the beneficial effects of MSCs in autoimmune disorders are not relying only on direct cell-to-cell communication but on their capability to produce a broad range of paracrine factors including growth factors, cytokines and extracellular vehicles (EVs). EVs are multi-signal messengers that play a serious role in intercellular signaling through carrying cargo such as mRNA, miRNA, and proteins. Numerous studies have shown that MSC-derived EVs are able to mimic the effects of the cell of origin on immune cells. In this review, we discuss the current studies dealing with MSC-based therapies in autoimmune diseases and provide a vision and highlight in order to introduce MSC-derived EVs as an alternative and emerging modality for autoimmune disorders.
Collapse
|
48
|
van Balkom BWM, Gremmels H, Giebel B, Lim SK. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 2019; 19:e1800163. [PMID: 30467989 DOI: 10.1002/pmic.201800163] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Small extracellular vesicles (EVs) are 50-200 nm vesicles secreted by most cells. They are considered as mediators of intercellular communication, and EVs from specific cell types, in particular mesenchymal stem/stromal cells (MSCs), offer powerful therapeutic potential, and can provide a novel therapeutic strategy. They appear promising and safe (as EVs are non-self-replicating), and eventually MSC-derived EVs (MSC-EVs) may be developed to standardized, off-the-shelf allogeneic regenerative and immunomodulatory therapeutics. Promising pre-clinical data have been achieved using MSCs from different sources as EV-producing cells. Similarly, a variety EV isolation and characterization methods have been applied. Interestingly, MSC-EVs obtained from different sources and prepared with different methods show in vitro and in vivo therapeutic effects, indicating that isolated EVs share a common potential. Here, well-characterized and controlled, publicly available proteome profiles of MSC-EVs are compared to identify a common MSC-EV protein signature that might be coupled to the MSC-EVs' common therapeutic potential. This protein signature may be helpful in developing MSC-EV quality control platforms required to confirm the identity and test for the purity of potential therapeutic MSC-EVs.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 138648, Singapore
| |
Collapse
|
49
|
Stem Cell Extracellular Vesicles in Skin Repair. Bioengineering (Basel) 2018; 6:bioengineering6010004. [PMID: 30598033 PMCID: PMC6466099 DOI: 10.3390/bioengineering6010004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cell extracellular vesicles (EVs) have been widely studied because of their excellent therapeutic potential. EVs from different types of stem cell can improve vascularization as well as aid in the treatment of cancer and neurodegenerative diseases. The skin is a complex organ that is susceptible to various types of injury. Strategies designed to restore epithelial tissues’ integrity with stem cell EVs have shown promising results. Different populations of stem cell EVs are able to control inflammation, accelerate skin cell migration and proliferation, control wound scarring, improve angiogenesis, and even ameliorate signs of skin aging. However, large-scale production of such stem cell EVs for human therapy is still a challenge. This review focuses on recent studies that explore the potential of stem cell EVs in skin wound healing and skin rejuvenation, as well as challenges of their use in therapy.
Collapse
|
50
|
Jiao Y, Li XY, Liu J. A New Approach to Cerebral Palsy Treatment: Discussion of the Effective Components of Umbilical Cord Blood and its Mechanisms of Action. Cell Transplant 2018; 28:497-509. [PMID: 30384766 PMCID: PMC7103597 DOI: 10.1177/0963689718809658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) includes a group of persistent non-progressive disorders
affecting movement, muscle tone, and/or posture. The total economic loss during
the life-span of an individual with CP places a heavy financial burden on such
patients and their families worldwide; however, a complete cure is still
lacking. Umbilical cord blood (UCB)-based interventions are emerging as a
scientifically plausible treatment and possible cure for CP. Stem cells have
been used in many experimental CP animal models and achieved good results.
Compared with other types of stem cells, those from UCB have advantages in terms
of treatment safety and efficacy, ethics, non-neoplastic proliferation,
accessibility, ease of preservation, and regulation of immune responses, based
on findings in animal models and clinical trials. Currently, the use of
UCB-based interventions for CP is limited as the components of UCB are complex
and possess different therapeutic mechanisms. These can be categorized by three
aspects: homing and neuroregeneration, trophic factor secretion, and
neuroprotective effects. Our review summarizes the features of active components
of UCB and their therapeutic mechanism of action. This review highlights current
research findings and clinical evidence regarding UCB that contribute to
treatment suggestions, inform decision-making for therapeutic interventions, and
help to direct future research.
Collapse
Affiliation(s)
- Yang Jiao
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiao-Yan Li
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jing Liu
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|