1
|
James SA, Joshua IA. Charting Peptide Shared Sequences Between 'Diabetes-Viruses' and Human Pancreatic Proteins, Their Structural and Autoimmune Implications. Bioinform Biol Insights 2024; 18:11779322241289936. [PMID: 39502449 PMCID: PMC11536397 DOI: 10.1177/11779322241289936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/21/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome characterized by hyperglycaemia, polydipsia, polyuria, and weight loss, among others. The pathophysiology for the disorders is complex and results in pancreatic abnormal function. Viruses have also been implicated in the metabolic syndrome. This study charted peptides to investigate and predict the autoimmune potential of shared sequences between 8 viral species proteins (which we termed 'diabetes-viruses') and the human pancreatic proteins. The structure and immunological relevance of shared sequences between viruses reported in DM onset and human pancreatic proteins were analysed. At nonapeptide mapping between human pancreatic protein and 'diabetic-viruses', reveal 1064 shared sequences distributed among 454 humans and 4288 viral protein sequences. The viral results showed herpesviruses, enterovirus (EV), human endogenous retrovirus, influenza A viruses, rotavirus, and rubivirus sequences are hosted by the human pancreatic protein. The most common shared nonapeptide was AAAAAAAAA, present in 30 human nonredundant sequences. Among the viral species, the shared sequence NSLEVLFQG occurred in 18 nonredundant EVs protein, while occurring merely in 1 human protein, whereas LGLDIEIAT occurred in 8 influenza A viruses overlapping to 1 human protein and KDELSEARE occurred in 2 rotaviruses. The prediction of the location of the shared sequences in the protein structures, showed most of the shared sequences are exposed and located either on the surface or cleft relative to the entire protein structure. Besides, the peptides in the viral protein shareome were predicted computationally for binding to MHC molecules. Here analyses showed that the entire 1064 shared sequences predicted 203 to be either HLA-A or B supertype-restricted epitopes. Fifty-one of the putative epitopes matched reported HLA ligands/T-cell epitopes majorly coming from EV B supertype representative allele restrictions. These data, shared sequences, and epitope charts provide important insight into the role of viruses on the onset of DM and its implications.
Collapse
Affiliation(s)
- Stephen A James
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
- School of Data Sciences, Centre of Bioinformatics, Perdana University, Kuala Lumpur, Malaysia
| | - Istifanus A Joshua
- Department of Community Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
- Department of Community Medicine, College of Health Sciences, Federal University Wukari, Wukari, Nigeria
| |
Collapse
|
2
|
Tian Y, Zhang Y, Tang X, Liu J, Huang Q, Chen Y, Zhan Q, Wang H. Analysis of characteristics of peripheral blood lymphocytes in endometrial carcinoma: a single-center study based on five-year clinical data. BMC Cancer 2024; 24:1184. [PMID: 39334028 PMCID: PMC11437637 DOI: 10.1186/s12885-024-12938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION This study analyzed and discussed the characteristics of peripheral blood lymphocytes (PBLs) in patients with endometrial carcinoma (EC) to explore the PBLs' clinical application value. METHODS This single-center case‒control study analyzed the clinical data of patients with EC and uterine fibroids who underwent surgery at the First Affiliated Hospital of Chongqing Medical University between October 2018 and October 2023 retrospectively. The Center for Clinical Molecular Medical Detection of our hospital performed PBLs detection using flow cytometry, and recorded the detection results in the electronic medical records system. Between-group and subgroup comparisons of PBLs in patients with EC were analyzed using t-test or Mann-Whitney U test. The effect of surgery on PBLs in patients with EC was assessed using a paired t-test or the Wilcoxon signed rank test. RESULTS The immune function of patients with EC was significantly lower than that of healthy people (P < 0.05) and those with benign uterine diseases (P < 0.05) and was related to body mass index (BMI), hypertension, diabetes, and blood lipids (P < 0.05). In patients with EC, the PBLs counts decreased significantly after surgery (P < 0.05) and more kinds of lymphocytes were affected in the laparoscopic surgery group than in the open surgery group. CONCLUSIONS With the decrease of PBLs counts, the immune status of patients with EC is impaired. Metabolic syndrome (Mets), including obesity, hypertension, diabetes, and high blood lipids, also affects the immune function of patients with EC. And for EC patients, the effect of laparoscopic surgery is greater than that of open surgery. PBLs has the potential to be one of indicator during the diagnosis and treatment of EC. TRIAL REGISTRATION This study was retrospectively registered by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical University (approval number K2023-578).
Collapse
Affiliation(s)
- Yingyu Tian
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuchun Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Tang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Liu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Wang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Tan T, Xiang Y, Deng C, Cao C, Ren Z, Huang G, Zhou Z. Variable frequencies of peripheral T-lymphocyte subsets in the diabetes spectrum from type 1 diabetes through latent autoimmune diabetes in adults (LADA) to type 2 diabetes. Front Immunol 2022; 13:974864. [PMID: 36091068 PMCID: PMC9449581 DOI: 10.3389/fimmu.2022.974864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes are key players in the pathogenesis of autoimmune diabetes. We recruited subjects with T1D (n=81), LADA (n=82), T2D (n=95) and NGT (n=218) and analyzed the percentages of T-lymphocyte subsets, including T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17), T cytotoxic 1 (Tc1), regulatory T cells (Tregs), effector T (Teff), naïve T, central memory T (Tcm), and effector memory T (Tem) cells by flow cytometry. LADA patients possessed similar frequencies of IFN-γ+CD4+ T (Th1), IFN-γ+CD8+ T and CD4+ Teff cells compared with T1D patients, but much lower than those of NGT subjects. Like T2D patients, LADA patients had increased frequencies of CD4+ Tem and CD8+ Tem cells with respect to T1D and NGT subjects. In LADA patients, Th2 cells were decreased while CD4+ Tcm cells were increased compared with NGT subjects. Notably, we observed significant negative correlations between the CD4+ Tcm cell frequency and C-peptide in LADA subjects. These data demonstrates that LADA patients possess T-cell subset changes resembling both T1D and T2D and represent the middle of the diabetes spectrum between T1D and T2D. Based on these T-cell subset alterations, we speculate that autoimmunity-induced β-cell destruction and inflammation-induced insulin resistance might both be involved in the pathogenesis of LADA.
Collapse
|
4
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Groen B, Links TP, van den Berg PP, de Vos P, Faas MM. The role of autoimmunity in women with type 1 diabetes and adverse pregnancy outcome: A missing link. Immunobiology 2019; 224:334-338. [PMID: 30819511 DOI: 10.1016/j.imbio.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/10/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
The incidence of pregnancy complications in women with type 1 Diabetes Mellitus (T1D) is greater than in healthy pregnant women. This has mostly been attributed to hyperglycemia. However, despite the implementation of stricter guidelines regarding glycemic control, pregnancy complications remain more common in women with T1D. This may suggest that other etiological factors are involved. We suggest that the immune response may play a role, since the immune response has to adapt during pregnancy in order to facilitate implantation, placental and fetal development, and aberrant immunological adaptations to pregnancy are involved in various pregnancy complications. Since T1D is an autoimmune disorder, the question rises whether the immune response of women with T1D is able to adapt properly during pregnancy. Here we review the current proof and views on the role of aberrant immunological adaptations in pregnancy complications and whether such aberrant adaptations could be involved in the pregnancy complications of T1D patients.
Collapse
Affiliation(s)
- B Groen
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - T P Links
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - P P van den Berg
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, Div. of Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - M M Faas
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Pathology and Medical Biology, Div. of Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
6
|
Skowera A, Ladell K, McLaren JE, Dolton G, Matthews KK, Gostick E, Kronenberg-Versteeg D, Eichmann M, Knight RR, Heck S, Powrie J, Bingley PJ, Dayan CM, Miles JJ, Sewell AK, Price DA, Peakman M. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 2015; 64:916-925. [PMID: 25249579 PMCID: PMC4557541 DOI: 10.2337/db14-0332] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high-definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent-onset type 1 diabetes and healthy control subjects. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy control subjects, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Ania Skowera
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Kristin Ladell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E. McLaren
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Garry Dolton
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katherine K. Matthews
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Emma Gostick
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Martin Eichmann
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Robin R. Knight
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Susanne Heck
- National Institute for Health Research Biomedical Research Centre at Guy’s & St Thomas’ National Health Service Foundation Trust and King’s College London, London, UK
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy’s & St Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Colin M. Dayan
- Institute of Molecular & Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - John J. Miles
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K. Sewell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A. Price
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| |
Collapse
|
7
|
Zeng C, Yi X, Zipris D, Liu H, Zhang L, Zheng Q, Krishnamurthy M, Jin G, Zhou A. RNase L contributes to experimentally induced type 1 diabetes onset in mice. J Endocrinol 2014; 223:277-87. [PMID: 25287058 PMCID: PMC4225003 DOI: 10.1530/joe-14-0509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8(+)T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diet, High-Fat/adverse effects
- Endoribonucleases/deficiency
- Endoribonucleases/genetics
- Immunohistochemistry
- Inflammation Mediators/metabolism
- Islets of Langerhans/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NIH 3T3 Cells
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Poly I-C
- RNA, Double-Stranded/genetics
- Rats
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Xin Yi
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Danny Zipris
- Barbara Davis Center of Childhood Diabetes, University of Colorado Health Science Center, Denver, Colorado 80045
| | - Hongli Liu
- Central Laboratory, the Eighth Hospital of Xi'an, 2 East Zhangba Road, Xi'an 710061, China
| | - Lin Zhang
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | - Qiaoyun Zheng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | | | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH 44115
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH 44195
| |
Collapse
|
8
|
Pizarro C, García-Díaz DF, Codner E, Salas-Pérez F, Carrasco E, Pérez-Bravo F. PD-L1 gene polymorphisms and low serum level of PD-L1 protein are associated to type 1 diabetes in Chile. Diabetes Metab Res Rev 2014; 30:761-6. [PMID: 24816853 DOI: 10.1002/dmrr.2552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/02/2014] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) has a complex etiology in which genetic and environmental factors are involved, whose interactions have not yet been completely clarified. In this context, the role in PD-1 pathway and its ligands 1 and 2 (PD-L1 and PD-L2) have been proposed as candidates in several autoimmune diseases. The aim of this work was to determine the allele and haplotype frequency of six gene polymorphisms of PD-ligands (PD-L1 and PD-L2) in Chilean T1D patients and their effect on serum levels of PD-L1 and autoantibody profile (GAD65 and IA2). METHODS This study cohort comprised 205 T1D patients and 205 normal children. We performed genotypic analysis of PD-L1 and PD-L2 genes by TaqMan method. Determination of anti-GAD65 and anti-IA-2 autoantibodies was performed by ELISA. The PD-L1 serum levels were measured. RESULTS The allelic distribution of PD-L1 variants (rs2297137 and rs4143815) showed differences between T1D patients and controls (p = 0.035 and p = 0.022, respectively). No differences were detected among the PD-L2 polymorphisms, and only the rs16923189 showed genetic variation. T1D patients showed decreased serum levels of PD-L1 compared to controls: 1.42 [0.23-7.45] ng/mL versus 3.35 [0.49-5.89] ng/mL (p < 0.025). In addition, the CGG haplotype in PD-L1 associated with T1D (constructed from rs822342, rs2297137 and rs4143815 polymorphisms) showed an OR = 1.44 [1.08 to 1.93]. Finally, no association of these genetic variants was observed with serum concentrations of PD ligands or auto-antibody profile, although a correlation between PD-L1 ligand serum concentration and the age at disease onset was detected. CONCLUSION Two polymorphism of PD-L1 are presented in different allelic variants between T1D and healthy subjects, also PDL-1 serum levels are significantly lowered in diabetics patients. Moreover, the age of onset of the disease determine differences between serum ligand levels in diabetics, being lower in younger. These results points to a possible establishment of PDL-1 as a genetic and biochemical marker for T1D onset, at least in Chilean population.
Collapse
Affiliation(s)
- Carolina Pizarro
- Laboratorio de Genómica Nutricional, Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
9
|
Schneider DA, von Herrath MG. Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia 2014; 57:2009-18. [PMID: 25073445 PMCID: PMC4153966 DOI: 10.1007/s00125-014-3340-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022]
Abstract
In type 1 diabetes, as a result of as yet unknown triggering events, auto-aggressive CD8(+) T cells, together with a significant number of other inflammatory cells, including CD8(+) T lymphocytes with unknown specificity, infiltrate the pancreas, leading to insulitis and destruction of the insulin-producing beta cells. Type 1 diabetes is a multifactorial disease caused by an interactive combination of genetic and environmental factors. Viruses are major environmental candidates with known potential effects on specific key points in the pathogenesis of type 1 diabetes and recent findings seem to confirm this presumption. However, we still lack well-grounded mechanistic explanations for how exactly viruses may influence type 1 diabetes aetiology. In this review we provide a summary of experimentally defined viral mechanisms potentially involved in the ontology of type 1 diabetes and discuss some novel hypotheses of how viruses may affect the initiation and natural history of the disease.
Collapse
Affiliation(s)
- Darius A. Schneider
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 USA
- Department of Medicine, UC San Diego, La Jolla, CA USA
| | - Matthias G. von Herrath
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 USA
- Novo Nordisk Type 1 Diabetes Research Center, Seattle, WA 98109 USA
| |
Collapse
|
10
|
Zou JY, Huang SH, Li Y, Chen HG, Rong J, Ye S. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8+T cell polarization. Cell Biol Int 2014; 38:1148-54. [PMID: 24844927 DOI: 10.1002/cbin.10313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/14/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Jian-Yong Zou
- Department of Thoracic Surgery; The First Affiliated hospital; Sun Yat-Sen University; No.58, Zhongshan 2nd Road Guangzhou 510080 P. R. China
| | - Shao-hong Huang
- Department of Cardiothoracic Surgery; The Third Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 P. R. China
| | - Yun Li
- Department of Cardiothoracic Surgery; The Third Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 P. R. China
| | - Hui-guo Chen
- Department of Cardiothoracic Surgery; The Third Affiliated Hospital; Sun Yat-sen University; Guangzhou 510080 P. R. China
| | - Jian Rong
- Department of Anesthesiology; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 5100810 P. R. China
| | - Sheng Ye
- Department of Anesthesiology; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou 5100810 P. R. China
| |
Collapse
|
11
|
Matsuoka K, Saito M, Shibata K, Sekine M, Shitara H, Taya C, Zhang X, Takahashi TA, Kohno K, Kikkawa Y, Yonekawa H. Generation of mouse models for type 1 diabetes by selective depletion of pancreatic beta cells using toxin receptor-mediated cell knockout. Biochem Biophys Res Commun 2013; 436:400-5. [PMID: 23747725 DOI: 10.1016/j.bbrc.2013.05.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
By using the toxin receptor-mediated cell knockout (TRECK) method, we have generated two transgenic (Tg) murine lines that model type 1 (insulin-dependent) diabetes. The first strain, C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg, carries the diphtheria toxin receptor (hDTR) driven by the human insulin gene promoter, while the other strain, C57BL/6-ins2(BAC)-TRECK-Tg, expresses hDTR cDNA under the control of the mouse insulin II gene promoter. With regard to the C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg strain, only one of three Tg strains exhibited proper expression of hDTR in pancreatic β cells. By contrast, hDTR was expressed in the pancreatic β cells of all four of the generated C57BL/6-ins2(BAC)-TRECK-Tg strains. Hyperglycemia, severe ablation of pancreatic β cells and depletion of serum insulin were observed within 3days after the administration of diphtheria toxin (DT) in these Tg mice. Subcutaneous injection of a suitable dosage of insulin was sufficient for recovery from hyperglycemia in all of the examined strains. Using the C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg model, we tried to perform regenerative therapeutic approaches: allogeneic transplantation of pancreatic islet cells from C57BL/6 and xenogeneic transplantation of CD34(+) human umbilical cord blood cells. Both approaches successfully rescued C.B-17/Icr-Prkdc(scid)/Prkdc(scid)-INS-TRECK-Tg mice from hyperglycemia caused by DT administration. The high specificity with which DT causes depletion in pancreatic β cells of these Tg mice is highly useful for diabetogenic research.
Collapse
Affiliation(s)
- Kunie Matsuoka
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eringsmark Regnéll S, Lernmark A. The environment and the origins of islet autoimmunity and Type 1 diabetes. Diabet Med 2013; 30:155-60. [PMID: 23252770 PMCID: PMC3552102 DOI: 10.1111/dme.12099] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 12/22/2022]
Abstract
Type 1 diabetes involves the specific destruction of the pancreatic islet β-cells, eventually resulting in a complete dependency of exogenous insulin. The clinical onset of diabetes is preceded by the appearance of autoantibodies against β-cell antigens. The human leukocyte antigen (HLA) region is the single most important genetic determinant of Type 1 diabetes susceptibility, yet variability in the HLA region has been estimated to explain only approximately 60% of the genetic influence of the disease. Over 50 identified non-HLA genetic polymorphisms support the notion that genetics alone cannot explain Type 1 diabetes. Several lines of evidence indicate that environmental triggers may be integral in inducing the onset of islet autoimmunity in genetically susceptible individuals. The association between environmental factors and the clinical onset is complicated by observation that the rate of progression to clinical onset may be affected by environmental determinants. Hence, the environment may be aetiological as well as pathogenic. Putative inductive mechanisms include viral, microbial, diet-related, anthropometric and psychosocial factors. Ongoing observational cohort studies such as The Environmental Determinants of Diabetes in the Young (TEDDY) study aim to ascertain environmental determinants that may trigger islet autoimmunity and either speed up or slow down the progression to clinical onset in subjects with persistent islet autoimmunity.
Collapse
Affiliation(s)
- S Eringsmark Regnéll
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | | |
Collapse
|
13
|
Oldstone MBA, Edelmann KH, McGavern DB, Cruite JT, Welch MJ. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes. PLoS Pathog 2012; 8:e1003044. [PMID: 23209415 PMCID: PMC3510245 DOI: 10.1371/journal.ppat.1003044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022] Open
Abstract
We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP) epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers). In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276–286) in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes. Insulin-dependent type 1 diabetes (T1D) is characterized by elevated blood sugar, lymphocytic infiltration into the islets of Langerhans and T cell destruction of beta (β) cells. β cells produce insulin whose function is to maintain and regulate glucose hemostasis. However, in vivo, the numbers of antigen specific T cells that migrate to the islets to cause T1D, the engagement of such T cells with β cells at the immunologic synapse and the molecules expressed at the synapse are not clear. Using a transgenic model of virus induced T1D, a panel of viruses with CD8 T cell epitope mutations and in situ tetramer hybridization, we note of the total CD8 T cells infiltrating the islets, only 1–2% are antigen specific recognizing the immunodominant virus CD8 T cell epitope expressed on β cells. Immunohistochemical analysis of the synapse found between antigen specific CD8 T cells and β cells displays attachment by LFA-1 and presence of perforin, the molecule indicative of lytic activity.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunological Synapses/genetics
- Immunological Synapses/immunology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/pathology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Michael B A Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
14
|
Smyk D, Rigopoulou EI, Baum H, Burroughs AK, Vergani D, Bogdanos DP. Autoimmunity and environment: am I at risk? Clin Rev Allergy Immunol 2012; 42:199-212. [PMID: 21337133 DOI: 10.1007/s12016-011-8259-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complex interplay between environmental factors and genetic susceptibility plays an essential role in disease pathogenesis. This is especially true for autoimmunity, where clinical reports, genomic and epidemiological studies, as well as animal models have identified several environmental and genetic risk factors associated with autoimmune disease. The complexity of this relationship is demonstrated by the vast array of environmental factors that have now been implicated in the induction, and possibly the maintenance of autoimmune disease. The multitude of environmental factors implicated includes both infectious and non-infectious agents. Here, we review one specific autoimmune disease, primary biliary cirrhosis (PBC), as a model for environmental risk factors acting in concert with genetic susceptibility in the disease pathogenesis. PBC is an ideal model, as both infectious and non-infectious environmental agents have been identified as risk factors, and their study provides clues for unravelling the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniel Smyk
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:328-37. [PMID: 22760515 DOI: 10.1097/med.0b013e3283567080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Current world literature. Curr Opin Rheumatol 2012; 24:435-40. [PMID: 22653148 DOI: 10.1097/bor.0b013e3283556515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:39-46. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04558.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
18
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:5-11. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04554.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|