1
|
Turewicz M, Skagen C, Hartwig S, Majda S, Thedinga K, Herwig R, Binsch C, Altenhofen D, Ouwens DM, Förster PM, Wachtmeister T, Köhrer K, Stermann T, Chadt A, Lehr S, Marschall T, Thoresen GH, Al-Hasani H. Temporal phosphoproteomics reveals circuitry of phased propagation in insulin signaling. Nat Commun 2025; 16:1570. [PMID: 39939313 PMCID: PMC11821911 DOI: 10.1038/s41467-025-56335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
Insulin is a pleiotropic hormone that elicits its metabolic and mitogenic actions through numerous rapid and reversible protein phosphorylations. The temporal regulation of insulin's intracellular signaling cascade is highly complex and insufficiently understood. We conduct a time-resolved analysis of the global insulin-regulated phosphoproteome of differentiated human primary myotubes derived from satellite cells of healthy donors using high-resolution mass spectrometry. Identification and tracking of ~13,000 phosphopeptides over time reveal a highly complex and coordinated network of transient phosphorylation and dephosphorylation events that can be allocated to time-phased regulation of distinct and non-overlapping subcellular pathways. Advanced network analysis combining protein-protein-interaction (PPI) resources and investigation of donor variability in relative phosphosite occupancy over time identifies novel putative candidates in non-canonical insulin signaling and key regulatory nodes that are likely essential for signal propagation. Lastly, we find that insulin-regulated phosphorylation of the pre-catalytic spliceosome complex is associated with acute alternative splicing events in the transcriptome of human skeletal muscle. Our findings highlight the temporal relevance of protein phosphorylations and suggest that synchronized contributions of multiple signaling pathways form part of the circuitry for propagating information to insulin effector sites.
Collapse
Affiliation(s)
- Michael Turewicz
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Stephan Majda
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Kristina Thedinga
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - D Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Pia Marlene Förster
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany.
| |
Collapse
|
2
|
Sharma K, Saini N, Hasija Y. Identifying the mitochondrial metabolism network by integration of machine learning and explainable artificial intelligence in skeletal muscle in type 2 diabetes. Mitochondrion 2024; 74:101821. [PMID: 38040172 DOI: 10.1016/j.mito.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Imbalance in glucose metabolism and insulin resistance are two primary features of type 2 diabetes/diabetes mellitus. Its etiology is linked to mitochondrial dysfunction in skeletal muscle tissue. The mitochondria are vital organelles involved in ATP synthesis and metabolism. The underlying biological pathways leading to mitochondrial dysfunction in type 2 diabetes can help us understand the pathophysiology of the disease. In this study, the mitochondrial gene expression dataset were retrieved from the GSE22309, GSE25462, and GSE18732 using Mitocarta 3.0, focusing specifically on genes that are associated with mitochondrial function in type 2 disease. Feature selection on the expression dataset of skeletal muscle tissue from 107 control patients and 70 type 2 diabetes patients using the XGBoost algorithm having the highest accuracy. For interpretation and analysis of results linked to the disease by examining the feature importance deduced from the model was done using SHAP (SHapley Additive exPlanations). Next, to comprehend the biological connections, study of protein-protien and mRNA-miRNA networks was conducted using String and Mienturnet respectively. The analysis revealed BDH1, YARS2, AKAP10, RARS2, MRPS31, were potential mitochondrial target genes among the other twenty genes. These genes are mainly involved in the transport and organization of mitochondria, regulation of its membrane potential, and intrinsic apoptotic signaling etc. mRNA-miRNA interaction network revealed a significant role of miR-375; miR-30a-5p; miR-16-5p; miR-129-5p; miR-1229-3p; and miR-1224-3p; in the regulation of mitochondrial function exhibited strong associations with type 2 diabetes. These results might aid in the creation of novel targets for therapy and type 2 diabetes biomarkers.
Collapse
Affiliation(s)
- Kritika Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Neeru Saini
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
3
|
González-Martín JM, Torres-Mata LB, Cazorla-Rivero S, Fernández-Santana C, Gómez-Bentolila E, Clavo B, Rodríguez-Esparragón F. An Artificial Intelligence Prediction Model of Insulin Sensitivity, Insulin Resistance, and Diabetes Using Genes Obtained through Differential Expression. Genes (Basel) 2023; 14:2119. [PMID: 38136941 PMCID: PMC10743311 DOI: 10.3390/genes14122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Insulin is a powerful pleiotropic hormone that affects processes such as cell growth, energy expenditure, and carbohydrate, lipid, and protein metabolism. The molecular mechanisms by which insulin regulates muscle metabolism and the underlying defects that cause insulin resistance have not been fully elucidated. This study aimed to perform a microarray data analysis to find differentially expressed genes. The analysis has been based on the data of a study deposited in Gene Expression Omnibus (GEO) with the identifier "GSE22309". The selected data contain samples from three types of patients after taking insulin treatment: patients with diabetes (DB), patients with insulin sensitivity (IS), and patients with insulin resistance (IR). Through an analysis of omics data, 20 genes were found to be differentially expressed (DEG) between the three possible comparisons obtained (DB vs. IS, DB vs. IR, and IS vs. IR); these data sets have been used to develop predictive models through machine learning (ML) techniques to classify patients with respect to the three categories mentioned previously. All the ML techniques present an accuracy superior to 80%, reaching almost 90% when unifying IR and DB categories.
Collapse
Affiliation(s)
- Jesús María González-Martín
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura B. Torres-Mata
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
| | - Sara Cazorla-Rivero
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
- Department of Internal Medicine, Universidad de La laguna, 38296 La Laguna, Spain
| | - Cristina Fernández-Santana
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estrella Gómez-Bentolila
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bernardino Clavo
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
| | - Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, 35019 Las Palmas, Spain; (L.B.T.-M.); (S.C.-R.); (C.F.-S.); (E.G.-B.); (B.C.)
| |
Collapse
|
4
|
Duan YY, Chen XF, Zhu RJ, Jia YY, Huang XT, Zhang M, Yang N, Dong SS, Zeng M, Feng Z, Zhu DL, Wu H, Jiang F, Shi W, Hu WX, Ke X, Chen H, Liu Y, Jing RH, Guo Y, Li M, Yang TL. High-throughput functional dissection of noncoding SNPs with biased allelic enhancer activity for insulin resistance-relevant phenotypes. Am J Hum Genet 2023; 110:1266-1288. [PMID: 37506691 PMCID: PMC10432149 DOI: 10.1016/j.ajhg.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.
Collapse
Affiliation(s)
- Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ren-Jie Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ying-Ying Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ning Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengqi Zeng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rui-Hua Jing
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Gonzalez P, Dos Santos A, Darnaud M, Moniaux N, Rapoud D, Lacoste C, Nguyen TS, Moullé VS, Deshayes A, Amouyal G, Amouyal P, Bréchot C, Cruciani-Guglielmacci C, Andréelli F, Magnan C, Faivre J. Antimicrobial protein REG3A regulates glucose homeostasis and insulin resistance in obese diabetic mice. Commun Biol 2023; 6:269. [PMID: 36918710 PMCID: PMC10015038 DOI: 10.1038/s42003-023-04616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.
Collapse
Affiliation(s)
- Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Valentine S Moullé
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | | | | | | | | | - Fabrizio Andréelli
- Sorbonne Université, INSERM, NutriOmics team, Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France.
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University Department (DMU) Biology, Genetics, Pharmacy, Paul-Brousse Hospital, Villejuif, 94800, France.
| |
Collapse
|
6
|
Solís C, Thompson WC, Peña JR, McDermott-Roe C, Langa P, Warren CM, Chrzanowska M, Wolska BM, Solaro RJ, Pieter Detombe, Goldspink PH. Mechano-growth factor E-domain modulates cardiac contractile function through 14-3-3 protein interactomes. Front Physiol 2022; 13:1028345. [PMID: 36467694 PMCID: PMC9709209 DOI: 10.3389/fphys.2022.1028345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
In the heart, alternative splicing of the igf-I gene produces two isoforms: IGF-IEa and IGF-IEc, (Mechano-growth factor, MGF). The sequence divergence between their E-domain regions suggests differential isoform function. To define the biological actions of MGF's E-domain, we performed in silico analysis of the unique C-terminal sequence and identified a phosphorylation consensus site residing within a putative 14-3-3 binding motif. To test the functional significance of Ser 18 phosphorylation, phospho-mimetic (S/E18) and phospho-null (S/A18) peptides were delivered to mice at different doses for 2 weeks. Cardiovascular function was measured using echocardiography and a pressure-volume catheter. At the lowest (2.25 mg/kg/day) and highest (9 mg/kg/day) doses, the peptides produced a depression in systolic and diastolic parameters. However, at 4.5 mg/kg/day the peptides produced opposing effects on cardiac function. Fractional shortening analysis also showed a similar trend, but with no significant change in cardiac geometry. Microarray analysis discovered 21 genes (FDR p < 0.01), that were expressed accordant with the opposing effects on contractile function at 4.5 mg/kg/day, with the nuclear receptor subfamily 4 group A member 2 (Nr4a2) identified as a potential target of peptide regulation. Testing the regulation of the Nr4a family, showed the E-domain peptides modulate Nr4a gene expression following membrane depolarization with KCl in vitro. To determine the potential role of 14-3-3 proteins, we examined 14-3-3 isoform expression and distribution. 14-3-3γ localized to the myofilaments in neonatal cardiac myocytes, the cardiac myocytes and myofilament extracts from the adult heart. Thermal shift analysis of recombinant 14-3-3γ protein showed the S/A18 peptide destabilized 14-3-3γ folding. Also, the S/A18 peptide significantly inhibited 14-3-3γ's ability to interact with myosin binding protein C (MYPC3) and phospholamban (PLN) in heart lysates from dobutamine injected mice. Conversely, the S/E18 peptide showed no effect on 14-3-3γ stability, did not inhibit 14-3-3γ's interaction with PLN but did inhibit the interaction with MYPC3. Replacing the glutamic acid with a phosphate group on Ser 18 (pSer18), significantly increased 14-3-3γ protein stability. We conclude that the state of Ser 18 phosphorylation within the 14-3-3 binding motif of MGF's E-domain, modulates protein-protein interactions within the 14-3-3γ interactome, which includes proteins involved in the regulation of contractile function.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - Walter C. Thompson
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - James R. Peña
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher McDermott-Roe
- Department of Medicine, and Department of Genetics, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Paulina Langa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Magdalena Chrzanowska
- Blood Research Institute, Versiti, Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beata M. Wolska
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pieter Detombe
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Ouyang Y, Liu J, Tong T, Xu W. A rank-based high-dimensional test for equality of mean vectors. Comput Stat Data Anal 2022. [DOI: 10.1016/j.csda.2022.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Vorotnikov AV, Popov DV, Makhnovskii PA. Signaling and Gene Expression in Skeletal Muscles in Type 2 Diabetes: Current Results and OMICS Perspectives. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1021-1034. [PMID: 36180992 DOI: 10.1134/s0006297922090139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscles mainly contribute to the emergence of insulin resistance, impaired glucose tolerance and the development of type 2 diabetes. Molecular mechanisms that regulate glucose uptake are diverse, including the insulin-dependent as most important, and others as also significant. They involve a wide range of proteins that control intracellular traffic and exposure of glucose transporters on the cell surface to create an extensive regulatory network. Here, we highlight advantages of the omics approaches to explore the insulin-regulated proteins and genes in human skeletal muscle with varying degrees of metabolic disorders. We discuss methodological aspects of the assessment of metabolic dysregulation and molecular responses of human skeletal muscle to insulin. The known molecular mechanisms of glucose uptake regulation and the first results of phosphoproteomic and transcriptomic studies are reviewed, which unveiled a large-scale array of insulin targets in muscle cells. They demonstrate that a clear depiction of changes that occur during metabolic dysfunction requires systemic and combined analysis at different levels of regulation, including signaling pathways, transcription factors, and gene expression. Such analysis seems promising to explore yet undescribed regulatory mechanisms of glucose uptake by skeletal muscle and identify the key regulators as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander V Vorotnikov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
- National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, 121552, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel A Makhnovskii
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
9
|
Oh H, Newton D, Lewis D, Sibille E. Lower Levels of GABAergic Function Markers in Corticotropin-Releasing Hormone-Expressing Neurons in the sgACC of Human Subjects With Depression. Front Psychiatry 2022; 13:827972. [PMID: 35280164 PMCID: PMC8913899 DOI: 10.3389/fpsyt.2022.827972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
RATIONALE A previous transcriptome meta-analysis revealed significantly lower levels of corticotropin-releasing hormone (CRH) mRNA in corticolimbic brain regions in major depressive disorder (MDD) subjects, suggesting that cortical CRH-expressing (CRH+) cells are affected in MDD. Rodent studies show that cortical CRH is mostly expressed in GABAergic interneurons; however, the characteristic features of CRH+ cells in human brain cortex and their association with MDD are largely unknown. METHODS Subgenual anterior cingulate cortex (sgACC) of human subjects without brain disorders were labeled using fluorescent in situ hybridization (FISH) for CRH and markers of excitatory (SLC17A7), inhibitory (GAD1) neurons, as well as markers of other interneuron subpopulations (PVALB, SST, VIP). MDD-associated changes in CRH+ cell density and cellular CRH expression (n = 6/group) were analyzed. RNA-sequencing was performed on sgACC CRH+ interneurons from comparison and MDD subjects (n = 6/group), and analyzed for group differences. The effect of reduced BDNF on CRH expression was tested in mice with blocked TrkB function. RESULTS About 80% of CRH+ cells were GABAergic and 17.5% were glutamatergic. CRH+ GABAergic interneurons co-expressed VIP (52%), SST (7%), or PVALB (7%). MDD subjects displayed lower CRH mRNA levels in GABAergic interneurons relative to comparison subjects without changes in cell density. CRH+ interneurons show transcriptomic profile suggesting lower excitability and less GABA release and reuptake. Further analyses suggested that these molecular changes are not mediated by altered glucocorticoid feedback and potentially occur downstream for a common modulator of neurotrophic function. SUMMARY CRH+ cells in human sgACC are a heterogeneous population of GABAergic interneurons, although largely co-expressing VIP. Our data suggest that MDD is associated with reduced markers of inhibitory function in sgACC CRH+ interneurons, and provide further evidence for impaired GABAergic function in the cortex in MDD.
Collapse
Affiliation(s)
- Hyunjung Oh
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
| | - Dwight Newton
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada.,Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - David Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada.,Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Maasar MF, Turner DC, Gorski PP, Seaborne RA, Strauss JA, Shepherd SO, Cocks M, Pillon NJ, Zierath JR, Hulton AT, Drust B, Sharples AP. The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. Front Physiol 2021; 12:619447. [PMID: 33679435 PMCID: PMC7933519 DOI: 10.3389/fphys.2021.619447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The methylome and transcriptome signatures following exercise that are physiologically and metabolically relevant to sporting contexts such as team sports or health prescription scenarios (e.g., high intensity interval training/HIIT) has not been investigated. To explore this, we performed two different sport/exercise relevant high-intensity running protocols in five male sport team members using a repeated measures design of: (1) change of direction (COD) versus; (2) straight line (ST) running exercise with a wash-out period of at least 2 weeks between trials. Skeletal muscle biopsies collected from the vastus lateralis 30 min and 24 h post exercise, were assayed using 850K methylation arrays and a comparative analysis with recent (subject-unmatched) sprint and acute aerobic exercise meta-analysis transcriptomes was performed. Despite COD and ST exercise being matched for classically defined intensity measures (speed × distance and number of accelerations/decelerations), COD exercise elicited greater movement (GPS-Playerload), physiological (HR), metabolic (lactate) as well as central and peripheral (differential RPE) exertion measures compared with ST exercise, suggesting COD exercise evoked a higher exercise intensity. The exercise response alone across both conditions evoked extensive alterations in the methylome 30 min and 24 h post exercise, particularly in MAPK, AMPK and axon guidance pathways. COD evoked a considerably greater hypomethylated signature across the genome compared with ST exercise, particularly at 30 min post exercise, enriched in: Protein binding, MAPK, AMPK, insulin, and axon guidance pathways. Comparative methylome analysis with sprint running transcriptomes identified considerable overlap, with 49% of genes that were altered at the expression level also differentially methylated after COD exercise. After differential methylated region analysis, we observed that VEGFA and its downstream nuclear transcription factor, NR4A1 had enriched hypomethylation within their promoter regions. VEGFA and NR4A1 were also significantly upregulated in the sprint transcriptome and meta-analysis of exercise transcriptomes. We also confirmed increased gene expression of VEGFA, and considerably larger increases in the expression of canonical metabolic genes PPARGC1A (that encodes PGC1-α) and NR4A3 in COD vs. ST exercise. Overall, we demonstrate that increased physiological/metabolic load via COD exercise in human skeletal muscle evokes considerable epigenetic modifications that are associated with changes in expression of genes responsible for adaptation to exercise.
Collapse
Affiliation(s)
- Mohd-Firdaus Maasar
- Stem Cells, Aging and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel C Turner
- Stem Cells, Aging and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Institute for Science and Technology in Medicine, School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Piotr P Gorski
- Institute for Science and Technology in Medicine, School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom.,Institute for Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Robert A Seaborne
- Stem Cells, Aging and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Juliette A Strauss
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sam O Shepherd
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Matt Cocks
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andrew T Hulton
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adam P Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
11
|
Patrick MT, Stuart PE, Zhang H, Zhao Q, Yin X, He K, Zhou XJ, Mehta NN, Voorhees JJ, Boehnke M, Gudjonsson JE, Nair RP, Handelman SK, Elder JT, Liu DJ, Tsoi LC. Causal Relationship and Shared Genetic Loci between Psoriasis and Type 2 Diabetes through Trans-Disease Meta-Analysis. J Invest Dermatol 2020; 141:1493-1502. [PMID: 33385400 DOI: 10.1016/j.jid.2020.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023]
Abstract
Psoriasis and type 2 diabetes (T2D) are complex conditions with significant impacts on health. Patients with psoriasis have a higher risk of T2D (∼1.5 OR) and vice versa, controlling for body mass index; yet, there has been a limited study comparing their genetic architecture. We hypothesized that there are shared genetic components between psoriasis and T2D. Trans-disease meta-analysis was applied to 8,016,731 well-imputed genetic markers from large-scale meta-analyses of psoriasis (11,024 cases and 16,336 controls) and T2D (74,124 cases and 824,006 controls), adjusted for body mass index. We confirmed our findings in a hospital-based study (42,112 patients) and tested for causal relationships with multivariable Mendelian randomization. Mendelian randomization identified a causal relationship between psoriasis and T2D (P = 1.6 × 10‒4, OR = 1.01) and highlighted the impact of body mass index. Trans-disease meta-analysis further revealed four genome-wide significant loci (P < 5 × 10‒8) with evidence of colocalization and shared directions of effect between psoriasis and T2D not present in body mass index. The proteins coded by genes in these loci (ACTR2, ERLIN1, TRMT112, and BECN1) are connected through NF-κB signaling. Our results provide insight into the immunological components that connect immune-mediated skin conditions and metabolic diseases, independent of confounding factors.
Collapse
Affiliation(s)
- Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haihan Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Qingyuan Zhao
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Xianyong Yin
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Samuel K Handelman
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor Michigan, USA.
| |
Collapse
|
12
|
Prediction of fluid pattern in a shear flow on intelligent neural nodes using ANFIS and LBM. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04677-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci U S A 2019; 116:11299-11308. [PMID: 31110021 DOI: 10.1073/pnas.1902490116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle plays a central role in the control of metabolism and exercise tolerance. Analysis of muscle enhancers activated after exercise in mice revealed the orphan nuclear receptor NURR1/NR4A2 as a prominent component of exercise-responsive enhancers. We show that exercise enhances the expression of NURR1, and transgenic overexpression of NURR1 in skeletal muscle enhances physical performance in mice. NURR1 expression in skeletal muscle is also sufficient to prevent hyperglycemia and hepatic steatosis, by enhancing muscle glucose uptake and storage as glycogen. Furthermore, treatment of obese mice with putative NURR1 agonists increases energy expenditure, improves glucose tolerance, and confers a lean phenotype, mimicking the effects of exercise. These findings identify a key role for NURR1 in governance of skeletal muscle glucose metabolism, and reveal a transcriptional link between exercise and metabolism. Our findings also identify NURR1 agonists as possible exercise mimetics with the potential to ameliorate obesity and other metabolic abnormalities.
Collapse
|
14
|
Mey JT, Solomon TPJ, Kirwan JP, Haus JM. Skeletal muscle Nur77 and NOR1 insulin responsiveness is blunted in obesity and type 2 diabetes but improved after exercise training. Physiol Rep 2019; 7:e14042. [PMID: 30912283 PMCID: PMC6434071 DOI: 10.14814/phy2.14042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2DM) are characterized by a blunted metabolic response to insulin, and strongly manifests in skeletal muscle insulin resistance. The orphan nuclear receptors, Nur77 and NOR1, regulate insulin-stimulated nutrient metabolism where Nur77 and NOR1 gene expression is increased with acute aerobic exercise and acute insulin stimulation. Whether Nur77 or NOR1 are associated with the insulin-sensitizing effects of chronic aerobic exercise training has yet to be elucidated. Fourteen lean healthy controls (LHC), 12 obese (OB), and 10 T2DM individuals (T2DM) underwent hyperinsulinemic-euglycemic clamps with skeletal muscle biopsies. Muscle was analyzed for Nur77 and NOR1 gene and protein expression at basal and insulin-stimulated conditions. Furthermore, a subcohort of 18 participants (OB, n = 12; T2DM, n = 6) underwent a 12-week aerobic exercise intervention (85% HRmax , 60 min/day, 5 days/week). In response to insulin infusion, LHC increased protein expression of Nur77 (8.7 ± 3.2-fold) and NOR1 (3.6 ± 1.1-fold), whereas OB and T2DM remained unaffected. Clamp-derived glucose disposal rates correlated with Nur77 (r2 = 0.14) and NOR1 (r2 = 0.12) protein expression responses to insulin, whereas age (Nur77: r2 = 0.22; NOR1: r2 = 0.25) and BMI (Nur77: r2 = 0.22; NOR1: r2 = 0.42) showed inverse correlations, corroborating preclinical data. In the intervention cohort, exercise improved Nur77 protein expression in response to insulin (PRE: -1.2 ± 0.3%, POST: 6.2 ± 1.5%). Also, insulin treatment of primary human skeletal muscle cells increased Nur77 and NOR1 protein. These findings highlight the multifactorial nature of insulin resistance in human obesity and T2DM. Understanding the regulation of Nur77 and NOR1 in skeletal muscle and other insulin-sensitive tissues will create opportunities to advance therapies for T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Case-Control Studies
- Cells, Cultured
- Chicago
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Exercise Therapy
- Female
- Humans
- Insulin Resistance
- Longitudinal Studies
- Male
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Middle Aged
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Myoblasts, Skeletal/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Obesity/blood
- Obesity/diagnosis
- Obesity/physiopathology
- Obesity/therapy
- Ohio
- Signal Transduction
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Jacob T. Mey
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinois
| | - Thomas P. J. Solomon
- School of Sport, Exercise, and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - John P. Kirwan
- Metabolic Translational Research CenterEndocrinology & Metabolism InstituteCleveland ClinicClevelandOhio
- Integrative Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLouisiana
| | - Jacob M. Haus
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinois
- School of KinesiologyUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
15
|
Fiory F, Mirra P, Nigro C, Pignalosa FC, Zatterale F, Ulianich L, Prevete N, Formisano P, Beguinot F, Miele C. Role of the HIF-1α/Nur77 axis in the regulation of the tyrosine hydroxylase expression by insulin in PC12 cells. J Cell Physiol 2018; 234:11861-11870. [PMID: 30536670 DOI: 10.1002/jcp.27898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022]
Abstract
Tyrosine hydroxylase (TH), catalyzing the conversion of tyrosine into l-DOPA, is the rate-limiting enzyme in dopamine synthesis. Defects in insulin action contribute to alterations of TH expression and/or activity in the brain and insulin increases TH levels in 1-methyl-4-phenylpyridinium (MPP+)-treated neuronal cells. However, the molecular mechanisms underlying the regulation of TH by insulin have not been elucidated yet. Using PC12 cells, we show for the first time that insulin increases TH expression in a biphasic manner, with a transient peak at 2 hr and a delayed response at 16 hr, which persists for up to 24 hr. The use of a dominant negative hypoxia-inducible factor 1-alpha (HIF-1α) and its pharmacological inhibitor chetomin, together with chromatin immunoprecipitation (ChIP) experiments for the specific binding to TH promoter, demonstrate the direct role of HIF-1α in the early phase. Moreover, ChIP experiments and transfection of a dominant negative of the nerve growth factor IB (Nur77) indicate the involvement of Nur77 in the late phase insulin response, which is mediated by HIF-1α. In conclusion, the present study shows that insulin regulates TH expression through HIF-1α and Nur77 in PC12 cells, supporting the critical role of insulin signaling in maintaining an appropriate dopaminergic tone by regulating TH expression in the central nervous system.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Paola Mirra
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Luca Ulianich
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Nella Prevete
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
16
|
Amoasii L, Olson EN, Bassel-Duby R. Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029843. [PMID: 28432117 DOI: 10.1101/cshperspect.a029843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise represents an energetic challenge to whole-body homeostasis. In skeletal muscle, exercise activates a variety of signaling pathways that culminate in the nucleus to regulate genes involved in metabolism and contractility; however, much remains to be learned about the transcriptional effectors of exercise. Mediator is a multiprotein complex that links signal-dependent transcription factors and other transcriptional regulators with the basal transcriptional machinery, thereby serving as a transcriptional "hub." In this article, we discuss recent studies highlighting the role of Mediator subunits in metabolic regulation and glucose metabolism, as well as exercise responsiveness. Elucidation of the roles of Mediator subunits in metabolic control has revealed new mechanisms and molecular targets for the modulation of metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| |
Collapse
|
17
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
18
|
Banaganapalli B, Rashidi O, Saadah OI, Wang J, Khan IA, Al-Aama JY, Shaik NA, Elango R. Comprehensive Computational Analysis of GWAS Loci Identifies CCR2 as a Candidate Gene for Celiac Disease Pathogenesis. J Cell Biochem 2017; 118:2193-2207. [PMID: 28059456 DOI: 10.1002/jcb.25864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 01/01/2023]
Abstract
Celiac disease (CD) is a gluten intolerance disorder with known genetic contribution. The recent fine mapping and genome-wide association studies (GWAS) have identified up to 57 non-HLA CD susceptibility SNPs, majority of which are non-coding variants lacking any functional annotation. Therefore, we adopted multidimensional computational approach for uncovering the plausible mechanisms through which these GWAS SNPs are connected to CD pathogenesis. At initial phase, we identified that 25 (43.85%) out of 57 CD-SNPs lies in evolutionarily constrained genetic element regions. In follow-up phases, through computational (CADD, GWAVA, and FATHMM algorithms) deleterious intensity measurements, we have discovered that 42 (3.94%) out of 1065 variants (57 CD-lead and 1008-linked SNPs; r2 ≥ 0.8) are differentially deleterious in nature to CD. Further functional scrutinization of these CD variants by public domain eQTL mapping, gene expression, knockout mouse model, and pathway analyses revealed that deleterious SNPs of CCR2 gene influences its expression levels and may also elicit a cascade of T-cell-mediated immunological events leading to intestinal gluten intolerance in genetically susceptible individuals. This study demonstrates the utility of integrated in silico analysis of annotations, gene expression, and pathways in prioritizing the potential complex disease variants from large-scale open source genomic data. J. Cell. Biochem. 118: 2193-2207, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Omran Rashidi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Clinical Biochemistry, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Omar I Saadah
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jun Wang
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Cortez-Toledo O, Schnair C, Sangngern P, Metzger D, Chao LC. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS One 2017; 12:e0171268. [PMID: 28170423 PMCID: PMC5295706 DOI: 10.1371/journal.pone.0171268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
Muscle atrophy is a prevalent condition in illness and aging. Identifying novel pathways that control muscle mass may lead to therapeutic advancement. We previously identified Nur77 as a transcriptional regulator of glycolysis in skeletal muscle. More recently, we showed that Nur77 expression also controls myofiber size in mice. It was unknown, however, whether Nur77’s regulation of muscle size begins during developmental myogenesis or only in adulthood. To determine the importance of Nur77 throughout muscle growth, we examined myofiber size at E18.5, 3 weeks postnatal age, and in young adult mice. Using the global Nur77-/- mice, we showed that Nur77 deficiency reduced myofiber size as early as E18.5. The reduction in myofiber size became more pronounced by 3 weeks of age. We observed comparable reduction in myofiber size in young myofiber-specific Nur77-knockout mice. These findings suggest that Nur77’s effect on muscle growth is intrinsic to its expression in differentiating myofibers, and not dependent on its expression in myogenic stem cells. To determine the importance of Nur77 expression in muscle accretion in mature mice, we generated an inducible-, muscle-specific, Nur77-deficient mouse model. We demonstrated that tamoxifen-induced deletion of Nur77 in 3-month-old mice reduced myofiber size. This change was accompanied by increased activity of Smad2 and FoxO3, two negative regulators of muscle mass. The role of Nur77 in muscle growth was further elaborated in the cardiotoxin-induced muscle regeneration model. Compared to wildtype mice, regenerated myofibers were smaller in Nur77-/- mice. However, when normalized to saline-injected muscle, the recovery of sarcoplasmic area was comparable between Nur77-/- and wildtype mice. These findings suggest that Nur77 deficiency compromises myofiber growth, but not the regenerative capacity of myogenic progenitor cells. Collectively, the findings presented here demonstrate Nur77 as an important regulator of muscle growth both during prenatal and postnatal myogenesis.
Collapse
Affiliation(s)
- Omar Cortez-Toledo
- The Center for Endocrinology, Diabetes, and Metabolism, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Caitlin Schnair
- The Center for Endocrinology, Diabetes, and Metabolism, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Peer Sangngern
- The Center for Endocrinology, Diabetes, and Metabolism, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/Université de Strasbourg, Illkirch, France
| | - Lily C. Chao
- The Center for Endocrinology, Diabetes, and Metabolism, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis. Genes (Basel) 2017; 8:genes8010044. [PMID: 28117714 PMCID: PMC5295038 DOI: 10.3390/genes8010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.
Collapse
|
21
|
Chen BH, Hivert MF, Peters MJ, Pilling LC, Hogan JD, Pham LM, Harries LW, Fox CS, Bandinelli S, Dehghan A, Hernandez DG, Hofman A, Hong J, Joehanes R, Johnson AD, Munson PJ, Rybin DV, Singleton AB, Uitterlinden AG, Ying S, Melzer D, Levy D, van Meurs JBJ, Ferrucci L, Florez JC, Dupuis J, Meigs JB, Kolaczyk ED. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations. Diabetes 2016; 65:3794-3804. [PMID: 27625022 PMCID: PMC5127245 DOI: 10.2337/db16-0470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/04/2016] [Indexed: 01/09/2023]
Abstract
Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q <0.05, we identified three transcripts associated with fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes-imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Brian H Chen
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marjolein J Peters
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, the Netherlands
| | - Luke C Pilling
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, U.K
| | - John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA
| | - Lisa M Pham
- Program in Bioinformatics, Boston University, Boston, MA
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, U.K
| | - Caroline S Fox
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Stefania Bandinelli
- Geriatric Rehabilitation Unit, Azienda Sanitaria di Firenze, Florence, Italy
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dena G Hernandez
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Roby Joehanes
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
- Hebrew SeniorLife, Harvard Medical School, Boston, MA
| | - Andrew D Johnson
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD
| | - Denis V Rybin
- Data Coordinating Center, Boston University, Boston, MA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Saixia Ying
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD
| | | | - David Melzer
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, U.K
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, the Netherlands
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Jose C Florez
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Metabolism Program and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Josée Dupuis
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - James B Meigs
- Metabolism Program and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric D Kolaczyk
- Program in Bioinformatics, Boston University, Boston, MA
- Department of Mathematics and Statistics, Boston University, MA
| |
Collapse
|
22
|
Zhang W, Wu M, Kim T, Jariwala RH, Garvey WJ, Luo N, Kang M, Ma E, Tian L, Steverson D, Yang Q, Fu Y, Garvey WT. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes 2016; 65:2380-91. [PMID: 27207527 PMCID: PMC4955990 DOI: 10.2337/db16-0154] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Mengrui Wu
- Department of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Teayoun Kim
- Department of Medicine-Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Ravi H Jariwala
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W John Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Nanlan Luo
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Minsung Kang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth Ma
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Dennis Steverson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
23
|
Walton RG, Zhu X, Tian L, Heywood EB, Liu J, Hill HS, Liu J, Bruemmer D, Yang Q, Fu Y, Garvey WT. AP2-NR4A3 transgenic mice display reduced serum epinephrine because of increased catecholamine catabolism in adipose tissue. Am J Physiol Endocrinol Metab 2016; 311:E69-81. [PMID: 27166283 PMCID: PMC4967153 DOI: 10.1152/ajpendo.00330.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/03/2016] [Indexed: 01/25/2023]
Abstract
The NR4A orphan nuclear receptors function as early response genes to numerous stimuli. Our laboratory has previously demonstrated that overexpression of NR4A3 (NOR-1, MINOR) in 3T3-L1 adipocytes enhances insulin-stimulated glucose uptake. To assess the in vivo effect of NR4A3 on adipocytes, we generated transgenic mice with NR4A3 overexpression driven by the adipocyte fatty acid-binding protein (AP2) promoter (AP2-NR4A3 mice). We hypothesized that AP2-NR4A3 mice would display enhanced glucose tolerance and insulin sensitivity. However, AP2-NR4A3 mice exhibit metabolic impairment, including increased fasting glucose and insulin, impaired glucose tolerance, insulin resistance, decreased serum free fatty acids, and increased low-density lipoprotein-cholesterol. AP2-NR4A3 mice also display a significant reduction in serum epinephrine due to increased expression of catecholamine-catabolizing enzymes in adipose tissue, including monoamine oxidase-A. Furthermore, enhanced expression of monoamine oxidase-A is due to direct transcriptional activation by NR4A3. Finally, AP2-NR4A3 mice display cardiac and behavioral alterations consistent with chronically low circulating epinephrine levels. In conclusion, overexpression of NR4A3 in adipocytes produces a complex phenotype characterized by impaired glucose metabolism and low serum catecholamines due to enhanced degradation by adipose tissue.
Collapse
Affiliation(s)
- R Grace Walton
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Xiaolin Zhu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth B Heywood
- Saha Cardiovascular Research Center and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Jian Liu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Helliner S Hill
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jiarong Liu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
24
|
Abstract
This work is concerned with testing the population mean vector of nonnormal high-dimensional multivariate data. Several tests for high-dimensional mean vector, based on modifying the classical Hotelling T2 test, have been proposed in the literature. Despite their usefulness, they tend to have unsatisfactory power performance for heavy-tailed multivariate data, which frequently arise in genomics and quantitative finance. This paper proposes a novel high-dimensional nonparametric test for the population mean vector for a general class of multivariate distributions. With the aid of new tools in modern probability theory, we proved that the limiting null distribution of the proposed test is normal under mild conditions when p is substantially larger than n. We further study the local power of the proposed test and compare its relative efficiency with a modified Hotelling T2 test for high-dimensional data. An interesting finding is that the newly proposed test can have even more substantial power gain with large p than the traditional nonparametric multivariate test does with finite fixed p. We study the finite sample performance of the proposed test via Monte Carlo simulations. We further illustrate its application by an empirical analysis of a genomics data set.
Collapse
Affiliation(s)
- Lan Wang
- Associate Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455
| | - Bo Peng
- Graduate student, School of Statistics, University of Minnesota, Minneapolis, MN 55455
| | - Runze Li
- Distinguished Professor, Department of Statistics and the Methodology Center, the Pennsylvania State University, University Park, PA 16802-2111
| |
Collapse
|
25
|
Li X, Xu M, Wang F, Ji Y, DavidsoN WS, Li Z, Tso P. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line. PLoS One 2015; 10:e0142098. [PMID: 26556724 PMCID: PMC4640595 DOI: 10.1371/journal.pone.0142098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis.
Collapse
Affiliation(s)
- Xiaoming Li
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, 157 W 5th Rd, Xincheng, Xi'an, Shaanxi, 710004, China
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Min Xu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Fei Wang
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Yong Ji
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - W. Sean DavidsoN
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Zongfang Li
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, 157 W 5th Rd, Xincheng, Xi'an, Shaanxi, 710004, China
- * E-mail: (PT); (ZL)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
- * E-mail: (PT); (ZL)
| |
Collapse
|
26
|
Jung H, Han S, Kim S. The Construction of Regulatory Network for Insulin-Mediated Genes by Integrating Methods Based on Transcription Factor Binding Motifs and Gene Expression Variations. Genomics Inform 2015; 13:76-80. [PMID: 26523131 PMCID: PMC4623444 DOI: 10.5808/gi.2015.13.3.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 01/22/2023] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disorder associated with multiple genetic, developmental and environmental factors. The recent advances in gene expression microarray technologies as well as network-based analysis methodologies provide groundbreaking opportunities to study type 2 diabetes mellitus. In the present study, we used previously published gene expression microarray datasets of human skeletal muscle samples collected from 20 insulin sensitive individuals before and after insulin treatment in order to construct insulin-mediated regulatory network. Based on a motif discovery method implemented by iRegulon, a Cytoscape app, we identified 25 candidate regulons, motifs of which were enriched among the promoters of 478 up-regulated genes and 82 down-regulated genes. We then looked for a hierarchical network of the candidate regulators, in such a way that the conditional combination of their expression changes may explain those of their target genes. Using Genomica, a software tool for regulatory network construction, we obtained a hierarchical network of eight regulons that were used to map insulin downstream signaling network. Taken together, the results illustrate the benefits of combining completely different methods such as motif-based regulatory factor discovery and expression level-based construction of regulatory network of their target genes in understanding insulin induced biological processes and signaling pathways.
Collapse
Affiliation(s)
- Hyeim Jung
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Seonggyun Han
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
27
|
Njah H, Jamoussi S. Weighted ensemble learning of Bayesian network for gene regulatory networks. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.05.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Bag S, Ramaiah S, Anbarasu A. fabp4 is central to eight obesity associated genes: A functional gene network-based polymorphic study. J Theor Biol 2015; 364:344-54. [PMID: 25280936 DOI: 10.1016/j.jtbi.2014.09.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/27/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
|
29
|
Zeng LQ, Wei SB, Sun YM, Qin WY, Cheng J, Mitchelson K, Xie L. Systematic profiling of mRNA and miRNA expression in the pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Mol Med Rep 2014; 11:67-74. [PMID: 25333294 PMCID: PMC4237099 DOI: 10.3892/mmr.2014.2723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 07/01/2014] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes (T2DM) is a complex multifactorial metabolic disorder that affects >100 million individuals worldwide, yet the mechanisms involved in the development and progression of the disease have not yet been fully elucidated. The present study examined the mRNA and micro (mi)RNA expression profiles by microarray analysis in the pancreas islets of spontaneously diabetic Goto-Kakizaki rats with the aim to identify regulatory mechanisms underlying the pathogenesis of T2DM. A total of 9 upregulated and 10 downregulated miRNAs were identified, including miR-150, miR-497, miR-344-3p and let-7f, which were independently validated by quantitative polymerase chain reaction assays. In addition, differential expression of 670 genes was detected by mRNA microarray analysis, including 370 upregulated and 247 downregulated genes. The differentially expressed genes were statistically associated with major cellular pathways, including the immune response pathway and the extracellular matrix (ECM)-receptor interaction pathway. Finally, a reverse regulatory association of differentially expressed miRNAs and their predicted target genes was constructed, supported by analysis of their mRNA and miRNA expression profiles. A number of key pairs of miRNA-mRNA was proposed to have significant roles in the pathogenesis of T2DM rats based on bioinformatics analysis, one example being the let-7f/collagen, type II, alpha 1 pair that may regulate ECM-receptor interactions.
Collapse
Affiliation(s)
- Ling-Qin Zeng
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, P.R. China
| | - Su-Bi Wei
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, P.R. China
| | - Yi-Min Sun
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P.R. China
| | - Wen-Yan Qin
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P.R. China
| | - Jing Cheng
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, P.R. China
| | - Keith Mitchelson
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P.R. China
| | - Lan Xie
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, P.R. China
| |
Collapse
|
30
|
Yang Y, Wang Y, Zhou K, Hong A. Constructing regulatory networks to identify biomarkers for insulin resistance. Gene 2014; 539:68-74. [PMID: 24512691 DOI: 10.1016/j.gene.2014.01.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/21/2014] [Accepted: 01/25/2014] [Indexed: 12/19/2022]
Abstract
Insulin resistance (IR) is a physiological condition in which cells fail to respond to the insulin hormone. Despite advances in the diagnosis and treatment of IR, novel molecular targets are still needed to improve the accuracy of diagnosis and the outcomes of therapy. Here, we present a systems approach to identify molecular biomarkers for IR. We downloaded the gene expression profile of IR from the Gene Expression Omnibus (GEO), generated a regulatory network by mapping co-expressed genes to transcription factors (TFs) and calculated the regulatory impact factor of each transcription factor. Finally, we selected a list of potential molecular targets that could be used as therapeutic targets or diagnostic biomarkers, including ETS1, AR, ESR1 and Myc. Our studies identified multiple TFs that could play an important role in the pathogenesis of IR and provided a systems understanding of the potential relationships among these genes. Our study has the potential to aid in the understanding of IR and provides a basis for IR biomarker discovery.
Collapse
Affiliation(s)
- Yuxin Yang
- Jinan University, College of Life Science and Technology, 601 Huangpu Blvd, Guangzhou, Guangdong 510632, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | - Kai Zhou
- The Affiliated Hospital of Luzhou Medical College, 25 Taiping Ave., Luzhou, Sichuan 646000, China
| | - An Hong
- Jinan University, College of Life Science and Technology, 601 Huangpu Blvd, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
31
|
Thalacker-Mercer AE, Ingram KH, Guo F, Ilkayeva O, Newgard CB, Garvey WT. BMI, RQ, diabetes, and sex affect the relationships between amino acids and clamp measures of insulin action in humans. Diabetes 2014; 63:791-800. [PMID: 24130332 PMCID: PMC3900549 DOI: 10.2337/db13-0396] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have used indirect measures of insulin sensitivity to link circulating amino acids with insulin resistance and identify potential biomarkers of diabetes risk. Using direct measures (i.e., hyperinsulinemic-euglycemic clamps), we examined the relationships between the metabolomic amino acid profile and insulin action (i.e., glucose disposal rate [GDR]). Relationships between GDR and serum amino acids were determined among insulin-sensitive, insulin-resistant, and type 2 diabetic (T2DM) individuals. In all subjects, glycine (Gly) had the strongest correlation with GDR (positive association), followed by leucine/isoleucine (Leu/Ile) (negative association). These relationships were dramatically influenced by BMI, the resting respiratory quotient (RQ), T2DM, and sex. Gly had a strong positive correlation with GDR regardless of BMI, RQ, or sex but became nonsignificant in T2DM. In contrast, Leu/Ile was negatively associated with GDR in nonobese and T2DM subjects. Increased resting fat metabolism (i.e., low RQ) and obesity were observed to independently promote and negate the association between Leu/Ile and insulin resistance, respectively. Additionally, the relationship between Leu/Ile and GDR was magnified in T2DM males. Future studies are needed to determine whether Gly has a mechanistic role in glucose homeostasis and whether dietary Gly enrichment may be an effective intervention in diseases characterized by insulin resistance.
Collapse
Affiliation(s)
- Anna E. Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL
- Nutrition Sciences, University of Alabama, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Katherine H. Ingram
- Nutrition Sciences, University of Alabama, Birmingham, AL
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA
| | - Fangjian Guo
- Nutrition Sciences, University of Alabama, Birmingham, AL
| | | | - Christopher B. Newgard
- Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - W. Timothy Garvey
- Nutrition Sciences, University of Alabama, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Corresponding author: W. Timothy Garvey,
| |
Collapse
|
32
|
Lisowski P, Kościuczuk EM, Gościk J, Pierzchała M, Rowińska B, Zwierzchowski L. Hepatic transcriptome profiling identifies differences in expression of genes associated with changes in metabolism and postnatal growth between Hereford and Holstein-Friesian bulls. Anim Genet 2013; 45:288-92. [PMID: 24304134 DOI: 10.1111/age.12116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2013] [Indexed: 12/20/2022]
Abstract
This study examined liver transcriptomic profiles of cattle distinctly different in meat and milk production capacity. It was performed on bulls of two different genetic backgrounds: Herefords (H), a meat breed, and Holstein-Friesians (HF), a dairy breed. Using bovine long oligo-microarrays and qPCR, we identified 128 genes that are differentially expressed between the two breeds. In H bulls, we observed up-regulation of genes involved in fatty acid biosynthesis and lipid metabolism (CD36, CAT, HSD3B1, FABP1, ACAA1) and involved in insulin signaling (INSR, INSIG2, NR4A1) and down-regulation of genes involved in somatotropic axis signaling (IGF1, GHR, IGFBP3) as compared to HF. Transcriptome profiling of these two breeds allowed us to pinpoint the transcriptional differences between Holstein and Hereford bulls at hepatic level associated with changes in metabolism and postnatal growth.
Collapse
Affiliation(s)
- Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postepu 36A, 05-552, Magdalenka, Jastrzebiec n/Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
33
|
Zhang W, Liu J, Tian L, Liu Q, Fu Y, Garvey WT. TRIB3 mediates glucose-induced insulin resistance via a mechanism that requires the hexosamine biosynthetic pathway. Diabetes 2013; 62:4192-200. [PMID: 23990361 PMCID: PMC3837074 DOI: 10.2337/db13-0312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the current study, we investigated the role of tribbles homolog 3 (TRIB3) in glucose-induced insulin resistance and whether the induction of TRIB3 by glucose is dependent on the nutrient-sensing hexosamine biosynthetic pathway (HBP) known to mediate glucose toxicity in diabetes. In diabetic rats, TRIB3 expression in skeletal muscle was increased after 10 days of hyperglycemia, and glycemia and muscle TRIB3 were both restored toward normal by insulin therapy. In L6 myocytes, the induction of TRIB3 by high glucose or glucosamine was reversible upon removal of these substrates. To assess the role of HBP in the induction of TRIB3, we demonstrated that the ability of high glucose to augment TRIB3 expression was prevented by azaserine, an inhibitor of glutamine: fructose-6-phosphate amidotransferase (GFAT), which is the rate-limiting enzyme in the HBP pathway. TRIB3 expression was also substantially stimulated by glucosamine, which bypasses GFAT, accompanied by a decrease in the insulin-stimulated glucose transport rate, and neither response was affected by azaserine. Further, knockdown of TRIB3 inhibited, and TRIB3 overexpression enhanced, the ability of both high glucose and glucosamine to induce insulin resistance. These data provide the mechanistic link between the HBP flux and insulin resistance and point to TRIB3 as a novel target for treatment of glucose-induced insulin resistance.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Corresponding author: Wei Zhang,
| | - Jiarong Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qinglan Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Liu Q, Zhu X, Xu L, Fu Y, Garvey WT. 6-Mercaptopurine augments glucose transport activity in skeletal muscle cells in part via a mechanism dependent upon orphan nuclear receptor NR4A3. Am J Physiol Endocrinol Metab 2013; 305:E1081-92. [PMID: 24022864 PMCID: PMC3840207 DOI: 10.1152/ajpendo.00169.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purine anti-metabolite 6-mercaptopurine (6-MP) is widely used for the treatment of leukemia and inflammatory diseases. The cellular effects of 6-MP on metabolism remain unknown; however, 6-MP was recently found to activate the orphan nuclear receptor NR4A3 in skeletal muscle cell lines. We have reported previously that NR4A3 (also known as NOR-1, MINOR) is a positive regulator of insulin sensitivity in adipocytes. To further explore the role of NR4A3 activation in insulin action, we explored whether 6-MP activation of NR4A3 could modulate glucose transport system activity in L6 skeletal muscle cells. We found that 6-MP increased both NR4A3 expression and NR4A3 transcriptional activity and enhanced glucose transport activity via increasing GLUT4 translocation in both basal and insulin-stimulated L6 cells in an NR4A3-dependent manner. Furthermore, 6-MP increased levels of phospho-AS160, although this effect was not modulated by NR4A3 overexpression or knockdown. These primary findings provide a novel proof of principle that 6-MP, a small molecule NR4A3 agonist, can augment glucose uptake in insulin target cells, although this occurs via both NR4A3-dependent and -independent actions; the latter is related to an increase in phospho-AS160. These results establish a novel target for development of new treatments for insulin resistance.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antimetabolites/pharmacology
- Cells, Cultured
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- GTPase-Activating Proteins/metabolism
- Glucose/metabolism
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transporter Type 4/metabolism
- Insulin Resistance
- Mercaptopurine/pharmacology
- Mice
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- RNA/biosynthesis
- RNA/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Steroid/drug effects
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/drug effects
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/physiology
- Stimulation, Chemical
- Translocation, Genetic
Collapse
Affiliation(s)
- Qinglan Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | |
Collapse
|
35
|
Close AF, Rouillard C, Buteau J. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. DIABETES & METABOLISM 2013; 39:478-84. [PMID: 24075454 DOI: 10.1016/j.diabet.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/23/2023]
Abstract
Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes.
Collapse
Affiliation(s)
- A F Close
- Department of AFNS, University of Alberta and Alberta Diabetes Institute, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
| | | | | |
Collapse
|
36
|
Pearen MA, Goode JM, Fitzsimmons RL, Eriksson NA, Thomas GP, Cowin GJ, Wang SCM, Tuong ZK, Muscat GEO. Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance. Mol Endocrinol 2013; 27:1897-917. [PMID: 24065705 DOI: 10.1210/me.2013-1205] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD(+)/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance.
Collapse
Affiliation(s)
- Michael A Pearen
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor. Mol Cell Biol 2013; 33:3826-34. [PMID: 23897430 DOI: 10.1128/mcb.00385-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.
Collapse
|
38
|
Shared dysregulated pathways lead to Parkinson's disease and diabetes. Trends Mol Med 2013; 19:176-86. [PMID: 23375873 DOI: 10.1016/j.molmed.2013.01.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/12/2012] [Accepted: 01/05/2013] [Indexed: 12/11/2022]
|
39
|
Sales V, Patti ME. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 7:46-59. [PMID: 23459395 DOI: 10.1007/s12170-012-0283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu remains a scientific challenge but we are one step closer.
Collapse
Affiliation(s)
- Vicencia Sales
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School ; Department of Biophysics, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | | |
Collapse
|
40
|
Kraja AT, Lawson HA, Arnett DK, Borecki IB, Broeckel U, de las Fuentes L, Hunt SC, Province MA, Cheverud J, Rao D. Obesity-insulin targeted genes in the 3p26-25 region in human studies and LG/J and SM/J mice. Metabolism 2012; 61:1129-41. [PMID: 22386932 PMCID: PMC3586585 DOI: 10.1016/j.metabol.2012.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 01/05/2023]
Abstract
Identifying metabolic syndrome (MetS) genes is important for novel drug development and health care. This study extends the findings on human chromosome 3p26-25 for an identified obesity-insulin factor QTL, with an LOD score above 3. A focused association analysis comprising up to 9578 African American and Caucasian subjects from the HyperGEN Network (908 African Americans and 1025 whites), the Family Heart Study (3035 whites in time 1 and 1943 in time 2), and the Framingham Heart Study (1317 in Offspring and 1320 in Generation 3) was performed. The homologous mouse region was explored in an F(16) generation of an advanced intercross between the LG/J and SM/J inbred strains, in an experiment where 1002 animals were fed low-fat (247 males; 254 females) or high-fat (253 males; 248 females) diets. Association results in humans indicate pleiotropic effects for SNPs within or surrounding CNTN4 on obesity, lipids and blood pressure traits and for SNPs near IL5RA, TRNT1, CRBN, and LRRN1 on central obesity and blood pressure. Linkage analyses of this region in LG/J×SM/J mice identify a highly significant pleiotropic QTL peak for insulin and glucose levels, as well as response to glucose challenge. The mouse results show that insulin and glucose levels interact with high and low fat diets and differential gene expression was identified for Crbn and Arl8b. In humans, ARL8B resides ~137kbps away from BHLHE40, expression of which shows up-regulation in response to insulin treatment. This focused human genetic analysis, incorporating mouse research evidenced that 3p26-25 has important genetic contributions to MetS components. Several of the candidate genes have functions in the brain. Their interaction with MetS and the brain warrants further investigation.
Collapse
Affiliation(s)
- Aldi T. Kraja
- Division of Statistical Genomics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Corresponding authors. Aldi Kraja, is to be contacted at Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63110 USA. Heather Lawson, Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Heather A. Lawson
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Corresponding authors. Aldi Kraja, is to be contacted at Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63110 USA. Heather Lawson, Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama, Birmingham, AL 35294, USA
| | - Ingrid B. Borecki
- Division of Statistical Genomics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ulrich Broeckel
- Individualized Medicine Institute, Medical College of Wisconsin, WI 53226, USA
| | - Lisa de las Fuentes
- Cardiovascular Division Department of Medicine, Cardiovascular Imaging and Clinical Research Core Laboratory, Washington University School of Medicine 63110, St. Louis, MO, USA
| | - Steven C. Hunt
- Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Michael A. Province
- Division of Statistical Genomics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Cheverud
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - D.C. Rao
- Division of Biostatistics, Washington University School of Medicine 63110, St. Louis, MO, USA
| |
Collapse
|
41
|
Rudkowska I, Jacques H, Weisnagel SJ, Marette A, Vohl MC. Transcriptomic profiles of skeletal muscle tissue following an euglycemic-hyperinsulinemic clamp in insulin-resistant obese subjects. GENES AND NUTRITION 2012; 8:91-8. [PMID: 22566203 DOI: 10.1007/s12263-012-0298-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/21/2012] [Indexed: 12/22/2022]
Abstract
Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Muscle is mainly responsible for insulin-stimulated glucose clearance from the bloodstream. Thus, regulation of gene expression in muscle tissue may be involved in the pathogenesis of insulin resistance. The objective was to investigate gene expression and metabolic pathways alterations in skeletal muscle tissue following an euglycemic-hyperinsulinemic clamp in obese insulin-resistant subjects. We carried out a transcriptome comparison of skeletal muscle tissue before and after a 3-h euglycemic-hyperinsulinemic clamp following 8-week supplementation with n-3 polyunsaturated fatty acid (PUFA) (1.8 g/day) with or without a supplement of fish gelatin (FG) (25 % of daily protein intake) in 16 obese insulin-resistant subjects. Results indicate that approximately 5 % (1932) of expressed transcripts were significantly changed after the clamp in both n-3 PUFA and n-3 PUFA + FG supplementation periods. Of these differentially expressed transcripts, 1394 genes associated with enzymes, transcription and translation regulators, transporters, G protein-coupled receptors, cytokines, and ligand-dependent nuclear receptors were modified. Metabolic pathways that were significantly modified included liver X receptor/retinoid X receptors (RXR) activation, vitamin D receptor/RXR activation, interleukin (IL)-8, acute phase response, IL10, triggering receptor expressed on myeloid cells 1, peroxisome proliferator-activated receptor, G-beta/gamma and hepatocyte growth factor and IL6 signaling. Taken together, results suggest that mainly inflammatory and transcription factors are modified following clamp in obese insulin-resistant subjects. Overall, understanding the changes in metabolic pathways due to insulin may be a potential target for the management of insulin resistance.
Collapse
Affiliation(s)
- Iwona Rudkowska
- Institute of Nutraceuticals and Functional Foods (INAF), Laval University, Pavillon des Services, bureau 2729 K, 2440, boulevard Hochelaga, Québec, QC, G1V 0A6, Canada
| | | | | | | | | |
Collapse
|
42
|
Pearen MA, Eriksson NA, Fitzsimmons RL, Goode JM, Martel N, Andrikopoulos S, Muscat GEO. The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. Mol Endocrinol 2012; 26:372-84. [PMID: 22282471 DOI: 10.1210/me.2011-1274] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal muscle, this resulted in a marked increase in: 1) myoglobin expression, 2) mitochondrial DNA and density, 3) oxidative enzyme staining, and 4) genes/proteins encoding subunits of electron transport chain complexes. This was associated with significantly increased type IIA and IIX myosin heavy chain mRNA and proteins and decreased type IIB myosin heavy chain mRNA and protein. The contractile protein/fiber type remodeling driving the acquisition of the oxidative type II phenotype was associated with 1) the significantly increased expression of myocyte-specific enhancer factor 2C, and phospho-histone deacetylase 5, and 2) predominantly cytoplasmic HDAC5 staining in the Tg-Nor-1 mice. Moreover, the Nor-1 transgenic line displayed significant improvements in glucose tolerance, oxygen consumption, and running endurance (in the absence of increased insulin sensitivity), consistent with increased oxidative capacity of skeletal muscle. We conclude that skeletal muscle fiber type is not only regulated by exercise-sensitive calcineurin-induced signaling cascade but also by NR signaling pathways that operate at the nexus that coordinates muscle performance and metabolic capacity in this major mass tissue.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Simon J, Milenkovic D, Godet E, Cabau C, Collin A, Métayer-Coustard S, Rideau N, Tesseraud S, Derouet M, Crochet S, Cailleau-Audouin E, Hennequet-Antier C, Gespach C, Porter TE, Duclos MJ, Dupont J, Cogburn LA. Insulin immuno-neutralization in fed chickens: effects on liver and muscle transcriptome. Physiol Genomics 2012; 44:283-92. [PMID: 22214599 DOI: 10.1152/physiolgenomics.00057.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chickens mimic an insulin-resistance state by exhibiting several peculiarities with regard to plasma glucose level and its control by insulin. To gain insight into the role of insulin in the control of chicken transcriptome, liver and leg muscle transcriptomes were compared in fed controls and "diabetic" chickens, at 5 h after insulin immuno-neutralization, using 20.7K-chicken oligo-microarrays. At a level of false discovery rate <0.01, 1,573 and 1,225 signals were significantly modified by insulin privation in liver and muscle, respectively. Microarray data agreed reasonably well with qRT-PCR and some protein level measurements. Differentially expressed mRNAs with human ID were classified using Biorag analysis and Ingenuity Pathway Analysis. Multiple metabolic pathways, structural proteins, transporters and proteins of intracellular trafficking, major signaling pathways, and elements of the transcriptional control machinery were largely represented in both tissues. At least 42 mRNAs have already been associated with diabetes, insulin resistance, obesity, energy expenditure, or identified as sensors of metabolism in mice or humans. The contribution of the pathways presently identified to chicken physiology (particularly those not yet related to insulin) needs to be evaluated in future studies. Other challenges include the characterization of "unknown" mRNAs and the identification of the steps or networks, which disturbed tissue transcriptome so extensively, quickly after the turning off of the insulin signal. In conclusion, pleiotropic effects of insulin in chickens are further evidenced; major pathways controlled by insulin in mammals have been conserved despite the presence of unique features of insulin signaling in chicken muscle.
Collapse
Affiliation(s)
- Jean Simon
- Station de Recherches Avicoles, INRA, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stekhoven DJ, Buhlmann P. MissForest--non-parametric missing value imputation for mixed-type data. Bioinformatics 2011; 28:112-8. [DOI: 10.1093/bioinformatics/btr597] [Citation(s) in RCA: 1902] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
45
|
Wu X, Patki A, Lara-Castro C, Cui X, Zhang K, Walton RG, Osier MV, Gadbury GL, Allison DB, Martin M, Garvey WT. Genes and biochemical pathways in human skeletal muscle affecting resting energy expenditure and fuel partitioning. J Appl Physiol (1985) 2010; 110:746-55. [PMID: 21109598 DOI: 10.1152/japplphysiol.00293.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genes influencing resting energy expenditure (REE) and respiratory quotient (RQ) represent candidate genes for obesity and the metabolic syndrome because of the involvement of these traits in energy balance and substrate oxidation. We aim to explore the molecular basis for individual variation in REE and fuel partitioning as reflected by RQ. We performed microarray studies in human vastus lateralis muscle biopsies from 40 healthy subjects with measured REE and RQ values. We identified 2,392 and 1,115 genes significantly correlated with REE and RQ, respectively. Genes correlated with REE and RQ encompass a broad array of functions, including carbohydrate and lipid metabolism, gene expression, mitochondrial processes, and membrane transport. Microarray pathway analysis revealed that REE was positively correlated with upregulation of G protein-coupled receptor signaling (meet criteria/total genes: 65 of 283) involved in autonomic nervous system functions, including those receptors mediating adrenergic, dopamine, γ-aminobutyric acid (GABA), neuropeptide Y (NPY), and serotonin action (meet criteria/total genes: 46 of 176). Reduced REE was associated with an increase in genes participating in ubiquitin-proteasome-dependent proteolytic pathways (58 of 232). Serine-type peptidase activity (9 of 76) was positively correlated with RQ, while genes involved in the protein phosphatase type 2A complex (4 of 9), mitochondrial function and cellular respiration (38 of 315), and unfolded protein binding (19 of 97) were associated with reduced RQ values and a preference for lipid fuel metabolism. Individual variations in whole body REE and RQ are regulated by differential expressions of specific genes and pathways intrinsic to skeletal muscle.
Collapse
Affiliation(s)
- Xuxia Wu
- Dept. of Nutrition Sciences, The Univ. of Alabama at Birmingham, 1675 University Blvd., Birmingham, AL 35294-3360, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells. PLoS One 2010; 5:e11201. [PMID: 20574513 PMCID: PMC2888570 DOI: 10.1371/journal.pone.0011201] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development.
Collapse
|
47
|
Pearen MA, Muscat GEO. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 2010; 24:1891-903. [PMID: 20392876 DOI: 10.1210/me.2010-0015] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous members of the nuclear hormone receptor (NR) superfamily have been demonstrated to regulate metabolic function in a cell- and tissue-specific manner. This review brings together recent studies that have associated members of the NR superfamily, the orphan NR4A subgroup, with the regulation of metabolic function and disease. The orphan NR4A subgroup includes Nur77 (NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3). Expression of these receptors is induced in multiple tissues by a diverse range of stimuli, including stimuli associated with metabolic function, such as: β-adrenoceptor agonists, cold, fatty acids, glucose, insulin, cholesterol, and thiazolidinediones. In vitro and in vivo gain- and loss-of-function studies in major metabolic tissues (including skeletal muscle, adipose, and liver cells and tissues) have associated the NR4A subgroup with specific aspects of lipid, carbohydrate, and energy homeostasis. Most excitingly, although these orphan receptors do not have known endogenous ligands, several small molecule agonists have recently been identified. The preliminary studies reviewed in this manuscript suggest that therapeutic exploitation of the NR4A subgroup may show utility against dyslipidemia, obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
48
|
Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, Walton RG, Martin M, Garvey WT. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance. Am J Physiol Endocrinol Metab 2010; 298:E565-76. [PMID: 19996382 PMCID: PMC2838520 DOI: 10.1152/ajpendo.00467.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/02/2009] [Indexed: 11/22/2022]
Abstract
Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes.
Collapse
Affiliation(s)
- Jiarong Liu
- Dept. of Nutrition Sciences, Univ. of Alabama at Birmingham, 35294-3360, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rome S, Meugnier E, Lecomte V, Berbe V, Besson J, Cerutti C, Pesenti S, Granjon A, Disse E, Clement K, Lefai E, Laville M, Vidal H. Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2). Diabetologia 2009; 52:1899-912. [PMID: 19590847 DOI: 10.1007/s00125-009-1442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/05/2009] [Indexed: 02/03/2023]
Abstract
AIMS/HYPOTHESIS One of the major processes by which insulin exerts its multiple biological actions is through gene expression regulation. Thus, the identification of transcription factors affected by insulin in target tissues represents an important challenge. The aim of the present study was to gain a greater insight into this issue through the identification of transcription factor genes with insulin-regulated expression in human skeletal muscle. METHODS Using microarray analysis, we defined the sets of genes modulated during a 3 h hyperinsulinaemic-euglycaemic clamp (2 mU min(-1) kg(-1)) in the skeletal muscle of insulin-sensitive control volunteers and in moderately obese insulin-resistant type 2 diabetic patients. RESULTS Of the 1,529 and 1,499 genes regulated during the clamp in control and diabetic volunteers, respectively, we identified 30 transcription factors with impaired insulin-regulation in type 2 diabetic patients. Analysis of the promoters of the genes encoding these factors revealed a possible contribution of the transcriptional repressor basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2), insulin regulation of which is strongly altered in the muscle of diabetic patients. Gene ontology analysis of BHLHB2 target genes, identified after BHLHB2 overexpression in human primary myotubes, demonstrated that about 10% of the genes regulated in vivo during hyperinsulinaemia are potentially under the control of this repressor. The data also suggested that BHLHB2 is situated at the crossroads of a complex transcriptional network that is able to modulate major metabolic and biological pathways in skeletal muscle, including the regulation of a cluster of genes involved in muscle development and contraction. CONCLUSIONS/INTERPRETATION We have identified BHLHB2 as a potential novel mediator of insulin transcriptional action in human skeletal muscle.
Collapse
Affiliation(s)
- S Rome
- INRA 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université de Lyon, Oullins, 69600, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Weyrich P, Staiger H, Stancáková A, Schäfer SA, Kirchhoff K, Ullrich S, Ranta F, Gallwitz B, Stefan N, Machicao F, Kuusisto J, Laakso M, Fritsche A, Häring HU. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced beta-cell function in non-diabetic subjects. BMC MEDICAL GENETICS 2009; 10:77. [PMID: 19682370 PMCID: PMC2741445 DOI: 10.1186/1471-2350-10-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/14/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuron-derived orphan receptor (Nor) 1, nuclear receptor (Nur) 77, and nuclear receptor-related protein (Nurr) 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or beta-cell dysfunction. METHODS We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs) rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies >or= 0.05) covering 100% of genetic variation within the NR4A3 locus (with D' = 1.0, r2 >or= 0.9) and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT), and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506). SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265) for replication. RESULTS All five SNPs were in Hardy-Weinberg equilibrium (p >or= 0.7, all). The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT), AUCC C-peptide-to-AUC Gluc ratio and the AUC Ins30-to-AUC Gluc30 ratio with rs12686676 reaching the level of significance (p <or= 0.03, all; additive model). The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p <or= 0.03, additive model). There was no consistent association with glucose tolerance or insulin resistance in both study cohorts. CONCLUSION We conclude that common genetic variation within the NR4A3 locus determines insulin secretion. Thus, NR4A3 represents a novel candidate gene for beta-cell function which was not covered by the SNP arrays of recent genome-wide association studies for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Peter Weyrich
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|