1
|
Luzardo ML. Effects of higher dietary acid load: a narrative review with special emphasis in children. Pediatr Nephrol 2025; 40:25-37. [PMID: 39093454 DOI: 10.1007/s00467-024-06466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Metabolic effects of high diet acid load (DAL) have been studied for years in adults, although only recently in children. Contemporary diets, especially those of Western societies, owe their acidogenic effect to high animal-origin protein content and low contribution of base-forming elements, such as fruits and vegetables. This imbalance, where dietary acid precursors exceed the body's buffering capacity, results in an acid-retaining state known by terms such as "eubicarbonatemic metabolic acidosis," "low-grade metabolic acidosis," "subclinical acidosis," or "acid stress". Its consequences have been linked to chronic systemic inflammation, contributing to various noncommunicable diseases traditionally considered more common in adulthood, but now have been recognized to originate at much earlier ages. In children, effects of high DAL are not limited to growth impairment caused by alterations of bone and muscle metabolism, but also represent a risk factor for conditions such as obesity, insulin resistance, diabetes, hypertension, urolithiasis, and chronic kidney disease (CKD). The possibility that high DAL may be a cause of chronic acid-retaining states in children with growth impairment should alert pediatricians and pediatric nephrologists, since its causes have been attributed traditionally to inborn errors of metabolism and renal pathologies such as CKD and renal tubular acidosis. The interplay between DAL, overall diet quality, and its cascading effects on children's health necessitates comprehensive nutritional assessments and interventions. This narrative review explores the clinical relevance of diet-induced acid retention in children and highlights the potential for prevention through dietary modifications, particularly by increasing fruit and vegetable intake alongside appropriate protein consumption.
Collapse
|
2
|
Tang B, Hao Y, Wang C, Deng Z, Kou Z, Zhou H, Zhang H, Fan F, Wang K, Wang D. Biological characteristics of pregnancy in captive Yangtze finless porpoises revealed by urinary metabolomics†. Biol Reprod 2024; 110:808-818. [PMID: 38169437 PMCID: PMC11017131 DOI: 10.1093/biolre/ioad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The Yangtze finless porpoises (Neophocaena asiaeorientalis a.) are an endemic and critically endangered species in China. Intensive captive breeding is essential for understanding the biology of critically endangered species, especially their pregnancy characteristics, knowledge of which is crucial for effective breeding management. Urine metabolomics can reveal metabolic differences, arising from physiological changes across pregnancy stages. Therefore, we used the urinary metabolomic technology, to explore urinary metabolite changes in pregnant Yangtze finless porpoises. A total of 2281 metabolites were identified in all samples, which including organic acids and derivatives (24.45%), organoheterocyclic compounds (20.23%), benzenoids (18.05%), organic oxygen compounds (7.73%), and phenylpropanoids and polyketides (6.48%). There were 164, 387, and 522 metabolites demonstrating differential abundance during early pregnancy, mid pregnancy, and late pregnancy, respectively, from the levels observed in nonpregnancy. The levels of pregnenolone, 17α-hydroxyprogesterone, and tetrahydrocortisone were significantly higher during all pregnancy stages, indicating their important roles in fetal development. The differential metabolites between nonpregnancy and pregnancy were mainly associated with amino acid and carbohydrate metabolism. Moreover, metabolic activity varied across pregnancy stages; steroid hormone biosynthesis was predominant in early pregnancy, and amino acid biosynthesis and carbohydrate metabolism were predominant in mid pregnancy and late pregnancy, respectively. Our results provide new insights into metabolic characteristics in the Yangtze finless porpoises' urine during pregnancy, and indicate that the differential levels of urine metabolites can determine pregnancy in Yangtze finless porpoises, providing valuable information for the husbandry and management of pregnant Yangtze finless porpoises in captivity.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhengyu Deng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haojie Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haobo Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Fan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| |
Collapse
|
3
|
Ghasemi F, Abbasi K, Ghiasvand R, Clark CCT, Rouhani MH. The association between dietary acid load and risk of attention-deficit hyperactivity disorder: a case-control study. Child Neuropsychol 2023; 29:474-485. [PMID: 35818308 DOI: 10.1080/09297049.2022.2099536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Although previous studies have suggested that dietary acid load may be associated with mental health, the relationship between food-induced acid production and odds of attention-deficit hyperactivity disorder remains (ADHD) unclear. The aim of the present study was to evaluate the relationship between dietary renal acid load and odds of ADHD among children. A case-control study was designed to assess the data of 500 children aged 4 to 12 years (200 children with diagnosed ADHD and 300 control group). Patients were clinically diagnosed according to the Diagnostic and Statistical Manual-5th Edition criteria. Subjects in the control group did not have any history of chronic diseases and they were screened for the absence of ADHD. Dietary intake was assessed by a semi-quantitative food frequency questionnaire. The odds of incident ADHD for each unit increase of potential acid load (PRAL) in the raw model showed ~9.8% (OR = 1.098, 95% CI: 1.072, 1.125, p < .001) higher odds of ADHD. In model 1, where age, gender, Body mass index (BMI), and socio-economic status were adjusted, the odds of ADHD was ~10.7% (OR = 1.107, 95% CI: 1.076, 1.140, p < .001). Also, in model 2 (model 1 in addition to energy) the odds was ~10.8% (OR = 1.108, 95% CI: 1.065, 1.152, p < .001). Findings of the present study suggest a possible relationship between oxidative stresses and odds of development of ADHD. Furthermore, the size of the odds ratio is small. It appears that dietary considerations are warranted in order to ameliorate the impact and/or incidence of ADHD.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Iran
| | - Khadijeh Abbasi
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Mohammad Hossein Rouhani
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Keramati M, Kheirouri S, Musazadeh V, Alizadeh M. Association of High Dietary Acid Load With the Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Front Nutr 2022; 9:816797. [PMID: 35419387 PMCID: PMC8997294 DOI: 10.3389/fnut.2022.816797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
Objective This study aimed to determine the relationship between the high dietary acid load (DAL) and the risk of cancer. Methods Five databases of PubMed, Web of Sciences, Scopus, Cochrane Library, and Google Scholar was searched to elicit original studies on humans, up to June 2021. Quality of the articles, risk of bias, and heterogeneity were assessed. A random-effects meta-analysis model was applied to estimate pooled effect size with a 95% confidence interval. Sensitivity analysis was performed using a fixed-effects model. Subgroup analyses were carried out based on gender, age, type of cancer, and type of DAL assessment indicator. Results Seventeen effect sizes from 10 articles were included in the analysis. Overall, individuals with the highest DAL were associated with a 66% increased risk of cancer compared to those with the lowest DAL (p < 0.001]. The risk of cancer increased 41% (p < 0.001) and 53% (p = 0.03) by high PRAL and NEAP, respectively. High DAL was associated with 32% (p < 0.001) and 79% (p < 0.001) increased risk of breast and colorectal cancers, respectively. High DAL was associated with 32% (p = 0.001) and 76% (p = 0.007) increased risk of cancer incident in women and men, respectively. The risk of cancer incident increased 35% (p < 0.001) and 49% (p < 0.001) at age ≤ and > of 50, respectively. Conclusion High DAL may be associated with a higher risk of cancer incidence not only in the whole studied population but also across cancer types, both genders, both DAL assessment indicators, and also among both high- and low-risk age groups for cancer.
Collapse
Affiliation(s)
- Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Smeha L, Fassula AS, Moreno YMF, Gonzalez-Chica DA, Nunes EA. Dietary acid load is positively associated with insulin resistance a population-based study. Clin Nutr ESPEN 2022; 49:341-347. [DOI: 10.1016/j.clnesp.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
6
|
Sagmeister MS, Harper L, Hardy RS. Cortisol excess in chronic kidney disease - A review of changes and impact on mortality. Front Endocrinol (Lausanne) 2022; 13:1075809. [PMID: 36733794 PMCID: PMC9886668 DOI: 10.3389/fendo.2022.1075809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic kidney disease (CKD) describes the long-term condition of impaired kidney function from any cause. CKD is common and associated with a wide array of complications including higher mortality, cardiovascular disease, hypertension, insulin resistance, dyslipidemia, sarcopenia, osteoporosis, aberrant immune function, cognitive impairment, mood disturbances and poor sleep quality. Glucocorticoids are endogenous pleiotropic steroid hormones and their excess produces a pattern of morbidity that possesses considerable overlap with CKD. Circulating levels of cortisol, the major active glucocorticoid in humans, are determined by a complex interplay between several processes. The hypothalamic-pituitary-adrenal axis (HPA) regulates cortisol synthesis and release, 11β-hydroxysteroid dehydrogenase enzymes mediate metabolic interconversion between active and inactive forms, and clearance from the circulation depends on irreversible metabolic inactivation in the liver followed by urinary excretion. Chronic stress, inflammatory states and other aspects of CKD can disturb these processes, enhancing cortisol secretion via the HPA axis and inducing tissue-resident amplification of glucocorticoid signals. Progressive renal impairment can further impact on cortisol metabolism and urinary clearance of cortisol metabolites. Consequently, significant interest exists to precisely understand the dysregulation of cortisol in CKD and its significance for adverse clinical outcomes. In this review, we summarize the latest literature on alterations in endogenous glucocorticoid regulation in adults with CKD and evaluate the available evidence on cortisol as a mechanistic driver of excess mortality and morbidity. The emerging picture is one of subclinical hypercortisolism with blunted diurnal decline of cortisol levels, impaired negative feedback regulation and reduced cortisol clearance. An association between cortisol and adjusted all-cause mortality has been reported in observational studies for patients with end-stage renal failure, but further research is required to assess links between cortisol and clinical outcomes in CKD. We propose recommendations for future research, including therapeutic strategies that aim to reduce complications of CKD by correcting or reversing dysregulation of cortisol.
Collapse
Affiliation(s)
- Michael S. Sagmeister
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- *Correspondence: Michael S. Sagmeister,
| | - Lorraine Harper
- Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
DiNicolantonio JJ, O'Keefe JH. Low-grade metabolic acidosis as a driver of insulin resistance. Open Heart 2021; 8:openhrt-2021-001788. [PMID: 34497064 PMCID: PMC8438953 DOI: 10.1136/openhrt-2021-001788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Abstract
Acid-related injury from chronic metabolic acidosis is recognized through growing evidence of its deleterious effects, including kidney and other organ injury. Progressive acid accumulation precedes the signature manifestation of chronic metabolic acidosis, decreased plasma bicarbonate concentration. Acid accumulation that is not enough to manifest as metabolic acidosis, known as eubicarbonatemic acidosis, also appears to cause kidney injury, with exacerbated progression of CKD. Chronic engagement of mechanisms to mitigate the acid challenge from Western-type diets also appears to cause kidney injury. Rather than considering chronic metabolic acidosis as the only acid-related condition requiring intervention to reduce kidney injury, this review supports consideration of acid-related injury as a continuum. This "acid stress" continuum has chronic metabolic acidosis at its most extreme end, and high-acid-producing diets at its less extreme, yet detrimental, end.
Collapse
Affiliation(s)
- Donald E. Wesson
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Dallas, Texas
| |
Collapse
|
9
|
Blbas S, Watson E, Butler H, Brown J, Herbert TP, Stover CM, Bevington A, Abbasian N. Dexamethasone acutely suppresses the anabolic SNAT2/SLC38A2 amino acid transporter protein in L6-G8C5 rat skeletal muscle cells. FASEB Bioadv 2021; 3:36-48. [PMID: 33490882 PMCID: PMC7805547 DOI: 10.1096/fba.2020-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic metabolic acidosis plays a role in cachexia by enhancing total proteolysis in skeletal muscle. Glucocorticoid also triggers proteolysis and plays a permissive role in the effect of acidosis. The System A amino acid transporter SNAT2/SLC38A2 is ubiquitously expressed in mammalian cells including muscle, performing Na+‐dependent active import of neutral amino acids, and is strongly inhibited by low pH. Exposure of rat skeletal muscle cell line L6‐G8C5 to low pH rapidly inhibits SNAT2 transport activity and enhances total proteolysis rate. Pharmacological inhibition or silencing of SNAT2 also enhances proteolysis. This study tests the hypothesis that the glucocorticoid dexamethasone (DEX), like low pH, inhibits SNAT2 activity in L6‐G8C5 myotubes, thus contributing to total proteolysis. Incubation with 500 nM DEX for 4 h reduced the System A amino acid transport rate to half the rate in control cultures. This inhibition depended on glucocorticoid receptor‐mediated gene transcription, but SNAT2 mRNA levels were unaffected by DEX. In contrast, the SNAT2 protein assessed by immunoblotting was significantly depleted. The co‐inhibitory effects of DEX and low pH on System A transport activity were additive in stimulating total proteolysis. In keeping with this mechanism, DEX’s inhibitory effect on SNAT2 transport activity was significantly blunted by the proteasome inhibitor MG132. Proof of principle was achieved in similar experiments using recombinant expression of a GFP‐tagged SNAT2 fusion protein in HEK293A cells. It is concluded that DEX acutely depletes the SNAT2 transporter protein, at least partly through proteasome‐dependent degradation of this functionally important transporter.
Collapse
Affiliation(s)
- Safia Blbas
- Department of Respiratory Sciences University of Leicester Leicester UK
| | - Emma Watson
- Department of Cardiovascular Sciences University of Leicester Leicester UK
| | - Heather Butler
- John Walls Renal Unit University Hospitals of Leicester Leicester UK
| | - Jeremy Brown
- Department of Cardiovascular Sciences University of Leicester Leicester UK
| | | | - Cordula M Stover
- Department of Respiratory Sciences University of Leicester Leicester UK
| | - Alan Bevington
- Department of Respiratory Sciences University of Leicester Leicester UK
| | - Nima Abbasian
- Department of Respiratory Sciences University of Leicester Leicester UK
| |
Collapse
|
10
|
Association of dietary acid load and plant-based diet index with sleep, stress, anxiety and depression in diabetic women. Br J Nutr 2019; 123:901-912. [PMID: 31806069 DOI: 10.1017/s0007114519003179] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a common chronic disease with various complications. The present study was conducted to determine the association of plant-based diet index (PDI) and dietary acid load (DAL) with sleep status as well as mental health in type 2 diabetic women. In this cross-sectional study, a validated FFQ was used to assess dietary intakes of 230 diabetic patients. We created a whole PDI, healthful PDI (hPDI) and unhealthful PDI (uPDI). DAL was calculated based on potential renal acid load and net endogenous acid production method. The Pittsburgh Sleep Quality Index and twenty-one-item Depression, Anxiety and Stress Scale were used to assess sleep and mental health disorders, respectively. Participants in the top group of uPDI had greater risk of poor sleep (OR 6·47, 95 % CI 2·75, 15·24). However, patients who were in the top group of hPDI had a lower risk of sleep problems (OR 0·28, 95 % CI 0·13, 0·62). Participants in the top group of uPDI had greater risk of depression, anxiety and stress (OR 9·35, 95 % CI 3·96, 22·07; OR 4·74, 95 % CI 2·28, 9·85; OR 4·24, 95 % CI 2·14, 8·38, respectively). In conclusion, participants with higher DAL scores and patients who adhered to animal-based diets rather than plant-based diets were more likely to be poor sleepers and have mental health disorders.
Collapse
|
11
|
Krupp D, Westhoff TH, Esche J, Remer T. Prospective relation of adolescent citrate excretion and net acid excretion capacity with blood pressure in young adulthood. Am J Physiol Renal Physiol 2018; 315:F1228-F1235. [PMID: 30019929 DOI: 10.1152/ajprenal.00144.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental data and observational studies in adults suggest that even subtle changes in acid-base balance, indicative of a higher systemic proton load, are related to higher blood pressure (BP) levels and an increased hypertension risk. However, these associations have not been investigated during growth. The kidney is the central organ in regulating excretion of nonvolatile acids, and renal citrate excretion has been shown to be a sensitive, noninvasive marker of changes in systemic acid balance. We thus analyzed the prospective relation of 24-h citrate excretion, as well as net acid excretion capacity (NAEC; a noninvasive indicator of the renal ability to excrete protons), during adolescence (boys: 10-15 yr; girls: 9-14 yr) with BP levels in young adulthood (18-30 yr) in 374 healthy participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study. In linear-regression analyses adjusted for age, sex, 24-h urinary excretions of sodium and potassium, as well as further relevant confounders, a 1-mmol/1.73 m2/day higher adolescent citrate excretion was related to 1.2 mmHg lower systolic BP ( P = 0.02) but not to diastolic BP ( P = 0.6). A 10-mEq higher NAEC during adolescence was related to 1.7 mmHg lower systolic BP in young men, but this association was statistically nonsignificant ( P = 0.07) after multivariable adjustment. Additional adjustment for adult body mass index did not alter these findings. To conclude, subtle changes in systemic acid-base balance during adolescence are already indicative for later BP. Potential sex differences in these associations should be investigated in further studies.
Collapse
Affiliation(s)
- Danika Krupp
- DONALD Study Center, Department of Nutrition and Food Sciences-Nutritional Epidemiology, University of Bonn , Dortmund , Germany
| | - Timm H Westhoff
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum , Germany
| | - Jonas Esche
- DONALD Study Center, Department of Nutrition and Food Sciences-Nutritional Epidemiology, University of Bonn , Dortmund , Germany
| | - Thomas Remer
- DONALD Study Center, Department of Nutrition and Food Sciences-Nutritional Epidemiology, University of Bonn , Dortmund , Germany
| |
Collapse
|
12
|
Qian Q. Dietary Influence on Body Fluid Acid-Base and Volume Balance: The Deleterious "Norm" Furthers and Cloaks Subclinical Pathophysiology. Nutrients 2018; 10:E778. [PMID: 29914153 PMCID: PMC6024597 DOI: 10.3390/nu10060778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
The popular modern diet, characterized by an excess of animal protein and salt but insufficient in fruits, vegetables and water, is a poor fit for human physiological and homeostatic regulatory systems. Sustained net acid and sodium retention, coupled with an insufficient intake of cardiovascular protective potassium-rich foods and hydration in the modern diet can give rise to debilitating chronic organ dysfunction and ultimately, mortality. This holds true, especially in our aging population who are already facing inevitable decline in organ functional reserve. Importantly, in most cases, despite the mismatch and adverse effects to multiple organ systems, plasma electrolyte and acid-base parameters can, on the surface, be maintained within a “normal” reference range, primarily by activating (often maximally activating) compensatory homeostatic mechanisms. These diet-induced effects can thus be clinically silent for decades. Embodied in the chronic corrective homeostatic processes, however, are real risks for multiorgan damage. According to the Dietary Guideline Advisory Committee (DGAC), half of American adults have one or more chronic diseases that are preventable with dietary modification. Here, homeostasis of body fluid acid-base, sodium, potassium and water is examined. Our current dietary habits and their required regulatory adaptation, maladaptation and relevant physiology and pathophysiology are discussed. A framework of dietary modifications to avoid a propensity for maladaptation and thus lowers the risks of common modern diseases (primary prevention) and minimizes the risk of chronic and age-related disease progression (secondary prevention) is emphasized. Although there are other variables at play, a key to restoring the all-important dietary potassium to sodium ratio is greater consumption of vegetables/fruits and adopting salt temperance. Dietary and nutritional optimization is an under-emphasized area of health care that has an enormous potential to temper the epidemics of prevalent chronic diseases in modern society and improve population health.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, School of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Della Guardia L, Thomas MA, Cena H. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load. Nutrients 2018; 10:E618. [PMID: 29762478 PMCID: PMC5986498 DOI: 10.3390/nu10050618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/04/2023] Open
Abstract
Recent epidemiological findings suggest that high levels of dietary acid load can affect insulin sensitivity and glucose metabolism. Consumption of high protein diets results in the over-production of metabolic acids which has been associated with the development of chronic metabolic disturbances. Mild metabolic acidosis has been shown to impair peripheral insulin action and several epidemiological findings suggest that metabolic acid load markers are associated with insulin resistance and impaired glycemic control through an interference intracellular insulin signaling pathways and translocation. In addition, higher incidence of diabetes, insulin resistance, or impaired glucose control have been found in subjects with elevated metabolic acid load markers. Hence, lowering dietary acid load may be relevant for improving glucose homeostasis and prevention of type 2 diabetes development on a long-term basis. However, limitations related to patient acid load estimation, nutritional determinants, and metabolic status considerably flaws available findings, and the lack of solid data on the background physiopathology contributes to the questionability of results. Furthermore, evidence from interventional studies is very limited and the trials carried out report no beneficial results following alkali supplementation. Available literature suggests that poor acid load control may contribute to impaired insulin sensitivity and glucose homeostasis, but it is not sufficiently supportive to fully elucidate the issue and additional well-designed studies are clearly needed.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Laboratory of Dietetics and Clinical Nutrition Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Michael Alex Thomas
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA.
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
14
|
Bühlmeier J, Harris C, Koletzko S, Lehmann I, Bauer CP, Schikowski T, von Berg A, Berdel D, Heinrich J, Hebebrand J, Föcker M, Standl M, Libuda L. Dietary Acid Load and Mental Health Outcomes in Children and Adolescents: Results from the GINIplus and LISA Birth Cohort Studies. Nutrients 2018; 10:nu10050582. [PMID: 29738509 PMCID: PMC5986462 DOI: 10.3390/nu10050582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/29/2018] [Accepted: 05/06/2018] [Indexed: 12/17/2022] Open
Abstract
High dietary acid load may have detrimental effects on mental health during childhood and adolescence. We examined cross-sectional and prospective associations of dietary acid load and mental health problems in a population-based sample, using data from the German birth cohort studies GINIplus (German Infant Nutritional Intervention plus environmental and genetic influences on allergy development) and LISA (Influences of lifestyle-related factors on the immune system and the development of allergies in childhood). These studies included detailed assessments of dietary intake through a food frequency questionnaire (FFQ), mental health outcomes measured through the Strengths and Difficulties Questionnaire (SDQ), and covariates. Using logistic regression, cross-sectional associations between dietary acid load measured as potential renal acid load (PRAL) and SDQ subscales were assessed at age 10 years (N = 2350) and 15 years (N = 2061). Prospective associations were assessed, considering PRAL at 10 years as exposure and SDQ subscales at 15 years as outcome (N = 1685). Results indicate that children with a diet higher in PRAL have more emotional problems (OR = 1.33 (95% CI = 1.15; 1.54); p < 0.001), and show hyperactivity more often (1.22 (1.04; 1.43); p = 0.014) at 10 years. No significant associations were present either cross-sectionally at age 15 years, nor prospectively. Results were confirmed in sensitivity analyses. These findings reveal first evidence for potential relationships between PRAL and mental health in childhood, although we cannot exclude reverse causality, i.e., that dietary behavior and PRAL are influenced by mental status. Future studies should address confirmation and identify biological mechanisms.
Collapse
Affiliation(s)
- Judith Bühlmeier
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Carla Harris
- Dr. von Hauner Children's Hospital, University Hospital, LMU of Munich, 80337 Munich, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, 85764 Neuherberg, Germany.
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, University Hospital, LMU of Munich, 80337 Munich, Germany.
| | - Irina Lehmann
- Department of Environmental Immunology/Core Facility Studies, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
- Charitè-Universitätsmedizin Berlin, 10117 Berlin, Germany.
- Berlin Institute of Health, 10178 Berlin, Germany.
| | - Carl-Peter Bauer
- Department of Pediatrics, Technical University of Munich, 80804 Munich, Germany.
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.
| | - Andrea von Berg
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, 46483 Wesel, Germany.
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, 46483 Wesel, Germany.
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, 85764 Neuherberg, Germany.
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich (LMU), 80336 Munich, Germany.
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Victoria 3010, Australia.
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, 85764 Neuherberg, Germany.
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, 46483 Wesel, Germany.
| |
Collapse
|
15
|
Lin J, Cheng Z, Ding X, Qian Q. Acid-Base and Electrolyte Managements in Chronic Kidney Disease and End-Stage Renal Disease: Case-Based Discussion. Blood Purif 2018; 45:179-186. [PMID: 29478053 DOI: 10.1159/000485155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acid-base and electrolyte alterations are common in patients with chronic kidney disease (CKD) and end-stage kidney failure (ESRD). The alterations become more complex as CKD advances to ESRD, leading to morbidity and mortality. Three cases are presented illustrating some key prototypic features in CKD and ESRD. Each is accompanied by discussion of pathophysiology, diagnosis, and treatment options. Newer investigational results are integrated into the existing body of knowledge. Although rigorous assessment of various dialysis prescriptions is scanty, in its current state, instituting a well thought-out, multi-pronged management plan to minimize CKD/ESRD and dialysis-related electrolyte and acid-base disruptions is appropriate. There is a pressing need for prospective interventional trials in the future.
Collapse
Affiliation(s)
- Jing Lin
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Cheng
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Krupp D, Esche J, Mensink GBM, Klenow S, Thamm M, Remer T. Dietary Acid Load and Potassium Intake Associate with Blood Pressure and Hypertension Prevalence in a Representative Sample of the German Adult Population. Nutrients 2018; 10:nu10010103. [PMID: 29351232 PMCID: PMC5793331 DOI: 10.3390/nu10010103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/10/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Diets rich in fruits and vegetables, like the Dietary Approaches to Stop Hypertension (DASH)-diet, are usually characterized by high potassium intake and reduced dietary acid load, and have been shown to reduce blood pressure (BP). However, the relevance of potential renal acid load (PRAL) for BP has not been compared with the relevance to BP of urinary biomarker (K-urine)- and dietary food frequency questionnaire (K-FFQ)-based estimates of potassium intake in a general adult population sample. For 6788 participants (aged 18–79 years) of the representative German Health-Interview and Examination Survey for Adults (DEGS1), associations of PRAL, K-urine, and K-FFQ with BP and hypertension prevalence were cross-sectionally examined in multivariable linear and logistic regression models. PRAL was significantly associated with higher systolic BP (p = 0.0002) and higher hypertension prevalence (Odds ratio [OR] high vs. low PRAL = 1.45, p = 0.0004) in models adjusted for age, sex, body mass index (BMI), estimated sodium intake, kidney function, relevant medication, and further important covariates. Higher estimates of K-FFQ and K-urine were related to lower systolic BP (p = 0.04 and p < 0.0001) and lower hypertension prevalence (OR = 0.82, p = 0.04 and OR = 0.77, p = 0.02) as well as a lower diastolic BP (p = 0.03 and p = 0.0003). Our results show, for the first time in a comparative analysis of a large representative population sample, significant relationships of BP and hypertension prevalence with questionnaire- and biomarker-based estimates of potassium intake and with an estimate of dietary acid load.
Collapse
Affiliation(s)
- Danika Krupp
- DONALD Study Dortmund, Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, 44225 Dortmund, Germany.
| | - Jonas Esche
- DONALD Study Dortmund, Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, 44225 Dortmund, Germany.
| | - Gert Bernardus Maria Mensink
- Robert Koch-Institute, Department of Epidemiology and Health Monitoring, Robert Koch Institute, 13302 Berlin, Germany.
| | - Stefanie Klenow
- Robert Koch-Institute, Department of Epidemiology and Health Monitoring, Robert Koch Institute, 13302 Berlin, Germany.
| | - Michael Thamm
- Robert Koch-Institute, Department of Epidemiology and Health Monitoring, Robert Koch Institute, 13302 Berlin, Germany.
| | - Thomas Remer
- DONALD Study Dortmund, Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, 44225 Dortmund, Germany.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Acid-base homeostasis is impaired in chronic kidney disease (CKD) and may contribute to disease progression. Diabetes, a major cause of CKD worldwide, may exacerbate acidosis further due to differences in acid production and excretion. Here, we review the role of abnormal acid-base homeostasis in the pathogenesis and progression of diabetes and diabetic kidney disease. RECENT FINDINGS Acidosis and dietary acid loading may contribute to the development and worsening of insulin resistance and hypertension, thereby promoting diabetes and diabetic CKD. However, although metabolic acidosis associates with progression of CKD generally, the results in diabetic CKD are mixed. Data suggests that metabolic acid production in diabetes may be higher than would be predicted based on dietary intake alone, and new observational data suggests that this higher diet-independent acid production could potentially be protective. The role of acid-base homeostasis in diabetic CKD progression is complex and must consider differences in endogenous acid production and excretion in diabetes. Ongoing observational and interventional studies in this field should consider the unique physiology of diabetes.
Collapse
Affiliation(s)
- Pascale Khairallah
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Julia J Scialla
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC, USA.
| |
Collapse
|
18
|
Esche J, Shi L, Sánchez-Guijo A, Hartmann MF, Wudy SA, Remer T. Higher diet-dependent renal acid load associates with higher glucocorticoid secretion and potentially bioactive free glucocorticoids in healthy children. Kidney Int 2016; 90:325-333. [PMID: 27165611 DOI: 10.1016/j.kint.2016.02.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022]
Abstract
Metabolic acidosis induces elevated glucocorticoid (GC) levels. However, the influence of less strong daily acid loads on GCs is largely unexplored. To investigate this, we studied whether higher acid loads in children, fully within the normal range of habitual diets, associate with endogenous GCs. In a specific quasi-experimental design, we examined 200 6- to 10-year-old healthy participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study equally divided to either high or low 24-hour renal net acid excretion. Major urinary GC metabolites were analyzed by gas chromatography-mass spectrometry to assess daily adrenal GC secretion and metabolites of tissue cortisol catabolism (6β-hydroxycortisol and 20α-dihydrocortisol). Liquid chromatography-mass spectrometry was used to quantify urinary free cortisol and cortisone. After confounder adjustment, significant positive associations were unmasked for urinary potential renal acid load and net acid excretion with adrenal GC secretion, free cortisone, free cortisone plus cortisol, 6β-hydroxycortisol, and 20α-dihydrocortisol. An inverse association emerged for an enzymatic marker (5β-reductase) of irreversible GC inactivation. Our data suggest that existing moderate elevations in diet-dependent acid loads suffice to raise GCs and affect cortisol metabolism. Thus, potential detrimental effects of high acid loading appear to be mediated, in part, by increased GC activity via increased GC secretion and/or reduced GC inactivation. Higher cortisone levels, directly available for intracrine activation to cortisol may play a special role.
Collapse
Affiliation(s)
- Jonas Esche
- Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, DONALD Study Center, Dortmund, Germany
| | - Lijie Shi
- Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, DONALD Study Center, Dortmund, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Thomas Remer
- Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, DONALD Study Center, Dortmund, Germany.
| |
Collapse
|