1
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Jeong YS, Lam TG, Jeong S, Ahn SG. Metformin Derivative HL156A Reverses Multidrug Resistance by Inhibiting HOXC6/ERK1/2 Signaling in Multidrug-Resistant Human Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E218. [PMID: 32872293 PMCID: PMC7560051 DOI: 10.3390/ph13090218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance is a significant clinical crisis in cancer treatment and has been linked to the cellular expression of multidrug efflux transporters. The aim of this study was to examine the effects and mechanisms of the metformin derivative HL156A on human multidrug resistance (MDR) cancer cells. Here, HL156A significantly suppressed cell growth and colony formation through G2/M phase cell cycle arrest in MDR cancer cells. HL156A also reduced the wound closure rate and cell migration and induced caspase-3-dependent apoptosis. We found that HL156A inhibited the expression of MDR1 by inhibiting the HOXC6-mediated ERK1/2 signaling pathway and increased the sensitivity to paclitaxel or doxorubicin in MDR cells. Furthermore, HL156A significantly inhibited angiogenesis in a chicken chorioallantoic membrane (CAM) assay. These results suggest the potential of the metformin derivative HL156A as a candidate therapeutic modality for the treatment of human multidrug-resistant cancers.
Collapse
Affiliation(s)
| | | | - Seho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| |
Collapse
|
3
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Xu HB, Tang ZQ, Wang J, Kong PS. Z-guggulsterone regulates MDR1 expression mainly through the pregnane X receptor-dependent manner in human brain microvessel endothelial cells. Eur J Pharmacol 2020; 874:173023. [PMID: 32087256 DOI: 10.1016/j.ejphar.2020.173023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Recently studies showed that pregnane X receptor (PXR) was expressed in human brain microvessel endothelial cells and coordinately induced multidrug resistance protein 1 (MDR1) expression. The present study aimed to investigate the regulatory effect of Z-guggulsterone on MDR1 in human brain microvessel endothelial cells, and explored whether it involved modulation of PXR. The results showed that Z-guggulsterone (30 μM) simultaneously inhibited the expression of PXR and MDR1 at 24 h in human brain-derived microvessel endothelial cells (hBDMECs). Meanwhile, the levels of PXR and MDR1 expression were simultaneously reduced in PXR siRNA-transfected hBDMECs; MDR-1 siRNA-transfected hBDMECs showed significant decrease in MDR1 expression, but no change in PXR expression. Furthermore, Z-guggulsterone inhibited the activation of PXR in hBDMECs through decreasing the release of cAMP/PKA. Z-guggulsterone reduced the co-activator SRC-1 expression in hBDMECs, as to prevent the activation of MDR1 gene transcription. In addition, Z-guggulsterone (30 μM) at 24 h significantly inhibited the expression of human constitutive androstane receptor (CAR) protein in hBDMECs. However, after treatment with Z-guggulsterone (≤30 μM), the level of MDR1 reporter gene activity was lower in human PXR-transfected cells than that in human CAR-transfected cells. The inhibition effect of Z-guggulsterones on MDR1 reporter gene activation was gradually enhanced with the increase of human PXR to CAR ratio, which was greater extent than that with the increase of human CAR to hPXR ratio. The present study suggested that Z-guggulsterone down-regulating the efflux function and expression of MDR1 in hBDMECs might be mainly through the PXR-dependent manner.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Scientific Research, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhao-Qi Tang
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Shi Kong
- Department of Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget 2017; 8:71054-71069. [PMID: 29050342 PMCID: PMC5642617 DOI: 10.18632/oncotarget.20329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) production via cytochrome P450 (CYP) epoxygenases closely correlates with the progression of breast cancer. However, its role in the development of chemoresistant breast cancers has yet to be elucidated. Here, we found that CYP3A4 expression and its epoxy-product, 11,12-epoxyeicosatrienoic acid (11,12-EET) was enhanced in tamoxifen (TAM)-resistant MCF-7 (TAMR-MCF-7) breast cancer cells compared to control MCF-7 cells. Treatment of TAMR-MCF-7 cells with ketoconazole and azamulin (selective CYP3A4 inhibitors) or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an EET antagonist) inhibited cellular proliferation and recovered the sensitivity to 4-hydroxytamoxifen. Chick chorioallantoic membrane and trans-well migration analyses revealed that the enhanced angiogenic, tumorigenic, and migration intensities of TAMR-MCF-7 cells were also significantly suppressed by ketoconazole and 14,15-EEZE. We previously reported that Pin1, a peptidyl prolyl isomerase, is a crucial regulator for higher angiogenesis and epithelial-mesenchymal transition characteristics of TAMR-MCF-7 cells. EET inhibition suppressed E2F1-dependent Pin1 gene transcription, and Pin1 silencing also blocked cell proliferation, angiogenesis, and migration of TAMR-MCF-7 cells. Our findings suggest that the CYP3A4-mediated EET pathway represents a potential therapeutic target for the treatment of tamoxifen-resistant breast cancer.
Collapse
|
6
|
Brewer CT, Chen T. PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B 2016; 6:441-449. [PMID: 27709012 PMCID: PMC5045535 DOI: 10.1016/j.apsb.2016.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 01/30/2023] Open
Abstract
The pregnane X receptor (PXR) plays an important and diverse role in mediating xenobiotic induction of drug-metabolizing enzymes and transporters. Several protein isoforms of PXR exist, and they have differential transcriptional activity upon target genes; transcript variants 3 (PXR3) and 4 (PXR4) do not induce target gene expression, whereas transcript variants 1 (PXR1) and 2 (PXR2) respond to agonist by activating target gene expression. PXR protein variants also display differences in protein-protein interactions; PXR1 interacts with p53, whereas PXR3 does not. Furthermore, the transcript variants of PXR that encode these protein isoforms are differentially regulated by methylation and deletions in the respective promoters of the variants, and their expression differs in various human cancers and also in cancerous tissue compared to adjacent normal tissues. PXR1 and PXR4 mRNA are downregulated by methylation in cancerous tissue and have divergent effects on cellular proliferation when ectopically overexpressed. Additional detailed and comparative mechanistic studies are required to predict the effect of PXR transcript variant expression on carcinogenesis, therapeutic response, and the development of toxicity.
Collapse
Key Words
- AF, activating function
- BAMCA, bacterial artificial chromosome array–based methylated CpG island amplification
- CYP, cytochrome P450
- Drug metabolism
- GST, glutathione S-transferase
- MDR, multidrug resistance protein
- NHR, nuclear hormone receptor
- P-gp, P-glycoprotein
- PXR1, PXR transcript variant 1 (434 residues)
- PXR2, transcript variant 2 (473 residues)
- PXR3, transcript variant 3 (397 residues)
- PXR4, transcript variant 4 (322 residues;AK122990)
- Pregnane X receptor
- RACE, 5′ rapid amplification of cDNA ends
- Therapeutic responses
- Toxicity
- Transcript variants
- UGT, UDP-glucuronosyltransferase
- UTR, untranslated region
- shRNA, short hairpin RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- C. Trent Brewer
- Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Corresponding author at: Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Mail Stop #1000, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel.: +1 901 595 5937; fax: +1 901 595 5715.Department of Chemical Biology and Therapeutics, St. Jude Children′s Research Hospital, Mail Stop #1000, 262 Danny Thomas PlaceMemphisTN38105USA
| |
Collapse
|
7
|
Powers JL, Buys SS, Fletcher D, Melis R, Johnson-Davis KL, Lyon E, Malmberg EM, McMillin GA. Multigene and Drug Interaction Approach for Tamoxifen Metabolite Patterns Reveals Possible Involvement of CYP2C9, CYP2C19, and ABCB1. J Clin Pharmacol 2016; 56:1570-1581. [PMID: 27198207 DOI: 10.1002/jcph.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/11/2022]
Abstract
Tamoxifen is metabolically activated to 4-hydroxytamoxifen and endoxifen by cytochrome P450 (CYP). CYP phenotypes have been correlated to tamoxifen outcomes, but few have considered drug interactions or combinations of genes. Fewer still have considered ABCB1, which encodes P-glycoprotein and transports active tamoxifen metabolites. We compared the concentrations of tamoxifen and metabolites in 116 breast cancer patients with predicted phenotypes for CYP2D6, CYP3A4, CYP3A5, CYP2C9, CYP2C19, and ABCB1 genotypes. A significant correlation between CYP2D6 phenotypes and tamoxifen metabolites was seen, strongest for endoxifen (P < .0001). Statistical fit of the data improved when using gene activity scores adjusted for known drug interactions. Concentration of tamoxifen was significantly higher (P = .02) for patients taking a CYP2C19 inhibitor. No significant relationships were found for other genes unless patients were subgrouped according to CYP2D6 phenotypes or ABCB1 genotypes. Lower concentrations of endoxifen and endoxifen/4-hydroxytamoxifen ratios were seen with impaired CYP2C9 (P = .05 and P = .03, respectively) if patients had the same CYP2D6 phenotype and were not taking a CYP2D6 or CYP2C19 inhibitor. Lower concentrations of 4-hydroxytamoxifen were seen for impaired CYP2C19 when ABCB1 SNP3435 was nonvariant (P = .04). With 3 impaired CYP phenotypes, endoxifen concentrations were lower than if only CYP2D6 was impaired (P = .05). When CYP2D6 was impaired, ABCB1 3435 CC (rs1045642) was associated with significantly higher endoxifen (P = .03). Thus, impairment in CYP2C9, CYP2C19, or ABCB1 contributes to a lower steady-state endoxifen concentration at the dose studied. These studies represent an improved way of examining relationships between pharmacogenetics, drug concentrations, and clinical outcomes and warrants study in larger populations.
Collapse
Affiliation(s)
- Jennifer L Powers
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Deborah Fletcher
- Department of Pharmacy, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Roberta Melis
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Elaine Lyon
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | - Gwendolyn A McMillin
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Krisnamurti DGB, Louisa M, Anggraeni E, Wanandi SI. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells. Adv Pharmacol Sci 2016; 2016:6702424. [PMID: 26981116 PMCID: PMC4769734 DOI: 10.1155/2016/6702424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance.
Collapse
Affiliation(s)
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Erlia Anggraeni
- Master Program in Biomedicine, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
9
|
Chanawong A, Hu DG, Meech R, Mackenzie PI, McKinnon RA. Induction of UDP-glucuronosyltransferase 2B15 gene expression by the major active metabolites of tamoxifen, 4-hydroxytamoxifen and endoxifen, in breast cancer cells. Drug Metab Dispos 2015; 43:889-97. [PMID: 25795461 DOI: 10.1124/dmd.114.062935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/19/2015] [Indexed: 11/22/2022] Open
Abstract
We previously reported upregulation of UGT2B15 by 17β-estradiol in breast cancer MCF7 cells via binding of the estrogen receptor α (ERα) to an estrogen response unit (ERU) in the proximal UGT2B15 promoter. In the present study, we show that this ERα-mediated upregulation was significantly reduced by two ER antagonists (fulvestrant and raloxifene) but was not affected by a third ER antagonist, 4-hydroxytamoxifen (4-OHTAM), a major active tamoxifen (TAM) metabolite. Furthermore, we found that, similar to 17β-estradiol, 4-OHTAM and endoxifen (another major active TAM metabolite) elevated UGT2B15 mRNA levels, and that this stimulation was significantly abrogated by fulvestrant. Further experiments using 4-OHTAM revealed a critical role for ERα in this regulation. Specifically; knockdown of ERα expression by anti-ERα small interfering RNA reduced the 4-OHTAM-mediated induction of UGT2B15 expression; 4-OHTAM activated the wild-type but not the ERU-mutated UGT2B15 promoter; and chromatin immunoprecipitation assays showed increased ERα occupancy at the UGT2B15 ERU in MCF7 cells upon exposure to 4-OHTAM. Together, these data indicate that both 17β-estradiol and the antiestrogen 4-OHTAM upregulate UGT2B15 in MCF7 cells via the same ERα-signaling pathway. This is consistent with previous observations that both 17β-estradiol and TAM upregulate a common set of genes in MCF7 cells via the ER-signaling pathway. As 4-OHTAM is a UGT2B15 substrate, the upregulation of UGT2B15 by 4-OHTAM in target breast cancer cells is likely to enhance local metabolism and inactivation of 4-OHTAM within the tumor. This represents a potential mechanism that may reduce TAM therapeutic efficacy or even contribute to the development of acquired TAM resistance.
Collapse
Affiliation(s)
- Apichaya Chanawong
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
10
|
Zhuo W, Hu L, Lv J, Wang H, Zhou H, Fan L. Role of pregnane X receptor in chemotherapeutic treatment. Cancer Chemother Pharmacol 2014; 74:217-27. [PMID: 24889719 DOI: 10.1007/s00280-014-2494-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily that differently expresses not only in human normal tissues but also in numerous types of human cancers. PXR can be activated by many endogenous substances and exogenous chemicals, and thus affects chemotherapeutic effects and intervenes drug-drug interactions by regulating its target genes involving drug metabolism and transportation, cell proliferation and apoptosis, and modulating endobiotic homeostasis. Tissue and context-specific regulation of PXR contributes to diverse effects in the treatment for numerous cancers. Genetic variants of PXR lead to intra- and inter-individual differences in the expression and inducibility of PXR, resulting in different responses to chemotherapy in PXR-positive cancers. The purpose of this review is to summarize and discuss the role of PXR in the metabolism and clearance of anticancer drugs. It is also expected that this review will provide insights into PXR-mediated enhancement for chemotherapeutic treatment, prediction of drug-drug interactions and personalized medicine.
Collapse
Affiliation(s)
- Wei Zhuo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
The tumor suppressor TERE1 (UBIAD1) prenyltransferase regulates the elevated cholesterol phenotype in castration resistant prostate cancer by controlling a program of ligand dependent SXR target genes. Oncotarget 2014; 4:1075-92. [PMID: 23919967 PMCID: PMC3759667 DOI: 10.18632/oncotarget.1103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Castrate-Resistant Prostate Cancer (CRPC) is characterized by persistent androgen receptor-driven tumor growth in the apparent absence of systemic androgens. Current evidence suggests that CRPC cells can produce their own androgens from endogenous sterol precursors that act in an intracrine manner to stimulate tumor growth. The mechanisms by which CRPC cells become steroidogenic during tumor progression are not well defined. Herein we describe a novel link between the elevated cholesterol phenotype of CRPC and the TERE1 tumor suppressor protein, a prenyltransferase that synthesizes vitamin K-2, which is a potent endogenous ligand for the SXR nuclear hormone receptor. We show that 50% of primary and metastatic prostate cancer specimens exhibit a loss of TERE1 expression and we establish a correlation between TERE1 expression and cholesterol in the LnCaP-C81 steroidogenic cell model of the CRPC. LnCaP-C81 cells also lack TERE1 protein, and show elevated cholesterol synthetic rates, higher steady state levels of cholesterol, and increased expression of enzymes in the de novo cholesterol biosynthetic pathways than the non-steroidogenic prostate cancer cells. C81 cells also show decreased expression of the SXR nuclear hormone receptor and a panel of directly regulated SXR target genes that govern cholesterol efflux and steroid catabolism. Thus, a combination of increased synthesis, along with decreased efflux and catabolism likely underlies the CRPC phenotype: SXR might coordinately regulate this phenotype. Moreover, TERE1 controls synthesis of vitamin K-2, which is a potent endogenous ligand for SXR activation, strongly suggesting a link between TERE1 levels, K-2 synthesis and SXR target gene regulation. We demonstrate that following ectopic TERE1 expression or induction of endogenous TERE1, the elevated cholesterol levels in C81 cells are reduced. Moreover, reconstitution of TERE1 expression in C81 cells reactivates SXR and switches on a suite of SXR target genes that coordinately promote both cholesterol efflux and androgen catabolism. Thus, loss of TERE1 during tumor progression reduces K-2 levels resulting in reduced transcription of SXR target genes. We propose that TERE1 controls the CPRC phenotype by regulating the endogenous levels of Vitamin K-2 and hence the transcriptional control of a suite of steroidogenic genes via the SXR receptor. These data implicate the TERE1 protein as a previously unrecognized link affecting cholesterol and androgen accumulation that could govern acquisition of the CRPC phenotype.
Collapse
|
12
|
Rathod V, Jain S, Nandekar P, Sangamwar AT. Human pregnane X receptor: a novel target for anticancer drug development. Drug Discov Today 2014; 19:63-70. [DOI: 10.1016/j.drudis.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/02/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
|
13
|
Penney RB, Roy D. Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:60-79. [PMID: 23466753 DOI: 10.1016/j.bbcan.2013.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/27/2022]
Abstract
Resistance to endocrine therapy in breast carcinogenesis due to the redox regulation of the signal transduction system by reactive oxygen species (ROS) is the subject of this review article. Both antiestrogens and aromatase inhibitors are thought to prevent cancer through modulating the estrogen receptor function, but other mechanisms cannot be ruled out as these compounds also block metabolism and redox cycling of estrogen and are free radical scavengers. Endocrine therapeutic agents, such as, tamoxifen and other antiestrogens, and the aromatase inhibitor, exemestane, are capable of producing ROS. Aggressive breast cancer cells have high oxidative stress and chronic treatment with exemestane, fulvestrant or tamoxifen may add additional ROS stress. Breast cancer cells receiving long-term antiestrogen treatment appear to adapt to this increased persistent level of ROS. This, in turn, may lead to the disruption of reversible redox signaling that involves redox-sensitive phosphatases, protein kinases, such as, ERK and AKT, and transcription factors, such as, AP-1, NRF-1 and NF-κB. Thioredoxin modulates the expression of estrogen responsive genes through modulating the production of H2O2 in breast cancer cells. Overexpressing thioredoxine reductase 2 and reducing oxidized thioredoxin restores tamoxifen sensitivity to previously resistant breast cancer cells. In summary, it appears that resistance to endocrine therapy may be mediated, in part, by ROS-mediated dysregulation of both estrogen-dependent and estrogen-independent redox-sensitive signaling pathways. Further studies are needed to define the mechanism of action of thioredoxin modifiers, and their effect on the redox regulation that contributes to restoring the antiestrogen-mediated signal transduction system and growth inhibitory action.
Collapse
Affiliation(s)
- Rosalind Brigham Penney
- Department of Environmental and Occupational Health, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
14
|
Hennigar SR, Myers JL, Tagliaferro AR. Exposure of alveolar macrophages to polybrominated diphenyl ethers suppresses the release of pro-inflammatory products in vitro. Exp Biol Med (Maywood) 2012; 237:429-34. [PMID: 22454545 DOI: 10.1258/ebm.2011.011202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inhalation of chemical pollutants has been associated with a reduced immune response in humans. Inhalation of dust is a major route of exposure for one endocrine-disrupting chemical and suspected xenoestrogen, polybrominated diphenyl ethers (PBDEs); however, the impact of PBDEs on immune function is unclear. The objective of this study was to investigate the action of PBDEs on cytokine and eicosanoid release by alveolar macrophages and determine whether the effects are mediated via the estrogen receptor. The production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, IL-10 and prostaglandin E(2) (PGE(2)) by porcine alveolar macrophages exposed to different concentrations of the pentabrominated diphenyl ether mixture, DE-71, were measured; cells were also exposed to varying concentrations of 17β-estradiol and the selective estrogen receptor-modulating agent, tamoxifen. Cells exposed to PBDEs released significantly less pro-inflammatory cytokines (TNF-α and IL-6) and PGE(2) compared with controls; IL-1β and IL-10 were not detected in the culture medium. Cells exposed to 17β-estradiol released significantly less TNF-α compared with controls, an effect that was reversed by the addition of tamoxifen; tamoxifen had no effect on the inhibition of TNF-α release by PBDEs. Although the suppression of TNF-α with DE-71 was similar to that of estrogen, the inhibitory effects of DE-71 were not found to be dependent on the estrogen receptor. Findings of this study suggest that chronic exposure to PBDEs suppressed innate immunity in vitro. Whether the immunosuppressant effects of PBDEs occur in vivo, remains to be determined.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 129 Main St, Kendall Hall, Durham, NH 03824, USA
| | | | | |
Collapse
|
15
|
Teft WA, Mansell SE, Kim RB. Endoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1). Drug Metab Dispos 2011; 39:558-62. [PMID: 21148080 DOI: 10.1124/dmd.110.036160] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Tamoxifen is widely prescribed to patients with estrogen receptor-positive breast cancer, and it is a prodrug that requires bioactivation by cytochrome P450 enzymes CYP2D6 and 3A4 to generate the active metabolite, endoxifen. Large interpatient variability in endoxifen plasma levels has been reported, and polymorphisms in CYP2D6 have been implicated as a major determinant of such variability. However, little is known regarding the role of drug transporters such as P-glycoprotein [multidrug resistance 1 (MDR1), ATP-binding cassette B1 (ABCB1)] to endoxifen disposition and response. Therefore, we determined the ability of P-glycoprotein to transport endoxifen in vitro, using a polarized human P-glycoprotein-overexpressing cell line. Markedly higher transport of endoxifen was observed in the basal-to-apical direction, which was abrogated in the presence of the potent and specific P-glycoprotein inhibitor (2R)-anti-5-{3-[4-(10,11-difluoromethanodibenzo-suber-5-yl)piperazin-1-yl]-2-hydroxypropoxy}quinoline trihydrochloride (LY335979). To validate the in vivo relevance of P-glycoprotein to endoxifen disposition, plasma and tissue concentrations were also determined in Mdr1a-deficient mice after oral administration of endoxifen. Plasma endoxifen levels did not significantly differ between wild-type and Mdr1a-deficient mice. However, brain concentrations of endoxifen were nearly 20-fold higher in Mdr1a-deficient mice compared to wild-type mice. Because P-glycoprotein is highly expressed at the blood-brain barrier and in some breast cancer tumors, variation in expression and function of this transporter may alter central nervous system entry and the attained intracellular concentration in such breast cancer cells and therefore may prove to be of relevance to therapeutic outcome.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Hormonal/metabolism
- Biological Transport, Active/drug effects
- Brain/metabolism
- Cell Line
- Cell Polarity
- Dibenzocycloheptenes/pharmacology
- Estrogen Receptor Modulators/blood
- Estrogen Receptor Modulators/metabolism
- Estrogen Receptor Modulators/pharmacokinetics
- Humans
- Male
- Membrane Transport Modulators/pharmacology
- Mice
- Mice, Transgenic
- Prodrugs/metabolism
- Quinolines/pharmacology
- Recombinant Proteins/metabolism
- Substrate Specificity
- Sus scrofa
- Tamoxifen/analogs & derivatives
- Tamoxifen/blood
- Tamoxifen/metabolism
- Tamoxifen/pharmacokinetics
- Tissue Distribution
Collapse
Affiliation(s)
- Wendy A Teft
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
16
|
Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:115-33. [PMID: 21036202 DOI: 10.1016/j.bbcan.2010.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
Elevated lifetime estrogen exposure is a major risk factor for breast cancer. Recent advances in the understanding of breast carcinogenesis clearly indicate that induction of estrogen receptor (ER) mediated signaling is not sufficient for the development of breast cancer. The underlying mechanisms of breast susceptibility to estrogen's carcinogenic effect remain elusive. Physiologically achievable concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen species (ROS). Recent data implicated that these ROS induced DNA synthesis, increased phosphorylation of kinases, and activated transcription factors, e.g., AP-1, NRF1, E2F, NF-kB and CREB of non-genomic pathways which are responsive to both oxidants and estrogen. Estrogen-induced ROS by increasing genomic instability and by transducing signal through influencing redox sensitive transcription factors play important role (s) in cell transformation, cell cycle, migration and invasion of the breast cancer. The present review discusses emerging data in support of the role of estrogen induced ROS-mediated signaling pathways which may contribute in the development of breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key complementary mechanism that drives the carcinogenesis process. ROS mediated signaling however occurs in the context of other estrogen induced processes such as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, estrogen-induced ROS can function as independent reversible modifiers of phosphatases and activate kinases to trigger the transcription factors of downstream target genes which participate in cancer progression.
Collapse
Affiliation(s)
- Victor Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
17
|
Chen Y, Tang Y, Chen S, Nie D. Regulation of drug resistance by human pregnane X receptor in breast cancer. Cancer Biol Ther 2010; 8:1265-72. [PMID: 19746521 DOI: 10.4161/cbt.8.13.8696] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance is a significant barrier to an effective treatment of breast cancer. Human pregnane X receptor (hPXR), an orphan nuclear receptor known for its activation by many important clinical drugs, is a major transcription factor of drug metabolism enzymes (DMEs), such as cytochrome P450 3A4 (CYP3A4), and efflux transporters such as multi-drug resistance gene (MDR1). hPXR has been detected in human breast cancers but its role in responses of cancers toward drugs remains unknown. In this study, hPXR expression was confirmed in breast cancer cell lines and in normal and cancerous human breast specimens. Preactivation of hPXR by SR12813 in MDA-MB-231 cells led to an increased resistance to Taxol at concentrations of 20 and 50 nmol/L. A significant increase in resistance toward tamoxifen was also observed in MCF-7 with hPXR preactivation. Activation of hPXR led to an increased expression of CYP3A4 and MDR1, two possible mediators for hPXR-mediated drug resistance in breast cancers. Furthermore, knockdown of hPXR via small hairpin RNA (shRNA) sensitized MDA-MB-231 and MCF-7 cells to the treatment of Taxol, vinblastine or tamoxifen. The reduction in resistance of hPXR knockdown cells was further confirmed by reduced colony formation under the pressure of cancer treatment drugs. Taken together, our data suggest a potential role of hPXR in breast cancer resistance to drug treatments.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, School of Medicine and Simmons Cooper Cancer Institute, Springfield, IL 62794-9626, USA
| | | | | | | |
Collapse
|
18
|
Farabegoli F, Papi A, Bartolini G, Ostan R, Orlandi M. (-)-Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:356-362. [PMID: 20149610 DOI: 10.1016/j.phymed.2010.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/28/2009] [Accepted: 01/14/2010] [Indexed: 05/28/2023]
Abstract
We investigated the anticancer effect of EGCG treatment on a breast carcinoma cell line resistant to tamoxifen (MCF-7Tam cells). As there are no reports about the molecular mechanisms implicated in EGCG treatment of tamoxifen resistant breast carcinoma cells, we studied the effects of EGCG treatment on three plasma membrane proteins that are involved in the mechanism of drug-resistance: Multidrug Resistance Protein (MRP1), P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). EGCG treatment (10-100 microg/ml for 24-72 hours) caused cell growth inhibition and dose-dependent apoptosis: after 100 microg/ml EGCG treatment for 24 hours, Bax expression increased and Bcl2 expression decreased (p<0.05). Coherently, Annexin V-FITC apoptosis assay detected a significant increase in labelled cells (p<0.05). EGCG did not affect MRP1: in contrast, 100 microg/ml EGCG administration caused P-gp decrease to 53% of control cells (p<0.001) and this effect was not due to downregulation of P-gp gene expression. EGCG induced P-gp decrease even when MG132, a strong proteasome inhibitor, was given together with EGCG to MCF-7Tam cells. EGCG treatment also inhibited BCRP activity: mRNA transcription and protein level did not change after treatment, but mitoxantrone test demonstrated a strong inhibition of BCRP activity (p<0.001). In conclusion, the present results showed that EGCG could down-regulate the activity of two molecules that play a key role in drug metabolism and transport and that are highly expressed in tamoxifen resistant breast carcinoma cells. The interaction of EGCG and drugs used in the therapy of estrogen sensitive breast carcinoma ought to be subject of studies and the potential use of EGCG in drug-resistant diseases ought to be better considered.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Camellia sinensis/chemistry
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Catechin/therapeutic use
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Down-Regulation
- Drug Resistance, Neoplasm/drug effects
- Gene Expression
- Humans
- Leupeptins/pharmacology
- Mitoxantrone/pharmacology
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Protease Inhibitors/pharmacology
- Protease Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/metabolism
- Tamoxifen
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- F Farabegoli
- Department of Experimental Pathology, Via San Giacomo, 14, University of Bologna, 40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
19
|
Zhou C, Verma S, Blumberg B. The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e001. [PMID: 19240808 PMCID: PMC2646121 DOI: 10.1621/nrs.07001] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 12/12/2008] [Indexed: 12/31/2022]
Abstract
The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a nuclear hormone receptor activated by a diverse array of endogenous hormones, dietary steroids, pharmaceutical agents, and xenobiotic compounds. SXR has an enlarged, flexible, hydrophobic ligand binding domain (LBD) which is remarkably divergent across mammalian species and SXR exhibits considerable differences in its pharmacology among mammals. The broad response profile of SXR has led to the development of "the steroid and xenobiotic sensor hypothesis". SXR has been established as a xenobiotic sensor that coordinately regulates xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for SXR in modulating inflammation, bone homeostasis, vitamin D metabolism, lipid homeostasis, energy homeostasis and cancer. The identification of SXR as a xenobiotic sensor has provided an important tool for studying new mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease. The discovery and pharmacological development of new PXR modulators might represent an interesting and innovative therapeutic approach to combat various diseases.
Collapse
Affiliation(s)
- Changcheng Zhou
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, New York, USA.
| | | | | |
Collapse
|
20
|
Verma S, Tabb MM, Blumberg B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer 2009; 9:3. [PMID: 19123943 PMCID: PMC2631587 DOI: 10.1186/1471-2407-9-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/05/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The steroid and xenobiotic receptor, SXR, is an orphan nuclear receptor that regulates metabolism of diverse dietary, endobiotic, and xenobiotic compounds. SXR is expressed at high levels in the liver and intestine, and at lower levels in breast and other tissues where its function was unknown. Since many breast cancer preventive and therapeutic compounds are SXR activators, we hypothesized that some beneficial effects of these compounds are mediated through SXR. METHODS To test this hypothesis, we measured proliferation of breast cancer cells in response to SXR activators and evaluated consequent changes in the expression of genes critical for proliferation and cell-cycle control using quantitative RT-PCR and western blotting. Results were confirmed using siRNA-mediated gene knockdown. Statistical analysis was by t-test or ANOVA and a P value < or = 0.05 was considered to be significant. RESULTS Many structurally and functionally distinct SXR activators inhibited the proliferation of MCF-7 and ZR-75-1 breast cancer cells by inducing cell cycle arrest at the G1/S phase followed by apoptosis. Decreased growth in response to SXR activation was associated with stabilization of p53 and up-regulation of cell cycle regulatory and pro-apoptotic genes such as p21, PUMA and BAX. These gene expression changes were preceded by an increase in inducible nitric oxide synthase and nitric oxide in these cells. Inhibition of iNOS blocked the induction of p53. p53 knockdown inhibited up-regulation of p21 and BAX. We infer that NO is required for p53 induction and that p53 is required for up-regulation of cell cycle regulatory and apoptotic genes in this system. SXR activator-induced increases in iNOS levels were inhibited by siRNA-mediated knockdown of SXR, indicating that SXR activation is necessary for subsequent regulation of iNOS expression. CONCLUSION We conclude that activation of SXR is anti-proliferative in p53 wild type breast cancer cells and that this effect is mechanistically dependent upon the local production of NO and NO-dependent up-regulation of p53. These findings reveal a novel biological function for SXR and suggest that a subset of SXR activators may function as effective therapeutic and chemo-preventative agents for certain types of breast cancers.
Collapse
Affiliation(s)
- Suman Verma
- Department of Developmental and Cell Biology, 5205 McGaugh Hall, University of California, Irvine, CA 92697-2300, USA.
| | | | | |
Collapse
|
21
|
Meijerman I, Beijnen JH, Schellens JH. Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat Rev 2008; 34:505-20. [DOI: 10.1016/j.ctrv.2008.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/11/2008] [Accepted: 03/01/2008] [Indexed: 01/16/2023]
|
22
|
Pettersson F, Hanna N, Lagodich M, Dupéré-Richer D, Couture MC, Choi C, Miller WH. Rexinoids modulate steroid and xenobiotic receptor activity by increasing its protein turnover in a calpain-dependent manner. J Biol Chem 2008; 283:21945-52. [PMID: 18544536 DOI: 10.1074/jbc.m710358200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steroid and xenobiotic receptor SXR (human pregnane X receptor) is a nuclear receptor that plays a key role in the body's detoxification response by regulating genes involved in drug metabolism and transport. SXR ligands include a wide range of compounds, which induce transcription of SXR target genes via activation of a heterodimeric transcription factor consisting of SXR and the related nuclear receptor retinoid X receptor (RXR). We investigated the effect of RXR-selective ligands, rexinoids, on SXR/RXR activity. In agreement with previous reports, we found that rexinoids are weak activators of SXR, but we also found that they can antagonize SXR activation by the potent SXR agonist rifampicin. This antagonism included suppression of rifampicin-induced expression of SXR target genes, as well as reduced binding of SXR/RXR to SXR response elements both in vivo and in vitro. Interestingly, two rexinoids, bexarotene (LGD1069/Targretin) and LG100268, caused a rapid and sustained decrease in the protein levels of both SXR and RXR. The decrease in SXR level was due to an enhanced rate of protein degradation and was dependent on calpain activity, as opposed to rexinoid-induced RXR degradation, which is mediated via the proteasome. Thus, we have demonstrated a novel, rexinoid-modulated mechanism regulating SXR protein stability, which may explain why rexinoids are only weak activators of SXR/RXR-mediated transcription, despite reports that they bind to SXR with high affinity. We suggest that the ability of rexinoids to induce degradation of both SXR and RXR, in combination with competition for binding to SXR, can also explain why rexinoids antagonize the activation of SXR by drugs like rifampicin.
Collapse
Affiliation(s)
- Filippa Pettersson
- Lady Davis Institute for Medical Research, Segal Cancer Centre of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Rokutanda N, Iwasaki T, Odawara H, Nagaoka R, Miyazaki W, Takeshita A, Koibuchi Y, Horiguchi J, Shimokawa N, Iino Y, Morishita Y, Koibuchi N. Augmentation of estrogen receptor-mediated transcription by steroid and xenobiotic receptor. Endocrine 2008; 33:305-16. [PMID: 19011999 DOI: 10.1007/s12020-008-9091-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
The estrogen receptor (ER) is a key regulator of proliferation and differentiation in breast cancer cells. In the present study, the effect of steroid and xenobiotic receptor (SXR) on 17/beta-estradiol (E2)-induced transcription through ERalpha was studied. SXR augmented ER-mediated transcription in the presence of E2 in MCF-7 breast cancer-derived cells and CV-1 fibroblast-derived cells. On the other hand, SXR alone did not affect the estrogen response element (ERE)-containing promoter activity in CV-1 cells. SXR did not directly bind to ERalpha or ERE in vitro, indicating that SXR may affect ER-mediated transcription by altering cofactor binding to ER. Although SXR did not alter the binding between ERalpha and p300/CBP interacting protein (p/CIP), it decreased the binding of a specific corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT) to liganded ERalpha as assessed by mammalian two-hybrid, glutathione S-transferase pull-down, immunoprecipitation and newly developed Liquid Chemiluminescent DNA Pull-Down Assays. These results indicate that SXR augmented ER-mediated transcription by dissociating SMRT from ERalpha. Thus, the expression of SXR in breast cancer cells may alter the ER signaling, which may play crucial role for growth and differentiation of breast cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Base Sequence
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Nuclear Receptor Co-Repressor 2
- Pregnane X Receptor
- Promoter Regions, Genetic/physiology
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Nana Rokutanda
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|