1
|
Fadaei M, Lahijan ASN, Jahanmehr D, Ahmadi A, Asadi-Golshan R. Food additives for the central nervous system, useful or harmful? An evidence-based review. Nutr Neurosci 2025:1-18. [PMID: 39777413 DOI: 10.1080/1028415x.2024.2433257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives. METHODS A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior. RESULTS It summarizes research findings on additives such as aspartame, stevia, methylene blue, azo dyes, sodium benzoate, and monosodium glutamate. It also covers mechanisms such as oxidative stress, neuroinflammation, and disruptions in neurotransmitter systems. Furthermore, it emphasizes the properties of natural compounds such as garlic (Allium sativum), tetramethylpyrazine, curcumin, licorice root extract (glycyrrhizin), and polyphenols in mitigating CNS damage caused by food additives. DISCUSSION Although ongoing studies are expanding our knowledge on the effects of these additives, future CNS research should focus on long-term investigations involving subjects to provide a more comprehensive understanding of the cumulative impacts of different additives and update regulatory standards based on new scientific findings.
Collapse
Affiliation(s)
- Mohammadmahdi Fadaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Davood Jahanmehr
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yeni Y, Cicek B, Yildirim S, Bolat İ, Hacimuftuoglu A. Ameliorating effect of S-Allyl cysteine (Black Garlic) on 6-OHDA mediated neurotoxicity in SH-SY5Y cell line. Toxicol Rep 2024; 13:101762. [PMID: 39484633 PMCID: PMC11525226 DOI: 10.1016/j.toxrep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Therapeutic approaches based on isolated compounds derived from natural products are more common in preventing diseases involving inflammation and oxidative stress at present. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound with many positive effects in cell models and living systems. SAC has biological activity in various fields, enclosing healing in learning and memory disorders, neurotrophic effects, and antioxidant activity. In this study, we purposed to identify the neuroprotective activity of SAC toward 6-OHDA-induced cell demise in the SH-SY5Ycell line. For this purpose, 6-OHDA-induced cytotoxicity, and biochemical, and gene expression changes were evaluated in SH-SY5Y cells. SH-SY5Y cells grown in cell culture were treated with SAC 24 h before and after 6-OHDA application. Then, cell viability, antioxidant parameters, and gene expressions were measured. Finally, immunofluorescence staining analysis was performed. Our results showed that SAC increased cell viability by 144 % at 80 µg/mL with pre-incubation (2 h). It was observed that antioxidant levels were significantly increased and oxidative stress marker levels were decreased in cells exposed to 6-OHDA after pre-treatment with SAC (p<0.05). SAC supplementation also suppressed the increase in pro-inflammation levels (TNF-α/IL1/IL8) caused by 6-OHDA (p < 0.05). While 8-OHdG and Nop10 expressions were observed at a mild level in SAC pretreatment depending on the dose, 8-OHdG, and Nop10 expressions were observed at a moderate level in SAC treatment after 6-OHDA application (p<0.05). Our findings demonstrate the positive effect of pretreatment with SAC on SH-SY5Y cells injured by 6-OHDA, suggesting that SAC may be beneficial for neuroprotection in regulating oxidative stress and neuronal survival in an in vitro model of Parkinson's disease.
Collapse
Affiliation(s)
- Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Serkan Yildirim
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum, Turkey
| | - İsmail Bolat
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Akhlada, Siddiqui N, Anurag, Saifi A, Kesharwani A, Parihar VK, Sharma A. Neuroprotective Action of Selected Natural Drugs Against Neurological Diseases and Mental Disorders: Potential Use Against Radiation Damage. Neurochem Res 2024; 49:2336-2351. [PMID: 38864943 DOI: 10.1007/s11064-024-04184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Exposure to radiation, ionizing and non-ionizing radiation, is a significant concern in modern society. The brain is the organ that is most sensitive to radiation exposure. This review describes how exposure to radiation can affect neurotransmitters in different brain regions, affecting brain function. This review covers neurodegenerative diseases such as Alzheimer's, Parkinson's, and neuroinflammation due to changes in neurons in the central nervous system, and the effects thereon of medicinal plants such as Allium cepa, Allium sativum, Centella asiatica, Coriandrum sativum, and Crocus sativus plants, used for centuries in traditional medicine. These herbal medicines exert free radical scavenging, and antioxidant as well as anti-inflammatory properties which can be beneficial in managing neurological diseases. The present review compiles the neuroprotective effects of selected natural plants against neurological damage, as well as highlights the different mechanisms of action elicited to induce and produce beneficial effects. The current review describes recent studies on the pharmacological effects of neuroprotective herbs on various neurological and mental illnesses, and shows the way further studies can impact this field, including potential effects on radiation-induced damage.
Collapse
Affiliation(s)
- Akhlada
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| |
Collapse
|
4
|
Han D, Guan X, Zhu F, Yang Q, Su D. Oral aged garlic ( Allium sativum) alleviates ulcerative colitis in mice by improving gut homeostasis. Food Funct 2024; 15:8935-8951. [PMID: 39145619 DOI: 10.1039/d4fo03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Aged garlic, obtained by heating raw garlic (Allium sativum) under high temperature and controlled humidity for a period, possesses a wide range of bioactivities, but its role in ulcerative colitis and its mechanism are not fully elucidated. We investigated the bioactive constituents in aged garlic (AG) and explored the effect of oral AG delivery on DSS-induced murine colitis. The results revealed that the aging process up-regulated anti-oxidative, anti-inflammatory and anti-microbial compounds such as dihydrocaffeic acid, 5-acetylsalicylic acid, verticine, S-allyl-L-cysteine and D-fucose. Oral AG obviously alleviated colitis, reducing colon damage and enhancing anti-oxidative and anti-inflammatory effects. Escherichia coli and Streptococcus equinus dramatically were enriched in the colon of mice with colitis that were strongly associated with Parkinson's disease, bacterial invasion of epithelial cells, aerobactin biosynthesis, and heme biosynthesis, but a distinct AG-mediated alteration in the colon due to increasing abundance of Akkermansia muciniphila, Lactobacillus sp. L-YJ, Bifidobacterium breve, Blautia wexlerae, Desulfomicrobium sp. P100A, and Lentilactobacillus hilgardii was observed. Next, we demonstrated that colonic microbiome reconstruction by oral AG significantly increased the production of short-chain fatty acids such as acetic acid, propionic acid, isobutyric acid, and isovaleric acid. This study provides the first data indicating that oral AG ameliorates colonic inflammation in a gut microbiota-dependent manner. Our findings provide novel insights into the AG-mediated remission of colitis and AG as a functional food for modulating the gut microbiota to prevent and treat colitis.
Collapse
Affiliation(s)
- Deping Han
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| | - Xuke Guan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Fengxia Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
- College of Food Science and Nutritional Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qing Yang
- College of Food Science and Nutritional Engineering, Shandong Agricultural University, Taian 271018, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
5
|
Yu J, Renard CMGC, Zhang L, Gleize B. Fate of Amadori compounds in processing and digestion of multi-ingredients tomato based sauces and their effect on other microconstituents. Food Res Int 2023; 173:113381. [PMID: 37803719 DOI: 10.1016/j.foodres.2023.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Amadori compounds (ACs), the first stable products of Maillard reaction, are detected in various products of fruits and vegetables, and show an antioxidant activity which can be related to beneficial effects in human health. In order to optimize the nutritional quality of a multi-ingredient tomato sauce (tomato puree - onion - olive oil - dried pepper), the fate of ACs during processing (drying, heating) and gastrointestinal digestion of a model meal was assessed as well as that of other microconstituents, i.e. carotenoids, phenolic compounds and capsaicinoids. The drying at 50 °C of fresh pepper induced the formation and accumulation of ACs after 6 days. During the heat treatment by microwave of multi-ingredient tomato sauce, Maillard reaction occurs in presence of dried pepper and the content in ACs in the tomato-based sauces increased (+33% to + 53%) depending of quantities of dried pepper added. The bioaccessibility of total ACs was 24-31% in duodenal phase and 18-22% in jejunal phase. Individual ACs have shown variable bioaccessibility, e.g. very high for Fru-Arg (50.8% to 71.3%), and very low for Fru-Met (1.8% to 2.2%). The kinetic monitoring of ACs in digestion medium showed that ACs are not stable (-46% in gastric phase, -49 % in intestinal phase) which indicated their potential degradation in the digestive tract. The presence of ACs in the multi-ingredients tomato sauces had no effect on the content of the other bioactive compounds monitored in the study and even promoted the bioaccessibility of total lycopene (+30%) but decreased the bioaccessibility of total phenolic compounds.
Collapse
Affiliation(s)
- Jiahao Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China; INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France
| | | | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | - Béatrice Gleize
- INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France.
| |
Collapse
|
6
|
Munni YA, Dash R, Choi HJ, Mitra S, Hannan MA, Mazumder K, Timalsina B, Moon IS. Differential Effects of the Processed and Unprocessed Garlic ( Allium sativum L.) Ethanol Extracts on Neuritogenesis and Synaptogenesis in Rat Primary Hippocampal Neurons. Int J Mol Sci 2023; 24:13386. [PMID: 37686193 PMCID: PMC10487397 DOI: 10.3390/ijms241713386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 μg/mL and 60 μg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3β), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.
Collapse
Affiliation(s)
- Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Raju Dash
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Md. Abdul Hannan
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Binod Timalsina
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| |
Collapse
|
7
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
8
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
9
|
Tedeschi P, Nigro M, Travagli A, Catani M, Cavazzini A, Merighi S, Gessi S. Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23136950. [PMID: 35805955 PMCID: PMC9266652 DOI: 10.3390/ijms23136950] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer’s disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.
Collapse
Affiliation(s)
- Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
- Correspondence: ; Tel.: +39-0532-455434
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| |
Collapse
|
10
|
Islam F, Khadija JF, Harun-Or-Rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS. Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Ahmed T, Wang CK. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules 2021; 26:5028. [PMID: 34443625 PMCID: PMC8401630 DOI: 10.3390/molecules26165028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Black garlic (BG) is a form of aged garlic obtained from raw garlic (Allium sativum) via Millard reaction under high temperature (60-90 °C) and humidity (70-90%) for a period of time. Several studies reported higher contents of water-soluble antioxidants compounds (S-allyl cysteine, S-allyl-mercapto cysteine), 5-hydroxymethylfurfural, organosulfur compounds, polyphenol, volatile compounds, and products of other Millard reactions compared to fresh garlic after the thermal processing. Recent studies have demonstrated that BG and its bioactive compounds possess a wide range of biological activities and pharmacological properties that preserve and show better efficacy in preventing different types of diseases. Most of these benefits can be attributed to its anti-oxidation, anti-inflammation, anti-obesity, hepatoprotection, hypolipidemia, anti-cancer, anti-allergy, immunomodulation, nephroprotection, cardiovascular protection, and neuroprotection. Substantial studies have been conducted on BG and its components against different common human diseases in the last few decades. Still, a lot of research is ongoing to find out the therapeutic effects of BG. Thus, in this review, we summarized the pre-clinical and clinical studies of BG and its bioactive compounds on human health along with diverse bioactivity, a related mode of action, and also future challenges.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
12
|
Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb. Leaves Ameliorate Cognitive Deficit and Neuronal Damage in a Mouse Model of Amyloid-β-Induced Alzheimer's Disease. Front Pharmacol 2021; 12:607403. [PMID: 33935701 PMCID: PMC8082460 DOI: 10.3389/fphar.2021.607403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) pathogenesis is linked to amyloid plaque accumulation, neuronal loss, and brain inflammation. Ficus erecta Thunb. is a food and medicinal plant used to treat inflammatory diseases. Here, we investigated the neuroprotective effects of F. erecta Thunb. against cognitive deficit and neuronal damage in a mouse model of amyloid-β (Aβ)-induced AD. First, we confirmed the inhibitory effects of ethanol extracts of F. erecta (EEFE) leaves on Aβ aggregation in vivo and in vitro. Next, behavioral tests (passive avoidance task and Morris water maze test) revealed EEFE markedly improved cognitive impairment in Aβ-injected mice. Furthermore, EEFE reduced neuronal loss and the expression of neuronal nuclei (NeuN), a neuronal marker, in brain tissues of Aβ-injected mice. EEFE significantly reversed Aβ-induced suppression of cAMP response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) expression, indicating neuroprotection was mediated by the CREB/BDNF signaling. Moreover, EEFE significantly suppressed the inflammatory cytokines interleukin 1beta (IL-1β) and tumor necrosis factor alpha (TNF-α), and expression of ionized calcium-binding adaptor molecule 1 (Iba-1), a marker of microglial activation, in brain tissues of Aβ-injected mice, suggesting anti-neuroinflammatory effects. Taken together, EEFE protects against cognitive deficit and neuronal damage in AD-like mice via activation of the CREB/BDNF signaling and upregulation of the inflammatory cytokines.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, South Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
13
|
Akawa OB, Subair TI, Soremekun OS, Olotu FA, Soliman MES. Structural alterations in the catalytic core of hSIRT2 enzyme predict therapeutic benefits of Garcinia mangostana derivatives in Alzheimer's disease: molecular dynamics simulation study. RSC Adv 2021; 11:8003-8018. [PMID: 35423339 PMCID: PMC8695224 DOI: 10.1039/d0ra10459k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that inhibition of the hSIRT2 enzyme provides favorable effects in neurodegenerative diseases such as Alzheimer's disease. Prenylated xanthone phytochemicals including α-mangostin, β-mangostin and γ-mangostin obtained from Garcinia mangostana, a well-established tropical plant, have been shown experimentally to inhibit sirtuin enzymatic activity. However, the molecular mechanism of this sirtuin inhibition has not been reported. Using comprehensive integrated computational techniques, we provide molecular and timewise dynamical insights into the structural alterations capable of facilitating therapeutically beneficial effects of these phytochemicals at the catalytic core of the hSIRT2 enzyme. Findings revealed the enhanced conformational stability and compactness of the hSIRT2 catalytic core upon binding of γ-mangostin relative to the apoenzyme and better than α-mangostin and β-mangostin. Although thermodynamic calculations revealed favorable binding of all the phytochemicals to the hSIRT2 enzyme, the presence of only hydroxy functional groups on γ-mangostin facilitated the occurrence of additional hydrogen bonds involving Pro115, Phe119, Asn168 and His187 which are absent in α-mangostin- and β-mangostin-bound systems. Per-residue energy contributions showed that van der Waals and more importantly electrostatic interactions are involved in catalytic core stability with Phe96, Tyr104 and Phe235 notably contributing π-π stacking, π-π T shaped and π-sigma interactions. Cumulatively, our study revealed the structural alterations leading to inhibition of hSIRT2 catalysis and findings from this study could be significantly important for the future design and development of sirtuin inhibitors in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University Ado Ekiti Nigeria
| | - Temitayo I Subair
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| |
Collapse
|
14
|
Lee B, Yeom M, Shim I, Lee H, Hahm DH. Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:27-37. [PMID: 31908572 PMCID: PMC6940503 DOI: 10.4196/kjpp.2020.24.1.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 11/30/2022]
Abstract
Neuroinflammation is an important process underlying a wide variety of neurodegenerative diseases. Carvacrol (CAR) is a phenolic monoterpene commonly used as a food additive due to its antibacterial properties, but it has also been shown to exhibit strong antioxidative, anti-inflammatory, and neuroprotective effects. Here, we sought to investigate the effects of CAR on inflammation in the hippocampus and prefrontal cortex, as well as the molecular mechanisms underlying these effects. In our study, lipopolysaccharide was injected into the lateral ventricle of rats to induce memory impairment and neuroinflammation. Daily administration of CAR (25, 50, and 100 mg/kg) for 21 days improved recognition, discrimination, and memory impairments relative to untreated controls. CAR administration significantly attenuated expression of several inflammatory factors in the brain, including interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2. In addition, CAR significantly increased expression of brain-derived neurotrophic factor (BDNF) mRNA, and decreased expression of Toll-like receptor 4 (TLR4) mRNA. Taken together, these results show that CAR can improve memory impairment caused by neuroinflammation. This cognitive enhancement is due to the anti-inflammatory effects of CAR medicated by its regulation of BDNF and TLR4. Thus, CAR has significant potential as an inhibitor of memory degeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
15
|
Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, Mitrovic SL, Jovicic NU, Bolevich SB, Svistunov AA, Tyagi SC, Jeremic NS. Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. Int J Mol Sci 2020; 21:ijms21239100. [PMID: 33265949 PMCID: PMC7730157 DOI: 10.3390/ijms21239100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023] Open
Abstract
This study aimed to examine the effects of diallyl trisulfide (DATS), the most potent polysulfide derived from garlic, on metabolic syndrome and myocardial function in rats with metabolic syndrome (MetS). For that purpose, we used 36 male Wistar albino rats divided into control rats, rats with MetS and MetS rats treated with 40 mg/kg of DATS every second day for 3 weeks. In the first part, we studied the impact of DATS on MetS control and found that DATS significantly raised H2S, decreased homocysteine and glucose levels and enhanced lipid and antioxidative, while reducing prooxidative parameters. Additionally, this polysulfide improved cardiac function. In the second part, we investigated the impact of DATS on ex vivo induced ischemia/reperfusion (I/R) heart injury and found that DATS consumption significantly improved cardiodynamic parameters and prevented oxidative and histo-architectural variation in the heart. In addition, DATS significantly increased relative gene expression of eNOS, SOD-1 and -2, Bcl-2 and decreased relative gene expression of NF-κB, IL-17A, Bax, and caspases-3 and -9. Taken together, the data show that DATS can effectively mitigate MetS and have protective effects against ex vivo induced myocardial I/R injury in MetS rat.
Collapse
Affiliation(s)
- Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Jovana V. Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Slobodanka Lj. Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Nemanja U. Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Sergey B. Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Andrey A. Svistunov
- Research Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russia;
| | - Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +381-64-7019794
| |
Collapse
|
16
|
Potential contribution of Amadori compounds to antioxidant and angiotensin I converting enzyme inhibitory activities of raw and black garlic. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther 2020; 37:113-139. [PMID: 31782132 PMCID: PMC6979458 DOI: 10.1007/s12325-019-01148-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Introduction Neurodegeneration is the term describing the death of neurons both in the central nervous system and periphery. When affecting the central nervous system, it is responsible for diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disorders, amyotrophic lateral sclerosis, and other less frequent pathologies. There are several common pathophysiological elements that are shared in the neurodegenerative diseases. The common denominators are oxidative stress (OS) and inflammatory responses. Unluckily, these conditions are difficult to treat. Because of the burden caused by the progression of these diseases and the simultaneous lack of efficacious treatment, therapeutic approaches that could target the interception of development of the neurodegeneration are being widely investigated. This review aims to highlight the most recent proposed novelties, as most of the previous approaches have failed. Therefore, older approaches may currently be used by healthcare professionals and are not being presented. Methods This review was based on an electronic search of existing literature, using PubMed as primary source for important review articles, and important randomized clinical trials, published in the last 5 years. Reference lists from the most recent reviews, as well as additional sources of primary literature and references cited by relevant articles, were used. Results Eighteen natural pharmaceutical substances and 24 extracted or recombinant products, and artificial agents that can be used against OS, inflammation, and neurodegeneration were identified. After presenting the most common neurodegenerative diseases and mentioning some of the basic mechanisms that lead to neuronal loss, this paper presents up to date information that could encourage the development of better therapeutic strategies. Conclusions This review shares the new potential pharmaceutical and not pharmaceutical options that have been recently introduced regarding OS and inflammatory responses in neurodegenerative diseases.
Collapse
|
18
|
Song H, Cui J, Mossine VV, Greenlief CM, Fritsche K, Sun GY, Gu Z. Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration. Exp Ther Med 2019; 19:1554-1559. [PMID: 32010338 PMCID: PMC6966118 DOI: 10.3892/etm.2019.8389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Garlic (Allium sativum) has been widely used for culinary and medicinal purposes. Aged garlic extract (AGE) and sulfur-containing compounds, including S-allylcysteine (SAC) are well documented botanical active components of garlic. AGE is prepared by the prolonged extraction of fresh garlic with aqueous ethanol and is considered a nutritional supplement with potential to promote human health. SAC is a water-soluble organosulfur compound and the most abundant component of AGE. Studies have demonstrated that both AGE and SAC can exert neuroprotective effects against neuroinflammation and neurodegeneration. Another bioactive component in AGE is N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg) although less is known about the metabolic activity of this compound. The main aim of this review was to provide an undated overview of the neuroprotective perspectives of these active garlic components (AGE, SAC and FruArg). Of interest, our studies and those of others indicate that both AGE and FruArg are involved in the regulation of gene transcription and protein expression. AGE has been shown to reverse 67% of the transcriptome alteration induced by endotoxins-lipopolysaccharide (LPS), and FruArg has been shown to account for the protective effects by reversing 55% of genes altered in a cell-based neuroinflammation paradigm stimulated by LPS in murine BV-2 microglial cells. AGE and FruArg can alleviate neuroinflammatory responses through a variety of signaling pathways, such as Toll-like receptor and interleukin (IL)-6 signaling, as well as by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress pathways known to promote microglial resiliency against neuroinflammation and neurodegeneration. The capability of FruArg to pass through the blood-brain barrier further supports its potential as a therapeutic compound. In summary, these experimental results provide new insight into the understanding of the neuroprotective effects of garlic components in promoting brain resiliency for health benefits.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Valeri V Mossine
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | - Kevin Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| |
Collapse
|
19
|
Agnihotri A, Aruoma OI. Alzheimer’s Disease and Parkinson’s Disease: A Nutritional Toxicology Perspective of the Impact of Oxidative Stress, Mitochondrial Dysfunction, Nutrigenomics and Environmental Chemicals. J Am Coll Nutr 2019; 39:16-27. [DOI: 10.1080/07315724.2019.1683379] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Okezie I. Aruoma
- Department of Chemistry and Biochemistry, College of Natural and Social Sciences, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer's disease. Drug Dev Res 2019; 81:165-183. [PMID: 31820476 DOI: 10.1002/ddr.21587] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), a complex neurodegenerative disorder causing multiple cellular changes including impaired cholinergic system, beta-amyloid (βA) aggregation, tau hyperphosphorylation, metal dyshomeostasis, neuroinflammation, and many other pathways are involved in the pathogenesis of the disease. However, the exact cause of the disease is not known. Natural products such as flavonoids, alkaloids, resveratrol, and curcumin have multifunctional properties, and have drawn the attention of the researchers because these molecules are capable of interacting concurrently with the multiple targets of AD. Therefore, natural products and their derivatives with proven efficacy could be used in the management of the neurodegenerative disorders. This review focuses on the natural product based multitarget directed ligands like tacrine-coumarin, tacrine-huperzine A, harmine-isoxazoline, berberine-thiophenyl, galantamine-indole, pyridoxine-resveratrol, donepezil-curcumin and their mode of action.
Collapse
Affiliation(s)
- Pooja Patil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India.,Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Jeet Singh Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Wu X, Cai H, Pan L, Cui G, Qin F, Li Y, Cai Z. Small Molecule Natural Products and Alzheimer's Disease. Curr Top Med Chem 2019; 19:187-204. [PMID: 30714527 DOI: 10.2174/1568026619666190201153257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a progressive and deadly neurodegenerative disease that is characterized by memory loss, cognitive impairment and dementia. Several hypotheses have been proposed for the pathogenesis based on the pathological changes in the brain of AD patients during the last few decades. Unfortunately, there is no effective agents/therapies to prevent or control AD at present. Currently, only a few drugs, which function as acetylcholinesterase (AChE) inhibitors or N-methyl-Daspartate (NMDA) receptor antagonists, are available to alleviate symptoms. Since many small molecule natural products have shown their functions as agonists or antagonists of receptors, as well as inhibitors of enzymes and proteins in the brain during the development of central nervous system (CNS) drugs, it is likely that natural products will play an important role in anti-AD drug development. We review recent papers on using small molecule natural products as drug candidates for the treatment of AD. These natural products possess antioxidant, anti-inflammatory, anticholinesterase, anti-amyloidogenic and neuroprotective activities. Moreover, bioactive natural products intended to be used for preventing AD, reducing the symptoms of AD and the new targets for treatment of AD are summarized.
Collapse
Affiliation(s)
- Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Cui
- Drug Clinical Trial Research Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Feng Qin
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - YunChun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Euxanthone Ameliorates Sevoflurane-Induced Neurotoxicity in Neonatal Mice. J Mol Neurosci 2019; 68:275-286. [PMID: 30927203 DOI: 10.1007/s12031-019-01303-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 01/05/2023]
|
23
|
Wang X, Yang Y, Zhang M. The vivo antioxidant activity of self-made aged garlic extract on the d-galactose-induced mice and its mechanism research via gene chip analysis. RSC Adv 2019; 9:3669-3678. [PMID: 35547881 PMCID: PMC9087883 DOI: 10.1039/c8ra10308a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
Two self-made aged garlic extract (AGE) were prepared and they were subjected with d-galactose-induced mice to explore vivo antioxidant effects and its mechanism via gene chip analysis. The biochemical analysis results indicated that AGE could significantly reduce the malondialdehyde (MDA) and lipofuscin content and increase the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activity. Histopathological observations found that AGE could improve the size, shape and arrangement state of liver and brain cells. Furthermore, gene expression profile array was used to screen 35 and 13 differentially expressed genes in liver and brain, respectively. Further analysis showed that the AGE could protect the mice from d-galactose-caused injury via carbohydrate metabolism, immunomodulatory, lipid metabolism, cell cycle regulation, amino acid metabolism and nervous regulation pathways. Through this experiment, we could comprehensively study the antioxidant mechanism of AGE and link the antioxidant function of AGE to the metabolic pathways. AGE exerts its vivo antioxidant function through 41 metabolic pathways, which were related to 7 aging hallmarks.![]()
Collapse
Affiliation(s)
- Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering
- Shanxi University of Chinese Medicine
- Jinzhong 030619
- China
- State Key Laboratory of Nutrition and Safety (Tianjin University of Science & Technology)
| | - Yukun Yang
- School of Life Science
- Shanxi University
- Taiyuan 030006
- China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety (Tianjin University of Science & Technology)
- Tianjin 300457
- China
| |
Collapse
|
24
|
Khalili M, Alavi M, Esmaeil-Jamaat E, Baluchnejadmojarad T, Roghani M. Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int Immunopharmacol 2018; 61:355-362. [PMID: 29935483 DOI: 10.1016/j.intimp.2018.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Brain inflammation is associated with cognitive dysfunction, especially in elderly. Trigonelline is a plant alkaloid and a major component of coffee and fenugreek with anti-diabetic, antioxidant, anti-inflammatory, and neuroprotective effects. In this study, the beneficial effect of trigonelline against lipopolysaccharide (LPS)-induced cognitive decline was assessed in the rat. LPS was injected i.p. at a dose of 500 μg/kg to induce neuroinflammation and trigonelline was administered p.o. at doses of 20, 40, or 80 mg/kg/day 1 h after LPS that continued for one week. Trigonelline-treated LPS-challenged rats showed improved spatial recognition memory in Y maze, discrimination ratio in novel object discrimination test, and retention and recall in passive avoidance paradigm. Additionally, trigonelline lowered hippocampal malondialdehyde (MDA) and acetylcholinesterase (AChE) activity and improved superoxide dismutase (SOD), catalase, and glutathione (GSH). Furthermore, trigonelline depressed hippocampal nuclear factor-kappaB (NF-κB), toll-like receptor 4 (TLR4), and tumor necrosis factor α (TNF α) in LPS-challenged rats. All of the effects of trigonelline followed a dose-dependent pattern and in some aspects, it acted even better than the routinely-used anti-inflammatory drug dexamethasone. Collectively, trigonelline is capable to diminish LPS-induced cognitive decline via suppression of hippocampal oxidative stress and inflammation and appropriate modulation of NF-κB/TLR4 and AChE activity.
Collapse
Affiliation(s)
- Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mitra Alavi
- School of Medicine, Shahed University, Tehran, Iran
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
25
|
Gypenosides Attenuate Lipopolysaccharide-Induced Neuroinflammation and Memory Impairment in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4183670. [PMID: 30018656 PMCID: PMC6029442 DOI: 10.1155/2018/4183670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023]
Abstract
Neuroinflammation is deliberated a major factor in various neurodegenerative diseases. Gypenosides (GPS) have pharmacological properties with multiple beneficial effects including anti-inflammatory, antioxidative, and protective properties. In the present study, whether GPS could improve cognitive dysfunction and chronic inflammation caused by injecting lipopolysaccharide (LPS) in the hippocampus was investigated. Effects of GPS on inflammatory factors in the hippocampus and the downstream mechanisms of these effects were also examined. Induction of LPS into the lateral ventricle caused inflammatory reactions and memory impairment on the rats. Every day treatment of GPS (25, 50, and 100 mg/kg) for 21 consecutive days attenuated spatial recognition, discrimination, and memory deficits. GPS treatment significantly decreased proinflammatory mediators such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor-kappaB (NF-κB) levels in the brain. Furthermore, GPS reduced LPS-induced elevated levels of inducible nitric oxide synthase (iNOS) and toll-like receptor 4 (TLR4) mRNA and inhibition of brain-derived neurotrophic factor (BDNF) mRNA level. Collectively, these results showed that GPS may improve cognitive function and provide a potential therapy for memory impairment caused by neuroinflammation. Based on these, GPS may be effective in inhibiting the progress of neurodegenerative diseases by improving memory functions due to its anti-inflammatory activities and appropriate modulation of NF-κB/iNOS/TLR4/BDNF.
Collapse
|
26
|
Bui TT, Nguyen TH. Natural product for the treatment of Alzheimer's disease. J Basic Clin Physiol Pharmacol 2018; 28:413-423. [PMID: 28708573 DOI: 10.1515/jbcpp-2016-0147] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/28/2017] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is related to increasing age. It is mainly characterized by progressive neurodegenerative disease, which damages memory and cognitive function. Natural products offer many options to reduce the progress and symptoms of many kinds of diseases, including AD. Meanwhile, natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids, have anti-inflammatory, antioxidant, anti-amyloidogenic, and anticholinesterase activities. In this review, we summarize the pathogenesis and targets for treatment of AD. We also present several medicinal plants and isolated compounds that are used for preventing and reducing symptoms of AD.
Collapse
|
27
|
Khajevand-Khazaei MR, Ziaee P, Motevalizadeh SA, Rohani M, Afshin-Majd S, Baluchnejadmojarad T, Roghani M. Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Mirahmadi SMS, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104:151-159. [PMID: 29102164 DOI: 10.1016/j.cyto.2017.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
Systemic inflammation during infectious disorders usually accompanies chronic complications including cognitive dysfunction. Neuroinflammation and cognitive deficit are also observed in some debilitating neurological disorders like Alzheimer's and Parkinson's diseases. Genistein is a soy isoflavone with multiple beneficial effects including anti-inflammatory, anti-oxidative, and protective properties. In this research study, the effect of genistein in prevention of lipopolysaccharide (LPS)-induced cognitive dysfunction was investigated. LPS was given i.p. (500 μg/kg/day) and genistein was orally given (10, 50, or 100 mg/kg) for one week. Findings showed that genistein could dose-dependently attenuate spatial recognition, discrimination, and memory deficits. Additionally, genistein treatment of LPS-challenged group lowered hippocampal level of malondialdehyde (MDA) and increased activity of superoxide dismutase (SOD) and catalase and glutathione (GSH) level. Furthermore, genistein ameliorated hippocampal acetylcholinesterase (AChE) activity in LPS-challenged rats. Furthermore, genistein administration to LPS-injected group lowered hippocampal level of interleukin 6 (IL-6), nuclear factor-kappaB (NF-κB) p65, toll-like receptor 4 (TLR4), tumor necrosis factor α (TNFα), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP), and increased hippocampal level of antioxidant element nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In conclusion, genistein alleviated LPS-induced cognitive dysfunctions and neural inflammation attenuation of oxidative stress and AChE activity and appropriate modulation of Nrf2/NF-κB/IL-6/TNFα/COX2/iNOS/TLR4/GFAP.
Collapse
Affiliation(s)
| | | | | | | | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
29
|
Neuroprotective effect of S-allyl cysteine on an experimental model of multiple sclerosis: Antioxidant effects. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Yu J, Zhang S, Zhang L. Evaluation of the extent of initial Maillard reaction during cooking some vegetables by direct measurement of the Amadori compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:190-197. [PMID: 28573682 DOI: 10.1002/jsfa.8455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND During vegetable cooking, one of the most notable and common chemical reactions is the Maillard reaction, which occurs as a result of thermal treatment and dehydration. Amadori compound determination provides a very sensitive indicator for early detection of quality changes caused by the Maillard reaction, as well as to retrospectively assess the heat treatment or storage conditions to which the product has been subjected. In this paper, a hydrophilic interaction liquid chromatographic-electrospray ionization-tandem mass spectrometric method was developed for the analysis of eight Amadori compounds, and the initial steps of the Maillard reaction during cooking (steaming, frying and baking) bell pepper, red pepper, yellow onion, purple onion, tomato and carrot were also assessed by quantitative determination of these Amadori compounds. RESULTS These culinary treatments reduced moisture and increased the total content of Amadori compounds, which was not dependent on the type of vegetable or cooking method. Moreover, the effect of steaming on Amadori compound content and water loss was less than that by baking and frying vegetables. Further studies showed that the combination of high temperature and short time may lead to lower formation of Amadori compounds when baking vegetables. CONCLUSION Culinary methods differently affected the extent of initial Maillard reaction when vegetables were made into home-cooked products. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiahao Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shuqin Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Hispidulin prevents sevoflurane— Induced memory dysfunction in aged rats. Biomed Pharmacother 2018; 97:412-422. [DOI: 10.1016/j.biopha.2017.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/20/2023] Open
|
32
|
Baluchnejadmojarad T, Zeinali H, Roghani M. Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int Immunopharmacol 2018; 54:311-319. [DOI: 10.1016/j.intimp.2017.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
|
33
|
Effect of the Aged Garlic Extract on Cardiovascular Function in Metabolic Syndrome Rats. Molecules 2016; 21:molecules21111425. [PMID: 27792195 PMCID: PMC6273338 DOI: 10.3390/molecules21111425] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
The antioxidant properties of aged garlic extract (AGE) on cardiovascular functioning (CF) in metabolic syndrome (MS) remains poorly studied. Here we study the AGE effects on CF in a rat model of MS. Control rats plus saline solution (C + SS), MS rats (30% sucrose in drinking water from weaning) plus saline solution (MS + SS), control rats receiving AGE (C + AGE 125 mg/Kg/12 h) and MS rats with AGE (MS + AGE) were studied. MS + SS had increased triglycerides, systolic blood pressure, insulin, leptin, HOMA index, and advanced glycation end products. AGE returned their levels to control values (p < 0.01). Cholesterol was decreased by AGE (p = 0.05). Glutathion and GPx activity were reduced in MS + SS rats and increased with AGE (p = 0.05). Lipid peroxidation was increased in MS + SS and AGE reduced it (p = 0.001). Vascular functioning was deteriorated by MS (increased vasocontraction and reduced vasodilation) and AGE improved it (p = 0.001). Coronary vascular resistance was increased in MS rats and AGE decreased it (p = 0.001). Cardiac performance was not modified by MS but AGE increased it. NO measured in the perfusate liquid from the heart and serum citrulline, nitrites/nitrates were decreased in MS and AGE increased them (p < 0.01). In conclusion, AGE reduces MS-induced cardiovascular risk, through its anti-oxidant properties.
Collapse
|