1
|
Han YZ, Wang YZY, Zhu XY, Du BX, Wang YX, Zhang XQ, Jia JM, Liu WJ, Zheng HJ. The gut microbiota and diabetic nephropathy: an observational study review and bidirectional Mendelian randomization study. Trials 2025; 26:101. [PMID: 40122887 PMCID: PMC11931829 DOI: 10.1186/s13063-025-08755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Earlier studies have implicated a crucial link between diabetic nephropathy (DN) and the gut microbiota (GM) by considering the gut-kidney axis; however, the specific cause-and-effect connections between these processes remain unclear. METHODS To compare changes in the GM between DN patients and control subjects, a review of observational studies was performed. The examination focused on the phylum, family, genus, and species/genus categories. To delve deeper into the cause-effect relationship, instrumental variables for 211 GM taxa (9 phyla, 16 classes, 20 orders, 35 families, and 131 genera), which were eligible for the mbQTL (microbial quantitative trait locus) mapping analysis, were collected from the Genome Wide Association Study (GWAS). A Mendelian randomization investigation was then conducted to gauge their impact on DN susceptibility using data from the European Bioinformatics Institute (EBI) and the FinnGen consortium. The European Bioinformatics Institute data included 1032 DN patients and 451,248 controls, while the FinnGen consortium data consisted of 3283 DN patients and 210,463 controls. Two-sample Mendelian randomization (TSMR) was utilized to determine the link between the GM and DN. The primary method for analysis was the inverse variance weighted (IVW) approach. Moreover, a reverse Mendelian randomization analysis was carried out, and the findings were validated through sensitivity assessments. RESULTS This review examined 11 observational studies that satisfied the inclusion and exclusion criteria. There was a significant difference in the abundance of 144 GM taxa between DN patients and controls. By employing the MR technique, 13 bacteria were pinpointed as having a causal link to DN (including 3 unknown GM taxa). Even after Bonferroni correction, the protective impact of the phylum Proteobacteria and genus Dialister (Sequeira et al. Nat Microbiol. 5:304-313, 2020; Liu et al. EBioMedicine. 90:104527, 2023) and the harmful impact of the genus Akkermansia, family Verrucomicrobiaceae, order Verrucomicrobia and class Verrucomicrobiae on DN remained significant. No noticeable heterogeneity or horizontal pleiotropy was detected in the instrumental variables (IVs). However, reverse MR investigations have failed to reveal any substantial causal relationship between DN and the GM. CONCLUSION Differences in the GM among DN patients and healthy controls are explored in observational studies. We verified the possible connection between certain genetically modified genera and DN, thereby emphasizing the connection between the "gut-kidney" axis and new insights into the GM's role in DN pathogenesis underlying DN. Investigations into this association are necessary, and novel biomarkers for the development of targeted preventive strategies against DN are needed.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Zhi Yuan Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Jia Meng Jia
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Yuan B, Jia D, Gao B. Preventive treatment of tripdiolide ameliorates kidney injury in diabetic mice by modulating the Nrf2/NF-κB pathway. Front Pharmacol 2025; 16:1492834. [PMID: 40176887 PMCID: PMC11961909 DOI: 10.3389/fphar.2025.1492834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Although tripdiolide has demonstrated a protective role in lupus nephritis, its potential therapeutic and preventive effects on diabetic kidney injury remain inconclusive. Methods In this study, a diabetes mice model was used to evaluate the effect of preventive treatment of tripdiolide on the kidney. The study assessed diabetes related factors levels, while comparing kidney pathological changes, alterations in intestinal microbiota composition, oxidative stress and inflammation in kidneys, validating cytokine expression and protein pathway activation. Results The experiment demonstrated that tripdiolide preventive treatment effectively suppressed the hyperglycemia and elevated hemoglobin level, attenuated the concentrations of creatinine and blood urea nitrogen, mitigated histopathological alterations in the kidney, and alleviated inflammatory cell infiltration. Tripdiolide regulated intestinal microbiota in diabetes mice and affected the abundance of Allobaculum, Dubosella, and Prevotella, and the differential metabolic pathways primarily revolve around ubiquinol biosynthesis and menaquinol biosynthesis. Tripdiolide treatment significantly attenuated renal oxidative stress and inflammation in diabetic mice, as evidenced by the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme Oxygenase-1, and the downregulation of phosphorylated nuclear factor-κB (P-NF-κB), and NOD-like receptor protein 3. Experiments performed in RAW264.7 cells demonstrated the effect of tripdiolide. Discussion Tripdiolide may play a protective role in hyperglycemia induced kidney injury by changing the composition of intestinal microorganisms, regulating Nrf2/NF-κB pathway activation, and inhibiting oxidative stress and inflammatory reaction. This study contributes scientific evidence that can inform the development of preventive therapeutic approaches for diabetic nephropathy.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | | | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Chai J, Wang Y, Guo S, Wang Z, Chen H, Wang X, Xie D, Cai Y, Wang S, Hu Z, Zhang A, Qiu S. Proteomics exploration of metformin hydrochloride for diabetic kidney disease treatment via the butanoate metabolism pathway. J Pharm Biomed Anal 2025; 254:116584. [PMID: 39615122 DOI: 10.1016/j.jpba.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Diabetic nephropathy (DKD) is a diabetesrelated kidney injury with an increasing incidence every year. Metformin hydrochloride (MET), a cornerstone treatment for glucose lowering, has been widely reported for the treatment of DKD, but the specific molecular mechanisms and potential therapeutic targets still need to be further explored. We used kidney tissues from db/db mice as samples and used proteomics and bioinformatics to analyse the function, distribution and related pathways of differential proteins in DKD, focusing on the assessment of the binding energies of key proteins in the butyrate pathway and drugs at the molecular level, which showed that the expression profiles of differential proteins in kidney tissues were altered after MET treatment, involving energy metabolism. The key proteins involved in the butanoate metabolism pathway, including AACS, ACSM3, EHHADH and HMGCS2, exhibit binding energies to MET of <-5 kcal. It is therefore plausible that MET treatment may affect the butanoate metabolism pathway, potentially ameliorating the progression of DKD by modulating mitochondrial function and inflammatory responses.
Collapse
Affiliation(s)
- Jinxuan Chai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Sifan Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Zhibo Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Hongwei Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Xian Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Dandan Xie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Ying Cai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shiwei Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Zhencai Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Shi Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
4
|
Ni Y, Du H, Ke L, Zheng L, Nan S, Ni L, Pan Y, Fu Z, He Q, Jin J. Gut-kidney interaction reinforces dapagliflozin-mediated alleviation in diabetic nephropathy. Am J Physiol Cell Physiol 2025; 328:C452-C466. [PMID: 39740794 DOI: 10.1152/ajpcell.00651.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear. Here, we investigated the effects of dapagliflozin on DN and gut microbiota, elucidating how it mitigates DN via the gut-kidney axis. Low-dose dapagliflozin markedly ameliorated renal inflammation and fibrosis and improved gut barrier function in high-fat diet (HFD)/streptozotocin (STZ)-induced DN mice and db/db mice without affecting blood glucose levels. These effects were associated with altered gut microbial composition and function. Eradication of the resident microbiota abolished the protective effects of dapagliflozin against kidney injury in DN mice. Moreover, dapagliflozin significantly altered microbial metabolites in DN mice, decreasing argininosuccinic acid (ASA) and palmitic acid (PA), while increasing S-allylcysteine (SAC) levels. ASA and PA increased the expression of renal inflammation- and fibrosis-related markers in HK-2 cells, whereas SAC ameliorated renal damage and altered the microbial composition in a manner similar to dapagliflozin in DN mice. Notably, Muribaculaceae and Desulfovibrionaceae were correlated with the alleviation of DN-associated renal dysfunction by low- and high-dose dapagliflozin treatments in DN mice. These findings demonstrate a potential application of dapagliflozin in managing DN by targeting the gut microbiota.NEW & NOTEWORTHY We demonstrated that dapagliflozin administration alleviated renal inflammation and fibrosis in vivo and in vitro, along with reshaping the gut microbiota composition and altering levels of key microbial metabolites, including argininosuccinic acid (ASA) and palmitic acid (PA), while increasing S-allylcysteine (SAC). Importantly, the genera Muribaculaceae and Desulfovibrionaceae emerged as pivotal microbial genera mediating the protective effects of dapagliflozin against diabetic nephropathy.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haimei Du
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lehui Ke
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sujie Nan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liyang Ni
- Laboratory of Food Biochemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiang He
- Department of Nephrology, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Research and Translation for Kidney Deficiency-Stasis-Turbidity Disease, Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Research and Translation for Kidney Deficiency-Stasis-Turbidity Disease, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Thuy Linh H, Nakade Y, Wada T, Iwata Y. The Potential Mechanism of D-Amino Acids - Mitochondria Axis in the Progression of Diabetic Kidney Disease. Kidney Int Rep 2025; 10:343-354. [PMID: 39990887 PMCID: PMC11843130 DOI: 10.1016/j.ekir.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and stands out as the leading cause of end-stage renal disease worldwide. There is increasing evidence that mitochondrial dysfunction, including impaired mitochondrial biogenesis, dynamics, and oxidative stress, contributes to the development and progression of DKD. D-amino acids (D-AAs), which are enantiomers of L-AAs, have recently been detected in various living organisms and are acknowledged to play important roles in numerous physiological processes in the human body. Accumulating evidence demonstrates that D-AA levels in blood or urine could serve as useful biomarkers for reflecting renal function. The physiological roles of D-AAs are implicated in the regulation of cellular proliferation, oxidative stress, generation of reactive oxygen species (ROS), and innate immunity. This article reviews current evidence relating to D-AAs and mitochondrial dysfunction and proposes a potential interaction and contribution of the D-AAs-mitochondria axis in DKD pathophysiology and progression. This insight could provide novel therapeutic approaches for preventing or ameliorating DKD based on this biological axis.
Collapse
Affiliation(s)
- Hoang Thuy Linh
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yusuke Nakade
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
- Department of Clinical Laboratory, Kanazawa University, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| |
Collapse
|
6
|
Lai Y, Huang X, Sun H, Hui Q, Hu S. Research Progress in the Relationship between Intestinal Flora and Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2025; 25:281-290. [PMID: 38956918 DOI: 10.2174/0118715303308965240624054156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus is a common chronic metabolic disease characterized by a high incidence and disability rate. Intestinal flora refers to the microbial community that lives in the intestines and plays a crucial role in maintaining intestinal health and the human immune system. In recent years, an increasing body of research has revealed a close relationship between intestinal flora and diabetes. The pathophysiological mechanisms between them have also been constantly uncovered, and the regulation of intestinal flora has shown promising efficacy in the adjuvant treatment of diabetes. This study mainly summarized the characteristics and mechanisms of intestinal flora in patients with diabetes in recent years, as well as the methods of regulating intestinal flora to prevent and treat diabetes, and prospected the future research direction. This will offer a theoretical basis for the clinical adjuvant treatment of diabetes with intestinal flora and the development of new drugs.
Collapse
Affiliation(s)
- Yingji Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianfeng Huang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Wu Z, Bian M, Zhang H, Wang M, Wang P, Shao Y, Shen L, Zhu G. Compositional characteristics of the gut microbiome in patients with uremia. INDIAN J PATHOL MICR 2025; 68:42-50. [PMID: 39011618 DOI: 10.4103/ijpm.ijpm_554_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/05/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT During acute or chronic uremia, the cumulative harmful effects of uremic toxins result in numerous health problems and, ultimately, mortality. Previous research has identified that uremic retention solutes originate from the gut microbiome, indicating that uremia may be closely associated with gut microbiome dysbiosis. To deepen our understanding of the compositional characteristics of the gut microbiome in patients with uremia and thereby promote precision medicine in the treatment of uremia, we conducted a study of the compositional characteristics of the gut microbiome in 20 patients with uremia. The gut microbiome diversity of uremic patients and the control group showed certain differences. Nonmetric multidimensional scaling analysis showed that the beta diversity of the gut microbiome of uremic patients was significantly different from that of the healthy control individuals, with a distinct clustering effect in the uremic patient group, and it also showed a similarly distinct clustering effect in the healthy control group. The Chao1 index and Sobs index were significantly lower in the uremic patient group than in the healthy control group ( P < 0.05). By analyzing the composition and abundance distribution of the gut microbiome in the uremic patient group and healthy control group, we found that the relative abundance of the gut microbiome constituents Fusobacteriota , Enterobacteriaceae, Oscillospirales, Ruminococcaceae, and Lachnospiraceae was significantly increased in the intestines of uremic patients. We also detected the rare taxa Erysipelotrichaceae, which was present only in the uremic patient group. Predictive functional analysis suggested that an increased abundance of Ruminococcaceae and Lachnospirales, which are associated with indoxyl sulfate and phenylacetyl glutamine, and an increased abundance of Oscillospirales, which is associated with pyruvate metabolism, in uremic patients may strongly influence the gut environment according to renal function, resulting in dysbiosis associated with uremic toxin production. Rare taxa such as Erysipelotrichaceae have been suggested to be detrimental to intestinal disease. Further research into these gut microbiomes may provide new ideas for the prevention and treatment of uremia with the gut microbiome.
Collapse
Affiliation(s)
- Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Mingjie Bian
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Hong Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Mengli Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Peng Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Yunxia Shao
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Second People's Hospital of Wuhu, Anhui, China
- Department of Neohrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| | - Guoping Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, and Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
8
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 PMCID: PMC11664868 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, Yu H, Yang B, Yang H. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. Front Immunol 2024; 15:1430356. [PMID: 39717782 PMCID: PMC11663840 DOI: 10.3389/fimmu.2024.1430356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS. This link has been extensively researched in conditions such as diabetic nephropathy and immunoglobulin A (IgA) nephropathy. Thus, dysbiosis of the gut microbiota is seen as a crucial contributing factor in NS; however, there is a lack of comprehensive reviews that elucidate the changes in the gut microbiota across different NS conditions and that describe its mechanistic role in the disease. Moreover, serving as an innate regulator of the gut microbiota, traditional Chinese medicine (TCM) has the potential to exert a profound impact on the expression of inflammation-promoting agents, decreasing the levels of endotoxins and uremic toxins. In addition, it strengthens the stability of the intestinal barrier while controlling the metabolic function of the body through its efficient modulation of the gut microbiota. This intricate process yields far-reaching consequences for NS.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianhao Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huimin Liang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Traditional Chinese Hospital of Xiamen, Xiamen, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Hampson HE, Li S, Walker DI, Wang H, Jia Q, Rock S, Costello E, Bjornstad P, Pyle L, Nelson J, Gilliland FD, Chen Z, Aung M, Chatzi L, Conti DV, Alderete TL, Goodrich JA. The potential mediating role of the gut microbiome and metabolites in the association between PFAS and kidney function in young adults: A proof-of-concept study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176519. [PMID: 39424468 PMCID: PMC11731310 DOI: 10.1016/j.scitotenv.2024.176519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects over 10 % of the global population and can lead to kidney failure and death. Exposure to per- and polyfluoroalkyl substances (PFAS) is associated with increased risk of CKD, yet studies examining the mechanisms linking PFAS and kidney function are lacking. In this exploratory study, we examined longitudinal associations of PFAS exposure with kidney function, and tested if associations were mediated by altered gut bacterial taxa or plasma metabolites using a multi-omics mediation analysis. METHODS Seventy-eight young adults from the Children's Health Study were included in this longitudinal cohort study. At baseline, seven plasma PFAS and untargeted plasma metabolomics were measured using liquid chromatography/mass-spectrometry. Baseline gut bacterial abundance was characterized using 16S rRNA sequencing and examined at the genus level. At follow-up, serum creatinine and cystatin-C concentrations were quantified to estimate glomerular filtration rate (eGFR). High-dimensional multi-omics analyses were conducted to assess the association between baseline PFAS exposure with follow-up eGFR, mediated by gut microbiome and circulating metabolite levels. RESULTS PFAS burden score, a variable developed to estimate exposure to chemical mixtures, was associated with kidney function. Each standard deviation increase in baseline PFAS burden score was associated with a 2.4 % lower eGFR at follow-up (95 % CI:[0.1 %,4.8 %]). Following high-dimensional mediation analyses with the microbiome and circulating metabolites, a joint component (characterized by reduced Lachnospiraceae and 17b-estradiol and increased succinate, retinoate and dodecanoic acid) and a metabolite component (characterized by increased hypotaurine and decreased D-pinitol and ureidopropionate) mediated 38 % and 50 % of the effect between PFAS burden score and eGFR, respectively. CONCLUSION Our proof-of-concept analysis provides the first evidence that reduced short-chain fatty acid-producing bacteria and anti-inflammatory metabolites may link PFAS exposure with impaired kidney function. This study raises the possibility of future targeted interventions that can alter gut microbiome or circulating metabolite profiles to prevent PFAS induced kidney damage.
Collapse
Affiliation(s)
- Hailey E Hampson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shiwen Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qiran Jia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petter Bjornstad
- UW Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, USA; Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Laura Pyle
- Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Jonathan Nelson
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Yi B, Su K, Cai YL, Chen XL, Bao Y, Wen ZY. Liraglutide ameliorates diabetic kidney disease by modulating gut microbiota and L-5-Oxoproline. Eur J Pharmacol 2024; 983:176905. [PMID: 39154828 DOI: 10.1016/j.ejphar.2024.176905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The gut microbiome-metabolites-kidney axis is a potential target for treating diabetic kidney disease (DKD). Our previous study found that Liraglutide attenuated DKD in rats by decreasing renal tubular ectopic lipid deposition (ELD) and serum metabolites levels, including L-5-Oxoproline (5-OP). However, the response of gut microbiome-metabolites-kidney axis to Liraglutide in DKD rats and the effect of 5-OP on ELD remain unknown. In this study, Sprague-Dawley rats were used as an animal model of DKD. They were subjected to a high fat diet, streptozotocin and uninephrectomy, followed by Liraglutide treatment (0.4 mg/kg d). Additionally, HK-2 cells were incubated with 30 mM glucose and 200 μM palmitate for 24h, and exposed to different concentrations of 5-OP. In DKD rats, Liraglutide dramatically improved the renal tubule structure. It increased the Simpson index (F = 4.487, p = 0.035) and reduced the Actinobacteria-to-Bacteroidetes ratio (F = 6.189, p = 0.014). At the genus level, Liraglutide increased the relative abundance of Clostridium, Oscillospira, Sarcina, SMB53, and 02d06 while decreasing that of Allobaculum. Meanwhile, 13 metabolites were significantly altered after Liraglutide treatment. Multi-omics analysis found that 5-OP levels were positively correlated with Clostridium abundance but negatively correlated with renal injury related indicators. In HK-2 cells, 5-OP significantly reduced the ELD in a dose-dependent manner through inhibiting the expression of SREBP1 and FAS. Overall, the renoprotective effect of Liraglutide in DKD rats is linked to the improvement of the gut microbiota composition and increased serum 5-OP levels, which may reduce ELD in renal tubular cells by lowering lipid synthesis.
Collapse
Affiliation(s)
- Bo Yi
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Su
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yu-Li Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Ling Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Bao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zhong-Yuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Zhang Y, Zhao L, Jia Y, Zhang X, Han Y, Lu P, Yuan H. Genetic Evidence for the Causal Relationship Between Gut Microbiota and Diabetic Kidney Disease: A Bidirectional, Two-Sample Mendelian Randomisation Study. J Diabetes Res 2024; 2024:4545595. [PMID: 39479291 PMCID: PMC11524706 DOI: 10.1155/2024/4545595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Aims: According to the gut-kidney axis theory, gut microbiota (GM) has bidirectional crosstalk with the development of diabetic kidney disease (DKD). However, empirical results have been inconsistent, and the causal associations remain unclear. This study was aimed at exploring the causal relationship between GM and DKD as well as the glomerular filtration rate (GFR) and urinary albumin-to-creatinine ratio (UACR). Materials and Methods: Two-sample Mendelian randomisation (MR) analysis was performed with inverse-variance weighting as the primary method, together with four additional modes (MR-Egger regression, simple mode, weighted mode, and weighted median). We utilised summary-level genome-wide association study statistics from public databases for this MR analysis. Genetic associations with DKD were downloaded from the IEU Open GWAS project or CKDGen consortium, and associations with GM (196 taxa from five levels) were downloaded from the MiBioGen repository. Results: In forward MR analysis, we identified 13 taxa associated with DKD, most of which were duplicated in Type 2 diabetes with renal complications but not in Type 1 diabetes. We observed a causal association between genetic signature contributing to the relative abundance of Erysipelotrichaceae UCG003 and that for both DKD and GFR. Similarly, host genetic signature defining the abundance of Ruminococcaceae UCG014 was found to be simultaneously associated with DKD and UACR. In reverse MR analysis, the abundance of 14 other GM taxa was affected by DKD, including the phylum Proteobacteria, which remained significant after false discovery rate correction. Sensitivity analyses revealed no evidence of outliers, heterogeneity, or horizontal pleiotropy. Conclusion: Our findings provide compelling causal genetic evidence for the bidirectional crosstalk between specific GM taxa and DKD development, contributing valuable insights for a comprehensive understanding of the pathological mechanisms of DKD and highlighting the possibility of prevention and management of DKD by targeting GM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Lingyun Zhao
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifan Jia
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueying Han
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Lu
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Yang F, Li J, Wei L, Qin S, Shi Q, Lu S, Chu S. The characteristics of intestinal microbiota in patients with type 2 diabetes and the correlation with the percentage of T-helper cells. Front Microbiol 2024; 15:1443743. [PMID: 39397795 PMCID: PMC11466775 DOI: 10.3389/fmicb.2024.1443743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background Type 2 diabetes (T2D) is related to intestinal microflora changes and immune inflammation. We aimed to investigate the pattern of intestinal flora-systematic T helper (Th) cell linkage in T2D patients. Methods Participants with T2D diagnosed by physicians and healthy controls were enrolled in the study. The Th1, Th2, and Th17 cells from the peripheral blood were assessed by flow cytometry. The feces were collected. The V3-V4 variable region of 16S rRNA was sequenced and analyzed using bioinformatics. Principal coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS) analysis were performed to assess the beta diversity. The linear discriminant analysis (LDA) effect size (LEfSe) method was applied to identify amicrobial taxon specific to T2D. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was conducted to identify the metabolic pathways. A network analysis was conducted by constructing a co-occurrence network. Results The percentages of the Th1 and Th17 cells in the peripheral blood were higher in patients with T2D than in controls. Among the top 30 genera of the intestinal microbiota, the levels of Lachnospiraceae_NK4A136_group, Ruminococcaceae_UCG002, and Eubacterium_hallii_group were lower in the patients with T2D than in controls. In the LEfSe analysis, it was observed that the Lachnospiraceae and Ruminococcaceae families were significantly different between patients with T2D and controls. Moreover, the Th1/Th2 ratio was positively correlated with the abundance of the Lachnoclostridium and Ruminococcus_torques_group genera. In the network analysis, the Th1/Th2 ratio, Ruminococcaceae_UCG-002, and Lachnospiraceae_NK4A136_group were the important nodes. Conclusion This study provided a preliminary picture of the crosstalk between the intestinal microbiome and systematic Th cells in patients with T2D. The findings of the study suggested that the network relationship among the intestinal microbiota, metabolites, and CD4+T lymphocyte immunity was unbalanced in the patients with T2D, which might have promoted the development of T2D. This presents a therapeutic opportunity to modulate gut immune reaction and then chronic inflammation by manipulating microbiome-specific Th-cell response.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Guilin People's Hospital, Guilin, China
- Research Service Department, Guilin People's Hospital, Guilin, China
| | - Jinyan Li
- Department of Endocrinology, Guilin People's Hospital, Guilin, China
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Medical Department, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Longqin Wei
- Research Service Department, Guilin People's Hospital, Guilin, China
| | - Shenghua Qin
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Qingfeng Shi
- Laboratory Department, Guilin People's Hospital, Guilin, China
| | - Siyan Lu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shuyuan Chu
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Huang L, Wu W, Wang X. Analysis of the microecological mechanism of diabetic kidney disease based on the theory of "gut-kidney axis": A systematic review. Open Life Sci 2024; 19:20220909. [PMID: 39119482 PMCID: PMC11306963 DOI: 10.1515/biol-2022-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.
Collapse
Affiliation(s)
- Lili Huang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan430061, China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiaoqin Wang
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| |
Collapse
|
15
|
Li Q, Xie S, Liu Y, Yue W, Wang L, Liang Y, Chen Y, Yuan H, Yu J. Gut microbiota profiling reflects the renal dysfunction and psychological distress in patients with diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1410295. [PMID: 39076512 PMCID: PMC11284015 DOI: 10.3389/fendo.2024.1410295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background The gut microbiota plays a pivotal role in the development of diabetes and kidney disease. However, it is not clear how the intestinal microecological imbalance is involved in the context of diabetic kidney disease (DKD), the leading cause of renal failure. Objectives To elucidate the gut microbial signatures associated with DKD progression towards end-stage renal disease (ESRD) and explore whether they could reflect renal dysfunction and psychological distress. Methods A cross-sectional study was conducted to explore the gut microbial signatures of 29 DKD non-ESRD patients and 19 DKD ESRD patients compared to 20 healthy controls. Differential analysis was performed to detect distinct gut microbial alterations in diversities and taxon abundance of DKD with and without ESRD. Renal dysfunction was estimated by urea, creatinine, and estimated glomerular filtration rate. Psychological distress was assessed using the Self-Rating Anxiety Scale, Self-Rating Depression Scale, Hamilton Anxiety Rating Scale, and Hamilton Depression Rating Scale. Results Alpha diversity indexes were reduced in DKD patients, particularly those with ESRD. Beta diversity analysis revealed that the gut microbial compositions of DKD patients were different with healthy individuals whereas similar compositions were observed in DKD patients. Taxon differential analysis showed that when compared with the controls, DKD patients exhibit distinct microbial profiles including reduced abundances of butyrate-produced, anti-inflammatory bacteria Faecalibacterium, Lachnospira, Roseburia Lachnoclostridium, and increased abundances of pro-inflammatory bacteria Collinsella, Streptococcus etc. These distinctive genera presented consistent associations with renal dysfunction, as well as psychological distress, especially in DKD patients. Conclusions DKD patients, especially those who have progressed to ESRD, exhibit unique characteristics in their gut microbiota that are associated with both renal dysfunction and psychological distress. The gut microbiota may be a significant factor in the deterioration of DKD and its eventual progression to ESRD.
Collapse
Affiliation(s)
- Qi Li
- Heart Center of Henan Provincial People’s Hospital, Department of Cardiology of Central China Fuwai Hospital, Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
| | - Suyi Xie
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yali Liu
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Wei Yue
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Yi Liang
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Yan Chen
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Jiawei Yu
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Ye Z, So T, Zhang T, Gao X. Association between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1361440. [PMID: 39027478 PMCID: PMC11254691 DOI: 10.3389/fendo.2024.1361440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background To clarify the causal relationship between gut microbiota and diabetic nephropathy (DN), we employed Mendelian randomization (MR). Despite a strong correlation observed, establishing causality is still unclear. By utilizing MR, we aimed to investigate this relationship further and shed light on the potential causal effect of gut microbiota on DN. Methods Genetic instrumental variables for gut microbiota were obtained from a GWAS with 18340 participants. DN summary statistics (1032 cases, 451248 controls) were sourced from a separate GWAS. The primary analysis used the inverse-variance weighted (IVW) method. Reverse MR analysis was conducted to explore reverse causation. Rigorous sensitivity analyses were performed to ensure the resilience and reliability of the study's findings. Results We found two bacterial traits associated with an increased risk of DN: genus LachnospiraceaeUCG008 (OR: 1.4210; 95% CI: 1.0450, 1.9322; p = 0.0250) and genus Terrisporobacter (OR: 1.9716; 95% CI: 1.2040, 3.2285; p = 0.0070). Additionally, phylum Proteobacteria (OR: 0.4394; 95% CI: 0.2721, 0.7096; p = 0.0008) and genus Dialister (OR: 0.4841; 95% CI: 0.3171, 0.7390; p = 0.0008) were protective against DN. Sensitivity analyses consistently supported these results. In the reverse MR analysis, no statistically significant associations were observed between DN and these four bacterial traits. Conclusions Our analyses confirmed a potential causal relationship between certain gut microbiota taxa and the risk of DN. However, additional studies are required to elucidate the underlying mechanisms through which gut microbiota influences the development of DN.
Collapse
Affiliation(s)
- Zhitao Ye
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tikyeung So
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tianyou Zhang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Gao
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Cheng G, Liu Y, Guo R, Wang H, Zhang W, Wang Y. Molecular mechanisms of gut microbiota in diabetic nephropathy. Diabetes Res Clin Pract 2024; 213:111726. [PMID: 38844054 DOI: 10.1016/j.diabres.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gang Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - YuLin Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Rong Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Huinan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Zhang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Yingying Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
18
|
Napoli TF, Cortez RV, Sparvoli LG, Taddei CR, Salles JEN. Unveiling contrasts in microbiota response: A1c control improves dysbiosis in low-A1c T2DM, but fails in high-A1c cases-a key to metabolic memory? BMJ Open Diabetes Res Care 2024; 12:e003964. [PMID: 38937275 PMCID: PMC11216069 DOI: 10.1136/bmjdrc-2023-003964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with dysbiosis in the gut microbiota (MB). Individually, each medication appears to partially correct this. However, there are no studies on the response of the MB to changes in A1c. Therefore, we investigated the MB's response to intensive glycemic control. RESEARCH DESIGN AND METHODS We studied two groups of patients with uncontrolled T2DM, one group with an A1c <9% (18 patients-G1) and another group with an A1c >9% (13 patients-G2), aiming for at least a 1% reduction in A1c. We collected A1c and fecal samples at baseline, 6, and 12 months. G1 achieved an average A1c reduction of 1.1%, while G2 a reduction of 3.13%. RESULTS G1's microbiota saw a decrease in Erysipelotrichaceae_UCG_003 and in Mollicutes order (both linked to metabolic syndrome and associated comorbidities). G2, despite having a more significant reduction in A1c, experienced an increase in the proinflammatory bacteria Megasphaera and Acidaminococcus, and only one beneficial genus, Phascolarctobacterium, increased, producer of butyrate. CONCLUSION Despite a notable A1c outcome, G2 could not restore its MB. This seeming resistance to change, leading to a persistent inflammation component found in G2, might be part of the "metabolic memory" in T2DM.
Collapse
Affiliation(s)
- Thiago Fraga Napoli
- Serviço de Endocrinologia e Metabologia, Hospital Servidor Público Estadual de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Ramon V Cortez
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla R Taddei
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Joao Eduardo Nunes Salles
- Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Yuan M, Sun T, Zhang Y, Guo C, Wang F, Yao Z, Yu L. Quercetin Alleviates Insulin Resistance and Repairs Intestinal Barrier in db/ db Mice by Modulating Gut Microbiota. Nutrients 2024; 16:1870. [PMID: 38931226 PMCID: PMC11206920 DOI: 10.3390/nu16121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease which seriously affects public health. Gut microbiota remains a dynamic balance state in healthy individuals, and its disorder may affect health status and even results in metabolic diseases. Quercetin, a natural flavonoid, has been shown to have biological activities that can be used in the prevention and treatment of metabolic diseases. This study aimed to explore the mechanism of quercetin in alleviating T2DM based on gut microbiota. db/db mice were adopted as the model for T2DM in this study. After 10 weeks of administration, quercetin could significantly decrease the levels of body weight, fasting blood glucose (FBG), serum insulin (INS), the homeostasis model assessment of insulin resistance (HOMA-IR), monocyte chemoattractant protein-1 (MCP-1), D-lactic acid (D-LA), and lipopolysaccharide (LPS) in db/db mice. 16S rRNA gene sequencing and untargeted metabolomics analysis were performed to compare the differences of gut microbiota and metabolites among the groups. The results demonstrated that quercetin decreased the abundance of Proteobacteria, Bacteroides, Escherichia-Shigella and Escherichia_coli. Moreover, metabolomics analysis showed that the levels of L-Dopa and S-Adenosyl-L-methionine (SAM) were significantly increased, but 3-Methoxytyramine (3-MET), L-Aspartic acid, L-Glutamic acid, and Androstenedione were significantly decreased under quercetin intervention. Taken together, quercetin could exert its hypoglycemic effect, alleviate insulin resistance, repair the intestinal barrier, remodel the intestinal microbiota, and alter the metabolites of db/db mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhanxin Yao
- Military Medical Sciences Academy, Beijing 100039, China; (M.Y.); (T.S.); (Y.Z.); (C.G.); (F.W.)
| | - Lixia Yu
- Military Medical Sciences Academy, Beijing 100039, China; (M.Y.); (T.S.); (Y.Z.); (C.G.); (F.W.)
| |
Collapse
|
21
|
Wang J, Wang X, Ma T, Xie Y. Research progress on Alpinia oxyphylla in the treatment of diabetic nephropathy. Front Pharmacol 2024; 15:1390672. [PMID: 38948461 PMCID: PMC11211572 DOI: 10.3389/fphar.2024.1390672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic nephropathy (DN) constitutes a major microvascular complication of diabetes and is a primary cause of mortality in diabetic individuals. With the global rise in diabetes, DN has become an urgent health issue. Currently, there is no definitive cure for DN. Alpinia oxyphylla, a Chinese herbal medicine traditionally used, exhibits a wide range of pharmacological effects and is frequently used in the prevention and management of DN. This paper offers an extensive review of the biological mechanisms by which A. oxyphylla delivers therapeutic advantages in DN management. These mechanisms include activating podocyte autophagy, regulating non-coding RNA, modulating gut microbiota, alleviating lipotoxicity, counteracting oxidative stress, and diminishing inflammatory responses, underscoring the therapeutic potential of A. oxyphylla in DN treatment.
Collapse
Affiliation(s)
- Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianpeng Ma
- Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
22
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Yu JX, Chen X, Zang SG, Chen X, Wu YY, Wu LP, Xuan SH. Gut microbiota microbial metabolites in diabetic nephropathy patients: far to go. Front Cell Infect Microbiol 2024; 14:1359432. [PMID: 38779567 PMCID: PMC11109448 DOI: 10.3389/fcimb.2024.1359432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-Pei Wu
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| | - Shi-Hai Xuan
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| |
Collapse
|
24
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
25
|
Jin Y, Han C, Yang D, Gao S. Association between gut microbiota and diabetic nephropathy: a mendelian randomization study. Front Microbiol 2024; 15:1309871. [PMID: 38601939 PMCID: PMC11004376 DOI: 10.3389/fmicb.2024.1309871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Background The correlation between diabetic nephropathy (DN) and gut microbiota (GM) has been suggested in numerous animal experiments and cross-sectional studies. However, a causal association between GM and DN has not been ascertained. Methods This research adopted MR analysis to evaluate the causal link between GM and DN derived from data acquired through publicly available genome-wide association studies (GWAS). The study utilized the inverse variance weighted (IVW) approach to assess causal association between GM and DN. Four additional methods including MR-Egger, weighted median, weighted mode, and simple mode were employed to ensure comprehensive analysis and robust results. The Cochran's Q test and the MR-Egger method were conducted to identify heterogeneity and horizontal pleiotropy, respectively. The leave-one-out approach was utilized to evaluate the stability of MR results. Finally, a reverse MR was performed to identify the reverse causal association between GM and DN. Results According to IVW analysis, Class Verrucomicrobiae (p = 0.003), Order Verrucomicrobiales (p = 0.003), Family Verrucomicrobiaceae (p = 0.003), Genus Akkermansia (p = 0.003), Genus Catenibacterium (p = 0.031), Genus Coprococcus 1 (p = 0.022), Genus Eubacterium hallii group (p = 0.018), and Genus Marvinbryantia (p = 0.023) were associated with a higher risk of DN. On the contrary, Class Actinobacteria (p = 0.037), Group Eubacterium ventriosum group (p = 0.030), Group Ruminococcus gauvreauii group (p = 0.048), Order Lactobacillales (p = 0.045), Phylum Proteobacteria (p = 0.017) were associated with a lower risk of DN. The sensitivity analysis did not identify any substantial pleiotropy or heterogeneity in the outcomes. We found causal effects of DN on 11 GM species in the reverse MR analysis. Notably, Phylum Proteobacteria and DN are mutually causalities. Conclusion This study identified the causal association between GM and DN with MR analysis, which may enhance the understanding of the intestinal-renal axis and provide novel potential targets for early non-invasive diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Yongxiu Jin
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Chenxi Han
- Tangshan Maternal and Child Health Hospital, Tangshan, China
| | | | - Shanlin Gao
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Fang Y, Zhang Y, Liu Q, Zheng Z, Ren C, Zhang X. Assessing the causal relationship between gut microbiota and diabetic nephropathy: insights from two-sample Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1329954. [PMID: 38562415 PMCID: PMC10982433 DOI: 10.3389/fendo.2024.1329954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The causal association between gut microbiota (GM) and the development of diabetic nephropathy (DN) remains uncertain. We sought to explore this potential association using two-sample Mendelian randomization (MR) analysis. Methods Genome-wide association study (GWAS) data for GM were obtained from the MiBioGen consortium. GWAS data for DN and related phenotypes were collected from the FinngenR9 and CKDGen databases. The inverse variance weighted (IVW) model was used as the primary analysis model, supplemented by various sensitivity analyses. Heterogeneity was assessed using Cochran's Q test, while horizontal pleiotropy was evaluated through MR-Egger regression and the MR-PRESSO global test. Reverse MR analysis was conducted to identify any reverse causal effects. Results Our analysis identified twenty-five bacterial taxa that have a causal association with DN and its related phenotypes (p < 0.05). Among them, only the g_Eubacterium_coprostanoligenes_group showed a significant causal association with type 1 DN (p < Bonferroni-adjusted p-value). Our findings remained consistent regardless of the analytical approach used, with all methods indicating the same direction of effect. No evidence of heterogeneity or horizontal pleiotropy was observed. Reverse MR analysis did not reveal any causal associations. Conclusions This study established a causal association between specific GM and DN. Our findings contribute to current understanding of the role of GM in the development of DN, offering potential insights for the prevention and treatment strategies for this condition.
Collapse
Affiliation(s)
- Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zenan Zheng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chunhong Ren
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong, Shantou, Guangdong, China
| |
Collapse
|
27
|
Yan S, Wang H, Feng B, Ye L, Chen A. Causal relationship between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1332757. [PMID: 38533501 PMCID: PMC10964483 DOI: 10.3389/fimmu.2024.1332757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Emerging evidence has provided compelling evidence linking gut microbiota (GM) and diabetic nephropathy (DN) via the "gut-kidney" axis. But the causal relationship between them hasn't been clarified yet. We perform a Two-Sample Mendelian randomization (MR) analysis to reveal the causal connection with GM and the development of DN, type 1 diabetes nephropathy (T1DN), type 2 diabetes nephropathy (T2DN), type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM). Methods We used summary data from MiBioGen on 211 GM taxa in 18340 participants. Generalized MR analysis methods were conducted to estimate their causality on risk of DN, T1DN, T2DN, T1DM and T2DM from FinnGen. To ensure the reliability of the findings, a comprehensive set of sensitivity analyses were conducted to confirm the resilience and consistency of the results. Results It was showed that Class Verrucomicrobiae [odds ratio (OR) =1.5651, 95%CI:1.1810-2.0742,PFDR=0.0018], Order Verrucomicrobiales (OR=1.5651, 95%CI: 1.1810-2.0742, PFDR=0.0018) and Family Verrucomicrobiaceae (OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) had significant risk of DN. Our analysis found significant associations between GM and T2DN, including Class Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763, PFDR=0.0139), Order Verrucomimicrobiae (OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024), Rhodospirillales (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083). The Eubacteriumprotogenes (OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021) exhibited a protection against T1DN. Sensitivity analyses confirmed that there was no significant heterogeneity and pleiotropy. Conclusions At the gene prediction level, we identified the specific GM that is causally linked to DN in both T1DM and T2DM patients. Moreover, we identified distinct microbial changes in T1DN that differed from those seen in T2DN, offering valuable insights into GM signatures associated with subtype of nephropathy.
Collapse
Affiliation(s)
- Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baiyu Feng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lin Ye
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
28
|
Lyu X, Zhang TT, Ye Z, Chen C. Astragaloside IV Mitigated Diabetic Nephropathy by Restructuring Intestinal Microflora and Ferroptosis. Mol Nutr Food Res 2024; 68:e2300734. [PMID: 38389170 DOI: 10.1002/mnfr.202300734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Indexed: 02/24/2024]
Abstract
SCOPE To investigate the underlying mechanism of Astragaloside IV (AS-IV) in ameliorating diabetic nephropathy (DN) by regulating intestinal microbiota ecology and intestinal mucosal barrier. METHODS AND RESULTS Genetically db/db mice are used to establish DN mouse model to monitor the therapeutic effects of AS-IV and fecal microbiota transplantation (FMT) against DN. Supplementation with AS-IV dramatically attenuates several clinical indicators of DN in db/db mice. In addition, AS-IV markedly improves intestinal barrier function, modifies intestinal permeability, and reduces inflammation. Moreover, AS-IV treatment remarkably improves intestinal dysbiosis in db/db mice, characterized by an elevated abundance of Akkermansia, Ligilactobacillus, and Lactobacillus, indicating the fundamental role of the microbiome in DN progression. Furthermore, FMT derived from AS-IV-treated db/db mice is potentially efficient in antagonizing renal dysfunction, rebalancing gut microbiota, and improving intestinal permeability in recipient db/db mice. AS-IV-enriched Akkermansia muciniphila dramatically alleviates DN and intestinal mucosal barrier dysfunction in db/db mice. Intriguingly, AS-IV intervention dramatically diminishes ferroptosis in the kidney and colon tissues. CONCLUSION : Intestinal microbiome alterations and ferroptosis modulation by AS-IV may play instrumental roles in this mechanism, providing compelling evidence for the role of the gut-renal axis in DN.
Collapse
Affiliation(s)
- Xin Lyu
- Department of Endocrinology, Suqian First Hospital, Suqian, 223899, China
| | - Ting-Ting Zhang
- Department of Nephrology, Suqian First Hospital, Suqian, 223899, China
| | - Zhen Ye
- Department of Pharmacy, Suqian First Hospital, Suqian, 223899, China
| | - Ce Chen
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
29
|
Hasani M, Pilerud ZA, Kami A, Vaezi AA, Sobhani S, Ejtahed HS, Qorbani M. Association between Gut Microbiota Compositions with MicrovascularComplications in Individuals with Diabetes: A Systematic Review. Curr Diabetes Rev 2024; 20:e240124226068. [PMID: 38275035 DOI: 10.2174/0115733998280396231212114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Diabetes is one of the chronic and very complex diseases that can lead to microvascular complications. Recent evidence demonstrates that dysbiosis of the microbiota composition might result in low-grade, local, and systemic inflammation, which contributes directly to the development of diabetes mellitus and its microvascular consequences. OBJECTIVE The aim of this systematic review was to investigate the association between diabetes microvascular complications, including retinopathy, neuropathy, nephropathy, and gut microbiota composition. METHODS A systematic search was carried out in PubMed, Scopus, and ISI Web of Science from database inception to March 2023. Screening, data extraction, and quality assessment were performed by two independent authors. The Newcastle-Ottawa Quality Assessment Scale was used for quality assessment. RESULTS About 19 articles were selected from 590 retrieved articles. Among the included studies, nephropathy has been studied more than other complications of diabetes, showing that the composition of the healthy microbiota is changed, and large quantities of uremic solutes that cause kidney injury are produced by gut microbes. Phyla, including Fusobacteria and Proteobacteria, accounted for the majority of the variation in gut microbiota between Type 2 diabetic patients with and without neuropathy. In cases with retinopathy, an increase in pathogenic and proinflammatory bacteria was observed. CONCLUSION Our results revealed that increases in Bacteroidetes, Proteobacteria and Fusobacteria may be associated with the pathogenesis of diabetic nephropathy, neuropathy, and retinopathy. In view of the detrimental role of intestinal dysbiosis in the development of diabetes-related complications, gut microbiota assessment may be used as a biomarker in the future and interventions that modulate the composition of microbiota in individuals with diabetes can be used to prevent and control these complications.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Asadi Pilerud
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefe Kami
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Abbas Vaezi
- Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sahar Sobhani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Ramanathan K, Padmanabhan G, Gulilat H, Malik T. Salivary microbiome in kidney diseases: A narrative review. Cell Biochem Funct 2023; 41:988-995. [PMID: 37795946 DOI: 10.1002/cbf.3864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Many research has been conducted since the microbiota's discovery that have focused on the role it plays in health and disease. Microbiota can be divided into categories like intestinal, oral, respiratory, and skin microbiota based on the specific localized areas. To maintain homeostasis and control immunological response, the microbial populations live in symbiosis with the host. On the other hand, dysbiosis of the microbiota can cause diseases including kidney diseases and the deregulation of body functioning. We discuss the current understanding of how various kidney diseases are caused by the salivary microbiome (SM) in this overview. First, we review the studies on the salivary microbiota in diverse clinical situations. The importance of the SM in diabetic kidney disease, chronic kidney disease, membranous nephropathy, and IgA nephropathy is next highlighted. We conclude that the characteristics of the SM of patients with various kidney diseases have revealed the potential of salivary microbial markers as noninvasive tool for the detection of various kidney diseases.
Collapse
Affiliation(s)
- Kumaresan Ramanathan
- Department of Biomedical Sciences, Institute of Health, Faculty of Medical Sciences, Jimma University, Jimma, Ethiopia
| | | | - Henok Gulilat
- Department of Biomedical Sciences, Institute of Health, Faculty of Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Faculty of Medical Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
31
|
Huo L, Li H, Zhu M, Liu Y, Ren L, Hu J, Wang X. Enhanced trimethylamine metabolism and gut dysbiosis in type 2 diabetes mellitus with microalbumin. Front Endocrinol (Lausanne) 2023; 14:1257457. [PMID: 38075058 PMCID: PMC10698370 DOI: 10.3389/fendo.2023.1257457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Background Abnormal gut microbiota and blood trimethylamine-N-oxide (TMAO) metabolome have been reported in patients with type 2 diabetes mellitus (T2DM) and advanced diabetic nephropathy. This study aimed to investigate the gut microbiota profiles and a group of targeted urine metabolic characteristics in T2DM patients with or without microalbuminuria, to determine the correlation between the gut microbiota composition, trimethylamine (TMA) metabolism, and the clinical features during progression of diabetic kidney disease (DKD). Methods This study included 26 T2DM patients with microalbuminuria (Micro), 26 T2DM patients with normoalbuminuria (Normo), and 15 healthy controls (HC). Urine and Fecal samples were detected using ultra performance liquid chromatography tandem mass spectrometry and 16S ribosomal DNA gene sequencing, respectively. Results The TMAO/TMA ratio decreased gradually during the HC-Normo-Micro transition. The levels of TMA, choline and betaine were significantly different between the HC group and the T2DM patients belonging to both Normo and Micro groups. At the operational taxonomic unit (OTU) level, the gut microflora diversity was significantly reduced in the Micro groups compared to the HC groups and the Normo groups. Taxonomic analyses revealed significant consumption in the relative abundances of eight bacterial genera and significant enrichment of two bacterial genera during the HC-Normo-Micro transition. Furthermore, the relative abundances of six bacterial genera, namely, Ruminococcus_1, [Eubacterium]_ruminantium_group, Roseburia, Faecalibacterium, Fusicatenibacter and Coprococcus_3 exhibited significant differences, and were associated with elevated urinary albumin creatinine ratio (UACR), TMAO/TMA, TMA and its precursors in the Micro group compared with the other groups. Conclusion The imbalance of gut microbiota has occurred in patients with early-stage DKD, and the consumption of short-chain fatty acid-producing bacteria were associated with the accumulation of TMA and UACR.
Collapse
Affiliation(s)
- Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Hui Li
- Department of Environmental and Occupational Health, Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Ming Zhu
- Department of Nephrology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Yang Liu
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Lingyan Ren
- Department of Nephrology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Jia Hu
- Department of Endocrinology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Xiaoyi Wang
- Department of Nephrology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
32
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
33
|
Han CY, Ye XM, Lu JP, Jin HY, Wang P, Xu WW, Zhang M. Effect of Benaglutide on Gut Microbiota and Fecal Metabolites in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:2329-2344. [PMID: 37577040 PMCID: PMC10416789 DOI: 10.2147/dmso.s418757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Objective Benaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1RA) that has been approved in the treatment of type 2 diabetes mellitus (T2DM). It is known to lead to significant weight loss, and it is hypothesized that changes in gut microbiota may play a significant role in such weight loss. However, it is unclear how gut microbiota and metabolites change as a result of benaglutide treatment. Methods Healthy participants and patients with T2DM were included in this study. They received differentiated treatments, and stool specimens were collected separately. These stool specimens were subjected to 16S ribosomal RNA amplicon and metagenomic sequencing to create fecal metabolomic profiles. The diversity of gut microbiota and metabolic products in the stools of each participant was analyzed. Results The data showed that Faecalibacterium prausnitzii was abundant in the gut microbiota of the control group, which was entirely made up of healthy individuals; however, it showed a statistically significant decrease in patients with T2DM treated with metformin alone, while no significant decrease was observed in patients treated with metformin combined with benaglutide. A metagenomic analysis revealed that benaglutide could improve the fecal microbiota diversity in patients with T2DM. Furthermore, there was a statistically significant correlation between the changes in the metabolites of patients with T2DM and the changes in their gut microbiota (including F. prausnitzii) after treatment with metformin and benaglutide. Conclusion These findings suggest that the weight-reducing effect of benaglutide is attributed to its ability to normalize the gut microbiota of patients with T2DM, particularly by increasing the abundance of F. prausnitzii.
Collapse
Affiliation(s)
- Chen-Yu Han
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Xiao-Mei Ye
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Jia-Ping Lu
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Hai-Ying Jin
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Ping Wang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Wei-Wei Xu
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Min Zhang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| |
Collapse
|
34
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
35
|
Al Samarraie A, Pichette M, Rousseau G. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24065420. [PMID: 36982492 PMCID: PMC10051145 DOI: 10.3390/ijms24065420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the primary cause of death globally, with nine million deaths directly attributable to ischemic heart diseases in 2020. Since the last few decades, great effort has been put toward primary and secondary prevention strategies through identification and treatment of major cardiovascular risk factors, including hypertension, diabetes, dyslipidemia, smoking, and a sedentary lifestyle. Once labelled “the forgotten organ”, the gut microbiota has recently been rediscovered and has been found to play key functions in the incidence of ASCVD both directly by contributing to the development of atherosclerosis and indirectly by playing a part in the occurrence of fundamental cardiovascular risk factors. Essential gut metabolites, such as trimethylamine N-oxide (TMAO), secondary bile acids, lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs), have been associated with the extent of ischemic heart diseases. This paper reviews the latest data on the impact of the gut microbiome in the incidence of ASCVD.
Collapse
Affiliation(s)
- Ahmad Al Samarraie
- Internal Medicine Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Maxime Pichette
- Cardiology Department, Faculty of Medicine, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Guy Rousseau
- Centre de Biomédecine, CIUSSS-NÎM/Hôpital du Sacré-Cœur, Montréal, QC H4J 1C5, Canada
- Correspondence:
| |
Collapse
|
36
|
Voroneanu L, Burlacu A, Brinza C, Covic A, Balan GG, Nistor I, Popa C, Hogas S, Covic A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review. J Clin Med 2023; 12:jcm12051948. [PMID: 36902734 PMCID: PMC10003930 DOI: 10.3390/jcm12051948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND A bidirectional kidney-gut axis was described in patients with chronic kidney disease (CKD). On the one hand, gut dysbiosis could promote CKD progression, but on the other hand, studies reported specific gut microbiota alterations linked to CKD. Therefore, we aimed to systematically review the literature on gut microbiota composition in CKD patients, including those with advanced CKD stages and end-stage kidney disease (ESKD), possibilities to shift gut microbiota, and its impact on clinical outcomes. MATERIALS AND METHODS We performed a literature search in MEDLINE, Embase, Scopus, and Cochrane databases to find eligible studies using pre-specified keywords. Additionally, key inclusion and exclusion criteria were pre-defined to guide the eligibility assessment. RESULTS We retrieved 69 eligible studies which met all inclusion criteria and were analyzed in the present systematic review. Microbiota diversity was decreased in CKD patients as compared to healthy individuals. Ruminococcus and Roseburia had good power to discriminate between CKD patients and healthy controls (AUC = 0.771 and AUC = 0.803, respectively). Roseburia abundance was consistently decreased in CKD patients, especially in those with ESKD (p < 0.001). A model based on 25 microbiota dissimilarities had an excellent predictive power for diabetic nephropathy (AUC = 0.972). Several microbiota patterns were observed in deceased ESKD patients as compared to the survivor group (increased Lactobacillus, Yersinia, and decreased Bacteroides and Phascolarctobacterium levels). Additionally, gut dysbiosis was associated with peritonitis and enhanced inflammatory activity. In addition, some studies documented a beneficial effect on gut flora composition attributed to synbiotic and probiotic therapies. Large randomized clinical trials are required to investigate the impact of different microbiota modulation strategies on gut microflora composition and subsequent clinical outcomes. CONCLUSIONS Patients with CKD had an altered gut microbiome profile, even at early disease stages. Different abundance at genera and species levels could be used in clinical models to discriminate between healthy individuals and patients with CKD. ESKD patients with an increased mortality risk could be identified through gut microbiota analysis. Modulation therapy studies are warranted.
Collapse
Affiliation(s)
- Luminita Voroneanu
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Crischentian Brinza
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Andreea Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Correspondence:
| | - Gheorghe G. Balan
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. 1 Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Ionut Nistor
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Cristina Popa
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Simona Hogas
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| |
Collapse
|
37
|
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS One 2023; 18:e0281533. [PMID: 36827295 PMCID: PMC9956021 DOI: 10.1371/journal.pone.0281533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The gut microbiota are critical for maintaining the health and physiological function of individuals. However, illness and treatment with antibiotics can disrupt bacterial community composition, the consequences of which are largely unknown in wild animals. In this study, we described and quantified the changes in bacterial community composition in response to illness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness outbreak in a captive colony of animals, and again at least one year later, and quantified the microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial composition was quantified at different taxonomic levels, up to family. Gut bacterial composition changed between time periods, indicating that illness, treatment with antibiotics, or a combination affects bacterial communities. While some bacterial groups increased in abundance, others decreased, suggesting differential effects and possible co-adapted and synergistic interactions. Our findings provide a greater understanding of the dynamic nature of the gut microbiome of a native Australian rodent species and provides insights into the management and ethical well-being of animals kept under captive conditions.
Collapse
Affiliation(s)
- Tasmin L. Rymer
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Mao ZH, Gao ZX, Liu DW, Liu ZS, Wu P. Gut microbiota and its metabolites - molecular mechanisms and management strategies in diabetic kidney disease. Front Immunol 2023; 14:1124704. [PMID: 36742307 PMCID: PMC9896007 DOI: 10.3389/fimmu.2023.1124704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus and is also one of the serious risk factors in cardiovascular events, end-stage renal disease, and mortality. DKD is associated with the diversified, compositional, and functional alterations of gut microbiota. The interaction between gut microbiota and host is mainly achieved through metabolites, which are small molecules produced by microbial metabolism from exogenous dietary substrates and endogenous host compounds. The gut microbiota plays a critical role in the pathogenesis of DKD by producing multitudinous metabolites. Nevertheless, detailed mechanisms of gut microbiota and its metabolites involved in the occurrence and development of DKD have not been completely elucidated. This review summarizes the specific classes of gut microbiota-derived metabolites, aims to explore the molecular mechanisms of gut microbiota in DKD pathophysiology and progression, recognizes biomarkers for the screening, diagnosis, and prognosis of DKD, as well as provides novel therapeutic strategies for DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
39
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
40
|
Chen XL, Cai K, Zhang W, Su SL, Zhao LH, Qiu LP, Duan JA. Bear bile powder ameliorates type 2 diabetes via modulation of metabolic profiles, gut microbiota, and metabolites. Front Pharmacol 2023; 13:1090955. [PMID: 36686652 PMCID: PMC9846258 DOI: 10.3389/fphar.2022.1090955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Bear bile powder (BBP) is widely used in the clinic and has a hypoglycemic effect, but its mechanism is not clear. Methods: In this study, type 2 diabetes mellitus (T2DM) rats induced by a high-sugar and high-fat diet combined with streptozotocin were given BBP, and biochemical indexes, pathological sections, metabonomics, intestinal microbiota (IM) and short-chain fatty acids (SCFAs) were determined. Results: The results showed that BBP could reduce blood glucose, relieve inflammation, insulin resistance, and lipid metabolism disorder, and alleviate tissue damage of the liver, spleen, kidney, and pancreas in T2DM rats. It is worth noting that BBP can reverse the changes in blood and urine metabolites in T2DM rats, which are mainly related to tryptophan metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and glycerophospholipid metabolism. In addition, BBP restored IM disorder in T2DM rats, decreased the abundance of Allobaculum, Blautia, Dubosiella, and Anaerostipes, enriched the abundance of Lactobacillus, Romboutsia, UCG-005, and norank_f__Eggerthellaceae, and increased the concentration of SCFAs in intestinal contents. Discussion: These findings suggest that BBP may improve T2DM by regulating multiple metabolic pathways, IM composition, and SCFAs levels.
Collapse
Affiliation(s)
- Xing-Ling Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Cai
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Lan Su
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Shu-Lan Su, ; Jin-Ao Duan,
| | - Li-Hui Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Ping Qiu
- Fujian Guizhentang Pharmaceutical Co., Ltd., Huian, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Shu-Lan Su, ; Jin-Ao Duan,
| |
Collapse
|
41
|
Fan G, Cao F, Kuang T, Yi H, Zhao C, Wang L, Peng J, Zhuang Z, Xu T, Luo Y, Xie Y, Li H, Zhang K, Zeng Y, Zhang X, Peng S, Qiu X, Zhou D, Liang H, Yang B, Kang J, Liu Y, Zhang Y. Alterations in the gut virome are associated with type 2 diabetes and diabetic nephropathy. Gut Microbes 2023; 15:2226925. [PMID: 37349979 PMCID: PMC10291934 DOI: 10.1080/19490976.2023.2226925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Although changes in gut microbiome have been associated with the development of T2D and its complications, the role of the gut virome remains largely unknown. Here, we characterized the gut virome alterations in T2D and its complications diabetic nephropathy (DN) by metagenomic sequencing of fecal viral-like particles. Compared with controls, T2D subjects, especially those with DN, had significantly lower viral richness and diversity. 81 viral species were identified to be significantly altered in T2D subjects, including a decrease in some phages (e.g. Flavobacterium phage and Cellulophaga phaga). DN subjects were depleted of 12 viral species, including Bacteroides phage, Anoxybacillus virus and Brevibacillus phage, and enriched in 2 phages (Shigella phage and Xylella phage). Multiple viral functions, particularly those of phage lysing host bacteria, were markedly reduced in T2D and DN. Strong viral-bacterial interactions in healthy controls were disrupted in both T2D and DN. Moreover, the combined use of gut viral and bacterial markers achieved a powerful diagnostic performance for T2D and DN, with AUC of 99.03% and 98.19%, respectively. Our results suggest that T2D and its complication DN are characterized by a significant decrease in gut viral diversity, changes in specific virus species, loss of multiple viral functions, and disruption of viral-bacterial correlations. The combined gut viral and bacterial markers have diagnostic potential for T2D and DN.
Collapse
Affiliation(s)
- Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Cao
- Chengdu Life Baseline Technology Co., Ltd. Chengdu, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengcheng Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenhua Zhuang
- Chengdu Life Baseline Technology Co., Ltd. Chengdu, China
| | - Tong Xu
- Chengdu Life Baseline Technology Co., Ltd. Chengdu, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyu Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianliang Qiu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongqi Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Yang
- Chengdu Life Baseline Technology Co., Ltd. Chengdu, China
| | - Jian Kang
- Department of Anorectal, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Dong H, Chen X, Zhao X, Zhao C, Mehmood K, Kulyar MFEA, Bhutta ZA, Zeng J, Nawaz S, Wu Q, Li K. Intestine microbiota and SCFAs response in naturally Cryptosporidium-infected plateau yaks. Front Cell Infect Microbiol 2023; 13:1105126. [PMID: 36936759 PMCID: PMC10014559 DOI: 10.3389/fcimb.2023.1105126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Diarrhea is a severe bovine disease, globally prevalent in farm animals with a decrease in milk production and a low fertility rate. Cryptosporidium spp. are important zoonotic agents of bovine diarrhea. However, little is known about microbiota and short-chain fatty acids (SCFAs) changes in yaks infected with Cryptosporidium spp. Therefore, we performed 16S rRNA sequencing and detected the concentrations of SCFAs in Cryptosporidium-infected yaks. Results showed that over 80,000 raw and 70,000 filtered sequences were prevalent in yak samples. Shannon (p<0.01) and Simpson (p<0.01) were both significantly higher in Cryptosporidium-infected yaks. A total of 1072 amplicon sequence variants were shared in healthy and infected yaks. There were 11 phyla and 58 genera that differ significantly between the two yak groups. A total of 235 enzymes with a significant difference in abundance (p<0.001) were found between healthy and infected yaks. KEGG L3 analysis discovered that the abundance of 43 pathways was significantly higher, while 49 pathways were significantly lower in Cryptosporidium-infected yaks. The concentration of acetic acid (p<0.05), propionic acid (p<0.05), isobutyric acid (p<0.05), butyric acid (p<0.05), and isovaleric acid was noticeably lower in infected yaks, respectively. The findings of the study revealed that Cryptosporidium infection causes gut dysbiosis and results in a significant drop in the SCFAs concentrations in yaks with severe diarrhea, which may give new insights regarding the prevention and treatment of diarrhea in livestock.
Collapse
Affiliation(s)
- Hailong Dong
- Key Laboratory of Clinical Veterinary Medicine in Tibet, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
| | - Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Qingxia Wu
- Key Laboratory of Clinical Veterinary Medicine in Tibet, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
- *Correspondence: Qingxia Wu, ; Kun Li,
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Qingxia Wu, ; Kun Li,
| |
Collapse
|
43
|
Hong J, Fu T, Liu W, Du Y, Min C, Lin D. Specific alterations of gut microbiota in diabetic microvascular complications: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1053900. [PMID: 36545341 PMCID: PMC9761769 DOI: 10.3389/fendo.2022.1053900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of gut microbiota in diabetes mellitus (DM) and its complications has been widely accepted. However, the alternation of gut microbiota in diabetic microvascular complications (DC) remains to be determined. METHODS Publications (till August 20th, 2022) on gut microbiota in patients with DC were retrieved from PubMed, Web of Science, Embase and Cochrane. Review Manager 5.3 was performed to estimate the standardized mean difference (SMD) and 95% confidence interval (CI) and calculate alpha diversity indices and the relative abundance of gut microbiota between patients in DC v.s. DM and DC v.s. healthy controls (HC). RESULTS We included 13 studies assessing 329 patients with DC, 232 DM patients without DC, and 241 HC. Compared to DM, patients with DC shared a significantly lower Simpson index (SMD = -0.59, 95% CI [-0.82, -0.36], p < 0.00001), but a higher ACE index (SMD = 0.42, 95% CI[0.11, 0.74], p = 0.009). Compared to HC, DC patients held a lower ACE index (SMD = -0.61, 95% CI[-1.20, -0.02], p = 0.04). The relative abundances of phylum Proteobacteria (SMD = 0.03, 95% CI[0.01, 0.04], p = 0.003, v.s. HC) and genus Klebsiella (SMD = 0.00, 95% CI[0.00, 0.00], p < 0.00001, v.s. HC) were enriched, accompanying with depleted abundances of phylum Firmicutes (SMD = -0.06, 95% CI[-0.11, -0.01], p = 0.02, v.s. HC), genera Bifidobacterium (SMD = -0.01, 95% CI[-0.02,-0.01], p < 0.0001, v.s. DM), Faecalibacterium (SMD = -0.01, 95% CI[-0.02, -0.00], p = 0.009, v.s. DM; SMD = -0.02, 95% CI[-0.02, -0.01], p < 0.00001, v.s. HC) and Lactobacillus (SMD = 0.00, 95% CI[-0.00, -0.00], p < 0.00001, v.s. HC) in DC. CONCLUSIONS Gut microbiota perturbations with the depletion of alpha diversity and certain short-chain fatty acids (SCFAs)-producing bacteria were associated with the pathology of DC. Therefore, gut microbiota might serve as a promising approach for the diagnosis and treatment of DC. Further investigations are required to study the mechanisms by which gut dysbiosis acts on the onset and progression of DC.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
45
|
Zhang Z, Li Q, Liu F, Wang D. Lycoperoside H protects against diabetic nephropathy via alteration of gut microbiota and inflammation. J Biochem Mol Toxicol 2022; 36:e23216. [PMID: 36156833 DOI: 10.1002/jbt.23216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
It is well known that hyperglycemia leads to the progression and expansion of various micro and macrovascular disease such as diabetic nephropathy (DN). Lycoperoside H (LH) alkaloidal saponin exhibited the antidiabetic effect, but its DN effect is unclear. In this experimental study, we scrutinized the renal protective effect of LH against the streptozotocin (STZ)-induced DN in rats and explore the underlying mechanism. Sprague-Dawley rats were used in this experimental study and an intraperitoneal injection of STZ (45 mg/kg) was used for the induction of diabetes, rats received the oral administration of LH (20 mg/kg). The blood glucose level, body weight, organ weight (renal and pancreas), and biochemical parameters were estimated. We also scrutinized the effect of LH to enhance intestinal barrier function and suppress inflammation and intestinal permeability. LH significantly (p < 0.001) decreased the glucose level and enhanced the body weight with a reduction of renal weight and boost the pancreas weight. LH significantly (p < 0.001) enhanced the creatinine level and decreased the albumin level, urine volume, urinary albumin excretion rate, and urinary albumin creatinine ratio in the urine. It also suppressed the renal parameters, such as creatinine, blood urea nitrogen, and urea. LH significantly (p < 0.001) altered the level of lipid and antioxidant parameters. LH treatment significantly (p < 0.001) suppressed the cytokines and inflammatory parameters. LH considerably enhanced the Ruminococcaceae, Blautia, and suppressed the abundance of Bifidobacterium, Clostridium, and Turicibacter. It reduced the F/B ratio along with alteration of community abundance of Firmicutes, Actinobacteria, Proteobacteria, Tenericutes, other bacteria, and Bacteroidetes. The current result suggests that LH suppressed the diabetic nephropathological condition via alteration of gut microbiota and inflammation.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qianyu Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dayu Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Abstract
Diabetic nephropathy (DN) is the primary cause of end-stage renal disease. Accumulating studies have implied a critical role for the gut microbiota in diabetes mellitus (DM) and DN. However, the precise roles and regulatory mechanisms of the gut microbiota in the pathogenesis of DN remain largely unclear. In this study, metagenomics sequencing was performed using fecal samples from healthy controls (CON) and type 2 diabetes mellitus (T2DM) patients with or without DN. Fresh fecal samples from 15 T2DM patients without DN, 15 DN patients, and 15 age-, gender-, and body mass index (BMI)-matched healthy controls were collected. The compositions and potential functions of the gut microbiota were estimated. Although no difference of gut microbiota α and β diversity was observed between the CON, T2DM, and DN groups, the relative abundances of butyrate-producing bacteria (Clostridium, Eubacterium, and Roseburia intestinalis) and potential probiotics (Lachnospira and Intestinibacter) were significantly reduced in T2DM and DN patients. Besides, Bacteroides stercoris was significantly enriched in fecal samples from patients with DN. Moreover, Clostridium sp. 26_22 was negatively associated with serum creatinine (P < 0.05). DN patients could be accurately distinguished from CON by Clostridium sp. CAG_768 (area under the curve [AUC] = 0.941), Bacteroides propionicifaciens (AUC = 0.905), and Clostridium sp. CAG_715 (AUC = 0.908). DN patients could be accurately distinguished from T2DM patients by Pseudomonadales, Fusobacterium varium, and Prevotella sp. MSX73 (AUC = 0.889). Regarding the potential bacterial functions of the gut microbiota, the citrate cycle, base excision repair, histidine metabolism, lipoic acid metabolism, and bile acid biosynthesis were enriched in DN patients, while selenium metabolism and branched-chain amino acid biosynthesis were decreased in DN patients. IMPORTANCE Gut microbiota imbalance is found in fecal samples from DN patients, in which Roseburia intestinalis is significantly decreased, while Bacteroides stercoris is increased. There is a significant correlation between gut microbiota imbalance and clinical indexes related to lipid metabolism, glucose metabolism, and renal function. The gut microbiota may be predictive factors for the development and progression of DN, although further studies are warranted to illustrate their regulatory mechanisms.
Collapse
|
47
|
Zerdan MB, Moukarzel R, Naji NS, Bilen Y, Nagarajan A. The Urogenital System’s Role in Diseases: A Synopsis. Cancers (Basel) 2022; 14:cancers14143328. [PMID: 35884388 PMCID: PMC9319963 DOI: 10.3390/cancers14143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The urinary tract microbiome has come under a lot of scrutiny, and this has led to the rejection of the pre-established concept of sterility in the urinary bladder. Microbial communities in the urinary tract have been implicated in the maintenance of health. Thus, alterations in their composition have also been associated with different urinary pathologies, such as urinary tract infections. For that reason, tackling the urinary microbiome of healthy individuals, as well as its involvement in disease through the proliferation of opportunistic pathogens, could open a potential field of study, leading to new insights into prevention, diagnosis, and treatment strategies for different diseases. Abstract The human microbiota contains ten times more microbial cells than human cells contained by the human body, constituting a larger genetic material than the human genome itself. Emerging studies have shown that these microorganisms represent a critical determinant in human health and disease, and the use of probiotic products as potential therapeutic interventions to modulate homeostasis and treat disease is being explored. The gut is a niche for the largest proportion of the human microbiota with myriad studies suggesting a strong link between the gut microbiota composition and disease development throughout the body. More specifically, there is mounting evidence on the relevance of gut microbiota dysbiosis in the development of urinary tract disease including urinary tract infections (UTIs), chronic kidney disease, and kidney stones. Fewer emerging reports, however, are suggesting that the urinary tract, which has long been considered ‘sterile’, also houses its unique microbiota that might have an important role in urologic health and disease. The implications of this new paradigm could potentially change the therapeutic perspective in urological disease.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Department of Hematology and Oncology, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Rita Moukarzel
- Faculty of Medicine, Lebanese American University Medical Center, Lebanese American University, Beirut 1102, Lebanon;
| | - Nour Sabiha Naji
- Faculty of Medicine, American University of Beirut, Beirut 2020, Lebanon;
| | - Yara Bilen
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Arun Nagarajan
- Department of Hematology and Oncology, Cleveland Clinic Florida, Weston, FL 33331, USA
- Correspondence:
| |
Collapse
|
48
|
Zhao YY. Recent advances of gut microbiota in chronic kidney disease patients. EXPLORATION OF MEDICINE 2022:260-274. [DOI: 10.37349/emed.2022.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/21/2022] [Indexed: 01/23/2025] Open
Abstract
Chronic kidney disease (CKD) is a worldwide public health issue and has ultimately progressed to an end-stage renal disease that requires life-long dialysis or renal transplantation. However, the underlying molecular mechanism of these pathological development and progression remains to be fully understood. The human gut microbiota is made up of approximately 100 trillion microbial cells including anaerobic and aerobic species. In recent years, more and more evidence has indicated a clear association between dysbiosis of gut microbiota and CKD including immunoglobulin A (IgA) nephropathy, diabetic kidney disease, membranous nephropathy, chronic renal failure and end-stage renal disease. The current review describes gut microbial dysbiosis and metabolites in patients with CKD thus helping to understand human disease. Treatment with prebiotics, probiotics and natural products can attenuate CKD through improving dysbiosis of gut microbiota, indicating a novel intervention strategy in patients with CKD. This review also discusses therapeutic options, such as prebiotics, probiotics and natural products, for targeting dysbiosis of gut microbiota in patients to provide more specific concept-driven therapy strategy for CKD treatment.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an 710069, Shaanxi, China
| |
Collapse
|
49
|
Wang Y, Zhao J, Qin Y, Yu Z, Zhang Y, Ning X, Sun S. The Specific Alteration of Gut Microbiota in Diabetic Kidney Diseases—A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:908219. [PMID: 35784273 PMCID: PMC9248803 DOI: 10.3389/fimmu.2022.908219] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Emerging evidence indicates that gut dysbiosis is involved in the occurrence and development of diabetic kidney diseases (DKD). However, the key microbial taxa closely related to DKD have not been determined. Methods PubMed, Web of Science, Cochrane, Chinese Biomedical Databases, China National Knowledge Internet, and Embase were searched for case-control or cross-sectional studies comparing the gut microbiota of patients with DKD and healthy controls (HC) from inception to February 8, 2022, and random/fixed-effects meta-analysis on the standardized mean difference (SMD) were performed for alpha diversity indexes between DKD and HC, and beta diversity indexes and the relative abundance of gut microbiota were extracted and summarized qualitatively. Results A total of 16 studies (578 patients with DKD and 444 HC) were included. Compared to HC, the bacterial richness of patients with DKD was significantly decreased, and the diversity indexes were decreased but not statistically, companying with a distinct beta diversity. The relative abundance of phylum Proteobacteria, Actinobacteria, and Bacteroidetes, family Coriobacteriaceae, Enterobacteriaceae, and Veillonellaceae, genus Enterococcus, Citrobacter, Escherichia, Klebsiella, Akkermansia, Sutterella, and Acinetobacter, and species E. coli were enriched while that of phylum Firmicutes, family Lachnospiraceae, genus Roseburia, Prevotella, and Bifidobacterium were depleted in patients with DKD. Conclusions The gut microbiota of patients with DKD may possess specific features characterized by expansion of genus Escherichia, Citrobacter, and Klebsiella, and depletion of Roseburia, which may contribute most to the alterations of their corresponding family and phylum taxa, as well as the bacterial diversity and composition. These microbial taxa may be closely related to DKD and serve as promising targets for the management of DKD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021289863.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Shiren Sun,
| |
Collapse
|
50
|
Nagase N, Ikeda Y, Tsuji A, Kitagishi Y, Matsuda S. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J Diabetes 2022; 13:150-160. [PMID: 35432750 PMCID: PMC8984564 DOI: 10.4239/wjd.v13.i3.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are insufficient. The number of patients with DN has been increasing in Asian countries because of westernization of dietary lifestyle, which may be associated with the following changes in gut microbiota. Alterations in the gut microbiota composition can lead to an imbalanced gastrointestinal environment that promotes abnormal production of metabolites and/or inflammatory status. Functional microenvironments of the gut could be changed in the different stages of DN. In particular, altered levels of short chain fatty acids, D-amino acids, and reactive oxygen species biosynthesis in the gut have been shown to be relevant to the pathogenesis of the DN. So far, evidence suggests that the gut microbiota may play a key role in determining networks in the development of DN. Interventions directing the gut microbiota deserve further investigation as a new protective therapy in DN. In this review, we discuss the potential roles of the gut microbiota and future perspectives in the protection and/or treatment of kidneys.
Collapse
Affiliation(s)
- Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|