1
|
Hendrix CM, Baker HE, Yu Y, Schneck DD, Wang J, Johnson LA, Vitek JL. Parkinsonism Disrupts Neuronal Modulation in the Presupplementary Motor Area during Movement Preparation. J Neurosci 2025; 45:e1802242025. [PMID: 39890463 PMCID: PMC11949476 DOI: 10.1523/jneurosci.1802-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Multiple studies suggest that Parkinson's disease (PD) is associated with changes in neuronal activity throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts neuronal activity in the presupplementary motor area (pre-SMA), an area in the medial frontal cortex involved in movement planning and motor control. In this study, single unit activity was recorded in the pre-SMA of two female nonhuman primates during a visually cued reaching task in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. In the naive state, neuronal discharge rates were dynamically modulated prior to the presentation of the instructional go-cue. In a subset of these modulated cells, the magnitude of modulation correlated linearly with reaction time (RT). In the parkinsonian state, however, modulation of discharge rates in the pre-SMA was disrupted, and the predictive encoding of RT was significantly diminished. These findings add to our understanding of the role of pre-SMA in motor behavior and suggest that disrupted encoding in this cortical region contributes to the alteration of early preparatory and premovement processes present in Parkinson's disease.
Collapse
Affiliation(s)
- Claudia M Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hannah E Baker
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - David D Schneck
- University of Minnesota Masonic Institute for the Developing Brain, Minneapolis, Minnesota 55414
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
2
|
Hendrix CM, Baker HE, Yu Y, Schneck DD, Wang J, Johnson LA, Vitek JL. Parkinsonism disrupts neuronal modulation in the pre-supplementary motor area during movement preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619634. [PMID: 39484568 PMCID: PMC11526946 DOI: 10.1101/2024.10.22.619634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiple studies suggest that Parkinson's disease (PD) is associated with changes in neuronal activity throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts neuronal activity in the pre-supplementary motor area (pre-SMA), an area in medial frontal cortex involved in movement planning and motor control. In this study, single unit activity was recorded in the pre-SMA of two non-human primates during a visually cued reaching task in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. In the naive state neuronal discharge rates were dynamically modulated prior to the presentation of the instructional go-cue. In a subset of these modulated cells, the magnitude of modulation correlated linearly with reaction time (RT). In the parkinsonian state, however, modulation of discharge rates in the pre-SMA was disrupted and the predictive encoding of RT was significantly diminished. These findings add to our understanding of the role of pre-SMA in motor behavior and suggest that disrupted encoding in this cortical area contributes to the alteration of early preparatory and pre-movement processes that are present in Parkinson's disease.
Collapse
Affiliation(s)
- Claudia M. Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hannah E. Baker
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D. Schneck
- University of Minnesota Masonic Institute for the Developing Brain, Minneapolis, USA
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Mantas I, Flais I, Masarapu Y, Ionescu T, Frapard S, Jung F, Le Merre P, Saarinen M, Tiklova K, Salmani BY, Gillberg L, Zhang X, Chergui K, Carlén M, Giacomello S, Hengerer B, Perlmann T, Svenningsson P. Claustrum and dorsal endopiriform cortex complex cell-identity is determined by Nurr1 and regulates hallucinogenic-like states in mice. Nat Commun 2024; 15:8176. [PMID: 39289358 PMCID: PMC11408527 DOI: 10.1038/s41467-024-52429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The Claustrum/dorsal endopiriform cortex complex (CLA) is an enigmatic brain region with extensive glutamatergic projections to multiple cortical areas. The transcription factor Nurr1 is highly expressed in the CLA, but its role in this region is not understood. By using conditional gene-targeted mice, we show that Nurr1 is a crucial regulator of CLA neuron identity. Although CLA neurons remain intact in the absence of Nurr1, the distinctive gene expression pattern in the CLA is abolished. CLA has been hypothesized to control hallucinations, but little is known of how the CLA responds to hallucinogens. After the deletion of Nurr1 in the CLA, both hallucinogen receptor expression and signaling are lost. Furthermore, functional ultrasound and Neuropixel electrophysiological recordings revealed that the hallucinogenic-receptor agonists' effects on functional connectivity between prefrontal and sensorimotor cortices are altered in Nurr1-ablated mice. Our findings suggest that Nurr1-targeted strategies provide additional avenues for functional studies of the CLA.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ivana Flais
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Department of Neuroimaging King's College London, London, UK
| | - Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tudor Ionescu
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Felix Jung
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Tiklova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bastian Hengerer
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Vreven A, Aston-Jones G, Pickering AE, Poe GR, Waterhouse B, Totah NK. In search of the locus coeruleus: guidelines for identifying anatomical boundaries and electrophysiological properties of the blue spot in mice, fish, finches, and beyond. J Neurophysiol 2024; 132:226-239. [PMID: 38842506 PMCID: PMC11383618 DOI: 10.1152/jn.00193.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Our understanding of human brain function can be greatly aided by studying analogous brain structures in other organisms. One brain structure with neurochemical and anatomical homology throughout vertebrate species is the locus coeruleus (LC), a small collection of norepinephrine (NE)-containing neurons in the brainstem that project throughout the central nervous system. The LC is involved in nearly every aspect of brain function, including arousal and learning, which has been extensively examined in rats and nonhuman primates using single-unit recordings. Recent work has expanded into putative LC single-unit electrophysiological recordings in a nonmodel species, the zebra finch. Given the importance of correctly identifying analogous structures as research efforts expand to other vertebrates, we suggest adoption of consensus anatomical and electrophysiological guidelines for identifying LC neurons across species when evaluating brainstem single-unit spiking or calcium imaging. Such consensus criteria will allow for confident cross-species understanding of the roles of the LC in brain function and behavior.
Collapse
Affiliation(s)
- Amelien Vreven
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, United States
| | - Anthony E Pickering
- Anaesthesia, Pain & Critical Care Sciences, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Gina R Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, United States
- Department of Neurobiology, University of California, Los Angeles, California, United States
| | - Barry Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States
| | - Nelson K Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Frank D, Gruenbaum BF, Zvenigorodsky V, Shelef I, Oleshko A, Matalon F, Tsafarov B, Zlotnik A, Frenkel A, Boyko M. Establishing a 3-Tesla Magnetic Resonance Imaging Method for Assessing Diffuse Axonal Brain Injury in Rats. Int J Mol Sci 2024; 25:4234. [PMID: 38673818 PMCID: PMC11050572 DOI: 10.3390/ijms25084234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury (TBI) significantly contributes to death and disability worldwide. However, treatment options remain limited. Here, we focus on a specific pathology of TBI, diffuse axonal brain injury (DABI), which describes the process of the tearing of nerve fibers in the brain after blunt injury. Most protocols to study DABI do not incorporate a specific model for that type of pathology, limiting their ability to identify mechanisms and comorbidities of DABI. In this study, we developed a magnetic resonance imaging (MRI) protocol for DABI in a rat model using a 3-T clinical scanner. We compared the neuroimaging outcomes with histologic and neurologic assessments. In a sample size of 10 rats in the sham group and 10 rats in the DABI group, we established neurological severity scores before the intervention and at 48 h following DABI induction. After the neurological evaluation after DABI, all rats underwent MRI scans and were subsequently euthanized for histological evaluation. As expected, the neurological assessment showed a high sensitivity for DABI lesions indicated using the β-APP marker. Surprisingly, however, we found that the MRI method had greater sensitivity in assessing DABI lesions compared to histological methods. Out of the five MRI parameters with pathological changes in the DABI model, we found significant changes compared to sham rats in three parameters, and, as shown using comparative tests with other models, MRI was the most sensitive parameter, being even more sensitive than histology. We anticipate that this DABI protocol will have a significant impact on future TBI and DABI studies, advancing research on treatments specifically targeted towards improving patient quality of life and long-term outcomes.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (D.F.)
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, 40002 Sumy, Ukraine
| | - Frederic Matalon
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (D.F.)
| | - Beatris Tsafarov
- Department of Histology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (D.F.)
| | - Amit Frenkel
- Department of Emergency Medicine Recanati School for Community Health Professions, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (D.F.)
| |
Collapse
|
6
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
7
|
Zhang X, Yuan J, Zhang S, Li W, Xu Y, Li H, Zhang L, Chen X, Ding W, Zhu J, Song J, Wang X, Zhu C. Germinal matrix hemorrhage induces immune responses, brain injury, and motor impairment in neonatal rats. J Cereb Blood Flow Metab 2023; 43:49-65. [PMID: 36545808 PMCID: PMC10638988 DOI: 10.1177/0271678x221147091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Germinal matrix hemorrhage (GMH) is a major complication of prematurity that causes secondary brain injury and is associated with long-term neurological disabilities. This study used a postnatal day 5 rat model of GMH to explore immune response, brain injury, and neurobehavioral changes after hemorrhagic injury. The results showed that CD45high/CD11b+ immune cells increased in the brain after GMH and were accompanied by increased macrophage-related chemokine/cytokines and inflammatory mediators. Hematoma formed as early as 2 h after injection of collagenase VII and white matter injury appeared not only in the external capsule and hippocampus, but also in the thalamus. In addition, GMH caused abnormal motor function as revealed by gait analysis, and locomotor hyperactivity in the elevated plus maze, though no other obvious anxiety or recognition/memory function changes were noted when examined by the open field test and novel object recognition test. The animal model used here partially reproduces the GMH-induced brain injury and motor dysfunction seen in human neonates and therefore can be used as a valid tool in experimental studies for the development of effective therapeutic strategies for GMH-induced brain injury.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jing Yuan
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Wendong Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xi Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Wenjun Ding
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jinjin Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Center for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Center for Bran Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Bhattarai JP, Etyemez S, Jaaro-Peled H, Janke E, Leon Tolosa UD, Kamiya A, Gottfried JA, Sawa A, Ma M. Olfactory modulation of the medial prefrontal cortex circuitry: Implications for social cognition. Semin Cell Dev Biol 2022; 129:31-39. [PMID: 33975755 PMCID: PMC8573060 DOI: 10.1016/j.semcdb.2021.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Semra Etyemez
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Usuy D Leon Tolosa
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Kamiya
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Neuroscience, Biomedical Engineering, and Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Kamer L, Noser H, Arand C, Handrich K, Rommens PM, Wagner D. Artificial intelligence and CT-based 3D statistical modeling to assess transsacral corridors and plan implant positioning. J Orthop Res 2021; 39:2681-2692. [PMID: 33586812 DOI: 10.1002/jor.25010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Transsacral corridors at levels S1 and S2 represent complex osseous spaces allowing percutaneous fixation of non- or minimally-displaced fragility fractures of the sacrum. To safely place transsacral implants, they must be completely intraosseous. However, standard radiographs and CT do not properly demonstrate the corridor's intricate configuration. Our goal was to facilitate the three-dimensional assessment of transsacral corridors using artificial intelligence and the planning of transsacral implant positioning. In total, 100 pelvic CTs (49 women, mean age: 58.6 ± SD 14.8 years; 51 men, mean age: 60.7 ± SD 13 years) were used to compute a 3D statistical model of the pelvic ring. On the basis of morphologic features (=predictors) and principal components scores (=response), regression learners were interactively trained, validated, and tuned to predict/sample personalized 3D pelvic models. They were matched via thin-plate spline transformation to a series of 20 pelvic CTs with fragility fractures of the sacrum (18 women and 2 men, age: 69-9.5 years, mean age: 78.65 ± SD 8.4 years). These models demonstrated the availability, dimension, cross-section, and symmetry of transsacral corridors S1 and S2, as well as the planned implant position, dimension, axes, and entry and exit points. The complete intraosseous pathway was controlled in CT reconstructions. We succeeded to establish a workflow determining transsacral corridors S1 and S2 using artificial intelligence and 3D statistical modeling.
Collapse
Affiliation(s)
- Lukas Kamer
- AO Research Institute Davos, Davos, Switzerland
| | | | - Charlotte Arand
- Department of Orthopaedics and Traumatology, University Medical Center, Mainz, Germany
| | - Kristin Handrich
- Department of Orthopaedics and Traumatology, University Medical Center, Mainz, Germany
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, University Medical Center, Mainz, Germany
| | - Daniel Wagner
- Department of Orthopaedics and Traumatology, University Medical Center, Mainz, Germany
| |
Collapse
|
10
|
Sinke MRT, van Tilborg GAF, Meerwaldt AE, van Heijningen CL, van der Toorn A, Straathof M, Rakib F, Ali MHM, Al-Saad K, Otte WM, Dijkhuizen RM. Remote Corticospinal Tract Degeneration After Cortical Stroke in Rats May Not Preclude Spontaneous Sensorimotor Recovery. Neurorehabil Neural Repair 2021; 35:1010-1019. [PMID: 34546138 PMCID: PMC8593321 DOI: 10.1177/15459683211041318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Recovery of motor function after stroke appears to be related to the integrity of axonal connections in the corticospinal tract (CST) and corpus callosum, which may both be affected after cortical stroke. Objective. In the present study, we aimed to elucidate the relationship of changes in measures of the CST and transcallosal tract integrity, with the interhemispheric functional connectivity and sensorimotor performance after experimental cortical stroke. Methods. We conducted in vivo diffusion magnetic resonance imaging (MRI), resting-state functional MRI, and behavior testing in twenty-five male Sprague Dawley rats recovering from unilateral photothrombotic stroke in the sensorimotor cortex. Twenty-three healthy rats served as controls. Results. A reduction in the number of reconstructed fibers, a lower fractional anisotropy, and higher radial diffusivity in the ipsilesional but intact CST, reflected remote white matter degeneration. In contrast, transcallosal tract integrity remained preserved. Functional connectivity between the ipsi- and contralesional forelimb regions of the primary somatosensory cortex significantly reduced at week 8 post-stroke. Comparably, usage of the stroke-affected forelimb was normal at week 28, following significant initial impairment between day 1 and week 8 post-stroke. Conclusions. Our study shows that post-stroke motor recovery is possible despite degeneration in the CST and may be supported by intact neuronal communication between hemispheres.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Geralda A F van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, 108740College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), 370593Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, 108740College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.,Department of Child Neurology, University Medical Center Utrecht and Utrecht University, 526115UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Constructing the rodent stereotaxic brain atlas: a survey. SCIENCE CHINA-LIFE SCIENCES 2021; 65:93-106. [PMID: 33860452 DOI: 10.1007/s11427-020-1911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
The stereotaxic brain atlas is a fundamental reference tool commonly used in the field of neuroscience. Here we provide a brief history of brain atlas development and clarify three key conceptual elements of stereotaxic brain atlasing: brain image, atlas, and stereotaxis. We also refine four technical indices for evaluating the construction of atlases: the quality of staining and labeling, the granularity of delineation, spatial resolution, and the precision of spatial location and orientation. Additionally, we discuss state-of-the-art technologies and their trends in the fields of image acquisition, stereotaxic coordinate construction, image processing, anatomical structure recognition, and publishing: the procedures of brain atlas illustration. We believe that the use of single-cell resolution and micron-level location precision will become a future trend in the study of the stereotaxic brain atlas, which will greatly benefit the development of neuroscience.
Collapse
|
12
|
Impulsivity and Decision-making Style Among Tramadol Drug Addicts and its Relation to Frontal Lobe Volume. ADDICTIVE DISORDERS & THEIR TREATMENT 2021. [DOI: 10.1097/adt.0000000000000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
14
|
Jiricek S, Koudelka V, Lacik J, Vejmola C, Kuratko D, Wójcik DK, Raida Z, Hlinka J, Palenicek T. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front Neuroinform 2021; 14:589228. [PMID: 33568980 PMCID: PMC7868391 DOI: 10.3389/fninf.2020.589228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
This work presents and evaluates a 12-electrode intracranial electroencephalography system developed at the National Institute of Mental Health (Klecany, Czech Republic) in terms of an electrical source imaging (ESI) technique in rats. The electrode system was originally designed for translational research purposes. This study demonstrates that it is also possible to use this well-established system for ESI, and estimates its precision, accuracy, and limitations. Furthermore, this paper sets a methodological basis for future implants. Source localization quality is evaluated using three approaches based on surrogate data, physical phantom measurements, and in vivo experiments. The forward model for source localization is obtained from the FieldTrip-SimBio pipeline using the finite-element method. Rat brain tissue extracted from a magnetic resonance imaging template is approximated by a single-compartment homogeneous tetrahedral head model. Four inverse solvers were tested: standardized low-resolution brain electromagnetic tomography, exact low-resolution brain electromagnetic tomography (eLORETA), linear constrained minimum variance (LCMV), and dynamic imaging of coherent sources. Based on surrogate data, this paper evaluates the accuracy and precision of all solvers within the brain volume using error distance and reliability maps. The mean error distance over the whole brain was found to be the lowest in the eLORETA solution through signal to noise ratios (SNRs) (0.2 mm for 25 dB SNR). The LCMV outperformed eLORETA under higher SNR conditions, and exhibiting higher spatial precision. Both of these inverse solvers provided accurate results in a phantom experiment (1.6 mm mean error distance across shallow and 2.6 mm across subcortical testing dipoles). Utilizing the developed technique in freely moving rats, an auditory steady-state response experiment provided results in line with previously reported findings. The obtained results support the idea of utilizing a 12-electrode system for ESI and using it as a solid basis for the development of future ESI dedicated implants.
Collapse
Affiliation(s)
- Stanislav Jiricek
- National Institute of Mental Health, Klecany, Czechia
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Lacik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Cestmir Vejmola
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - David Kuratko
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Daniel K. Wójcik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Zbynek Raida
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health, Klecany, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Palenicek
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Li Z, Gao H, Zeng P, Jia Y, Kong X, Xu K, Bai R. Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Front Neurosci 2021; 14:611696. [PMID: 33536869 PMCID: PMC7848148 DOI: 10.3389/fnins.2020.611696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These “direct” fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.
Collapse
Affiliation(s)
- Zhaoqing Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Pingmei Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Sinke MRT, Otte WM, Meerwaldt AE, Franx BAA, Ali MHM, Rakib F, van der Toorn A, van Heijningen CL, Smeele C, Ahmed T, Blezer ELA, Dijkhuizen RM. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1642-1653. [PMID: 33198560 DOI: 10.1089/neu.2020.7151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.,UMC Utrecht Brain Center, Department of Child Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Christel Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| |
Collapse
|
17
|
Groeneboom NE, Yates SC, Puchades MA, Bjaalie JG. Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. Front Neuroinform 2020; 14:37. [PMID: 32973479 PMCID: PMC7472695 DOI: 10.3389/fninf.2020.00037] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/17/2020] [Indexed: 02/01/2023] Open
Abstract
With recent technological advances in microscopy and image acquisition of tissue sections, further developments of tools are required for viewing, transforming, and analyzing the ever-increasing amounts of high-resolution data produced. In the field of neuroscience, histological images of whole rodent brain sections are commonly used for investigating brain connections as well as cellular and molecular organization in the normal and diseased brain, but present a problem for the typical neuroscientist with no or limited programming experience in terms of the pre- and post-processing steps needed for analysis. To meet this need we have designed Nutil, an open access and stand-alone executable software that enables automated transformations, post-processing, and analyses of 2D section images using multi-core processing (OpenMP). The software is written in C++ for efficiency, and provides the user with a clean and easy graphical user interface for specifying the input and output parameters. Nutil currently contains four separate tools: (1) A transformation toolchain named “Transform” that allows for rotation, mirroring and scaling, resizing, and renaming of very large tiled tiff images. (2) “TiffCreator” enables the generation of tiled TIFF images from other image formats such as PNG and JPEG. (3) A “Resize” tool completes the preprocessing toolset and allows downscaling of PNG and JPEG images with output in PNG format. (4) The fourth tool is a post-processing method called “Quantifier” that enables the quantification of segmented objects in the context of regions defined by brain atlas maps generated with the QuickNII software based on a 3D reference atlas (mouse or rat). The output consists of a set of report files, point cloud coordinate files for visualization in reference atlas space, and reference atlas images superimposed with color-coded objects. The Nutil software is made available by the Human Brain Project (https://www.humanbrainproject.eu) at https://www.nitrc.org/projects/nutil/.
Collapse
Affiliation(s)
- Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 2020; 11:1133. [PMID: 32111833 PMCID: PMC7048793 DOI: 10.1038/s41467-020-14858-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains. Understanding principles of neuronal connectivity requires tools for quantification and visualization of large datasets. Here, the authors introduce an online resource encompassing the coordinates of two million neurons labelled by tracer injections in the marmoset cortex, and analysis tools.
Collapse
|
19
|
Straathof M, Sinke MRT, Roelofs TJM, Blezer ELA, Sarabdjitsingh RA, van der Toorn A, Schmitt O, Otte WM, Dijkhuizen RM. Distinct structure-function relationships across cortical regions and connectivity scales in the rat brain. Sci Rep 2020; 10:56. [PMID: 31919379 PMCID: PMC6952407 DOI: 10.1038/s41598-019-56834-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.
Collapse
Affiliation(s)
- Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Theresia J M Roelofs
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.,Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, Rostock, Germany
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.,Department of Pediatric Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Long-term in vivo microscopy of CAR T cell dynamics during eradication of CNS lymphoma in mice. Proc Natl Acad Sci U S A 2019; 116:24275-24284. [PMID: 31712432 PMCID: PMC6883823 DOI: 10.1073/pnas.1903854116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a highly malignant brain tumor with limited treatment options. Here, we show that genetically engineered T cells, expressing a chimeric antigen receptor, thoroughly infiltrate these tumors in mice. Combining intravital 2-photon microscopy with chronic cranial windows, we were able to visualize their intratumoral proliferation and intracerebral persistence for up to 159 d, leading to the eradication of large, established PCNSL and to long-term survival. T cells expressing anti-CD19 chimeric antigen receptors (CARs) demonstrate impressive efficacy in the treatment of systemic B cell malignancies, including B cell lymphoma. However, their effect on primary central nervous system lymphoma (PCNSL) is unknown. Additionally, the detailed cellular dynamics of CAR T cells during their antitumor reaction remain unclear, including their intratumoral infiltration depth, mobility, and persistence. Studying these processes in detail requires repeated intravital imaging of precisely defined tumor regions during weeks of tumor growth and regression. Here, we have combined a model of PCNSL with in vivo intracerebral 2-photon microscopy. Thereby, we were able to visualize intracranial PCNSL growth and therapeutic effects of CAR T cells longitudinally in the same animal over several weeks. Intravenous (i.v.) injection resulted in poor tumor infiltration of anti-CD19 CAR T cells and could not sufficiently control tumor growth. After intracerebral injection, however, anti-CD19 CAR T cells invaded deeply into the solid tumor, reduced tumor growth, and induced regression of PCNSL, which was associated with long-term survival. Intracerebral anti-CD19 CAR T cells entered the circulation and infiltrated distant, nondraining lymph nodes more efficiently than mock CAR T cells. After complete regression of tumors, anti-CD19 CAR T cells remained detectable intracranially and intravascularly for up to 159 d. Collectively, these results demonstrate the great potential of anti-CD19 CAR T cells for the treatment of PCNSL.
Collapse
|
21
|
Differences in structural and functional networks between young adult and aged rat brains before and after stroke lesion simulations. Neurobiol Dis 2019; 126:23-35. [DOI: 10.1016/j.nbd.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
|
22
|
Risser L, Sadoun A, Mescam M, Strelnikov K, Lebreton S, Boucher S, Girard P, Vayssière N, Rosa MGP, Fonta C. In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Struct Funct 2019; 224:1957-1969. [DOI: 10.1007/s00429-019-01869-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
|
23
|
Firat RB. Opening the "Black Box": Functions of the Frontal Lobes and Their Implications for Sociology. FRONTIERS IN SOCIOLOGY 2019; 4:3. [PMID: 33869331 PMCID: PMC8022643 DOI: 10.3389/fsoc.2019.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 06/12/2023]
Abstract
Previous research has provided theoretical frameworks for building inter-disciplinary bridges between sociology and the neurosciences; yet, more anatomically, or functionally focused perspectives offering detailed information to sociologists are largely missing from the literature. This manuscript addresses this gap by offering a comprehensive review of the functions of the frontal lobes, arguably the most important brain region involved in various "human" skills ranging from abstract thinking to language. The paper proposes that the functions of the frontal lobe sub-regions can be divided into three inter-related hierarchical systems with varying degrees of causal proximity in regulating human behavior and social connectedness: (a) the most proximate, voluntary, controlled behavior-including motor functions underlying action-perception and mirror neurons, (b) more abstract motivation and emotional regulation-such as Theory of Mind and empathy, and (c) the higher-order executive functioning-e.g., inhibition of racial bias. The paper offers insights from the social neuroscience literature on phenomena that lie at the core of social theory and research including moral cognition and behavior, and empathy and inter-group attitudes and provides future research questions for interdisciplinary research.
Collapse
|
24
|
Hendrix CM, Campbell BA, Tittle BJ, Johnson LA, Baker KB, Johnson MD, Molnar GF, Vitek JL. Predictive encoding of motor behavior in the supplementary motor area is disrupted in parkinsonism. J Neurophysiol 2018; 120:1247-1255. [PMID: 29873615 PMCID: PMC6171054 DOI: 10.1152/jn.00306.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/25/2023] Open
Abstract
Many studies suggest that Parkinson's disease (PD) is associated with changes in neuronal activity patterns throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts the presupplementary motor area (pre-SMA) and SMA proper (SMAp), cortical areas known to be involved in movement planning and motor control. In this study, local field potentials (LFPs) were recorded in the pre-SMA/SMAp of a nonhuman primate during a visually cued reaching task. Recordings were made in the same subject in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism. We found that in the naive animal, well before a go-cue providing instruction of reach onset and direction was given, LFP activity was dynamically modulated in both high (20-30 Hz) and low beta (10-20 Hz) bands, and the magnitude of this modulation (e.g., decrease/increase in beta amplitude for each band, respectively) correlated linearly with reaction time (RT) on a trial-to-trial basis, suggesting it may predictively encode for RT. Consistent with this hypothesis, we observed that this activity was more prominent within the pre-SMA compared with SMAp. In the parkinsonian state, however, pre-SMA/SMAp beta band modulation was disrupted, particularly in the high beta band, such that the predictive encoding of RT was significantly diminished. In addition, the predictive encoding of RT preferentially within pre-SMA over SMAp was lost. These findings add to our understanding of the role of pre-SMA/SMAp in motor behavior and suggest a fundamental role of these cortical areas in early preparatory and premovement processes that are altered in parkinsonism. NEW & NOTEWORTHY Goal-directed movements, such as reaching for an object, necessitate temporal preparation and organization of information processing within the basal ganglia-thalamocortical motor network. Impaired movement in parkinsonism is thought to be the result of pathophysiological activity disrupting information flow within this network. This work provides neurophysiological evidence linking altered motor preplanning processes encoded in pre-SMA/SMAp beta band modulation to the pathogenesis of motor disturbances in parkinsonism.
Collapse
Affiliation(s)
- Claudia M Hendrix
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| | - Brett A Campbell
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| | - Benjamin J Tittle
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| | - Luke A Johnson
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| | - Kenneth B Baker
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Gregory F Molnar
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
25
|
Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2018; 2:475-484. [PMID: 30948828 DOI: 10.1038/s41551-018-0258-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
Neurological and psychiatric disorders are often characterized by dysfunctional neural circuits in specific regions of the brain. Existing treatment strategies, including the use of drugs and implantable brain stimulators, aim to modulate the activity of these circuits. However, they are not cell-type-specific, lack spatial targeting or require invasive procedures. Here, we report a cell-type-specific and non-invasive approach based on acoustically targeted chemogenetics that enables the modulation of neural circuits with spatiotemporal specificity. The approach uses ultrasound waves to transiently open the blood-brain barrier and transduce neurons at specific locations in the brain with virally encoded engineered G-protein-coupled receptors. The engineered neurons subsequently respond to systemically administered designer compounds to activate or inhibit their activity. In a mouse model of memory formation, the approach can modify and subsequently activate or inhibit excitatory neurons within the hippocampus, with selective control over individual brain regions. This technology overcomes some of the key limitations associated with conventional brain therapies.
Collapse
Affiliation(s)
- Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Lue
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Sinke MRT, Otte WM, Christiaens D, Schmitt O, Leemans A, van der Toorn A, Sarabdjitsingh RA, Joëls M, Dijkhuizen RM. Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics. Brain Struct Funct 2018; 223:2269-2285. [PMID: 29464318 PMCID: PMC5968063 DOI: 10.1007/s00429-018-1628-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/14/2018] [Indexed: 12/25/2022]
Abstract
Diffusion MRI (dMRI)-based tractography offers unique abilities to map whole-brain structural connections in human and animal brains. However, dMRI-based tractography indirectly measures white matter tracts, with suboptimal accuracy and reliability. Recently, sophisticated methods including constrained spherical deconvolution (CSD) and global tractography have been developed to improve tract reconstructions through modeling of more complex fiber orientations. Our study aimed to determine the accuracy of connectome reconstruction for three dMRI-based tractography approaches: diffusion tensor (DT)-based, CSD-based and global tractography. Therefore, we validated whole brain structural connectome reconstructions based on ten ultrahigh-resolution dMRI rat brain scans and 106 cortical regions, from which varying tractography parameters were compared against standardized neuronal tracer data. All tested tractography methods generated considerable numbers of false positive and false negative connections. There was a parameter range trade-off between sensitivity: 0.06-0.63 interhemispherically and 0.22-0.86 intrahemispherically; and specificity: 0.99-0.60 interhemispherically and 0.99-0.23 intrahemispherically. Furthermore, performance of all tractography methods decreased with increasing spatial distance between connected regions. Similar patterns and trade-offs were found, when we applied spherical deconvolution informed filtering of tractograms, streamline thresholding and group-based average network thresholding. Despite the potential of CSD-based and global tractography to handle complex fiber orientations at voxel level, reconstruction accuracy, especially for long-distance connections, remains a challenge. Hence, connectome reconstruction benefits from varying parameter settings and combination of tractography methods to account for anatomical variation of neuronal pathways.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht/Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht/Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht/Utrecht University, Utrecht, The Netherlands
| | - Daan Christiaens
- Department of Electrical Engineering, KU Leuven, ESAT/PSI, Leuven, Belgium
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, Rostock, Germany
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht/Utrecht University, Utrecht, The Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht/Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht/Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht/Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht/Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
27
|
Akle V, Peña-Silva RA, Valencia DM, Rincón-Perez CW. Validation of clay modeling as a learning tool for the periventricular structures of the human brain. ANATOMICAL SCIENCES EDUCATION 2018; 11:137-145. [PMID: 28759705 DOI: 10.1002/ase.1719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a 3D-model from oil-based modeling clay affects learners' understanding of periventricular structures of the brain among undergraduate medical students in Colombia. Students were provided with an instructional video before building the models of the structures, and thereafter took a computer-based quiz. They then brought their clay models to class where they answered questions about the structures via interactive response cards. Their knowledge of periventricular structures was assessed with a paper-based quiz. Afterward, a focus group was conducted and a survey was distributed to understand students' perceptions of the activity, as well as the impact of the intervention on their understanding of anatomical structures in 3D. Quiz scores of students that constructed the models were significantly higher than those taught the material in a more traditional manner (P < 0.05). Moreover, the modeling activity reduced time spent studying the topic and increased understanding of spatial relationships between structures in the brain. The results demonstrated a significant difference between genders in their self-perception of their ability to contemplate and rotate structures mentally (P < 0.05). The study demonstrated that the construction of 3D clay models in combination with autonomous learning activities was a valuable and efficient learning tool in the anatomy course, and that additional models could be designed to promote deeper learning of other neuroanatomy topics. Anat Sci Educ 11: 137-145. © 2017 American Association of Anatomists.
Collapse
Affiliation(s)
- Veronica Akle
- School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | | | | | | |
Collapse
|
28
|
Majka P, Chaplin TA, Yu HH, Tolpygo A, Mitra PP, Wójcik DK, Rosa MGP. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 2017; 524:2161-81. [PMID: 27099164 PMCID: PMC4892968 DOI: 10.1002/cne.24023] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
Abstract
The marmoset is an emerging animal model for large‐scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl‐stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human‐based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161–2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Piotr Majka
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Nencki Institute of Experimental Biology, Warsaw, Poland.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Tristan A Chaplin
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| | - Hsin-Hao Yu
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| | | | - Partha P Mitra
- Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
3D reconstruction of brain section images for creating axonal projection maps in marmosets. J Neurosci Methods 2017; 286:102-113. [DOI: 10.1016/j.jneumeth.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 01/27/2023]
|
30
|
The contribution of inferior colliculus activity to the auditory brainstem response (ABR) in mice. Hear Res 2016; 341:109-118. [PMID: 27562195 DOI: 10.1016/j.heares.2016.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
In mice, the auditory brainstem response (ABR) is frequently used to assess hearing status in transgenic hearing models. The diagnostic value of the ABR depends on knowledge about the anatomical sources of its characteristic waves. Here, we studied the contribution of the inferior colliculus (IC) to the click-evoked scalp ABR in mice. We demonstrate a non-invasive correlate of the IC response that can be measured in the scalp ABR as a slow positive wave P0 with peak latency 7-8 ms when recorded with adequate band-pass filtering. Wave P0 showed close correspondence in latency, magnitude and shape with the sustained part of evoked spiking activity and local field potentials (LFP) in the central nucleus of the IC. In addition, the onset peaks of the IC response were related temporally to ABR wave V and to some extent to wave IV. This relation was further supported by depth-dependent modulation of the shape of ABR wave IV and V within the IC suggesting generation within or in close vicinity to the IC. In conclusion, the slow ABR wave P0 in the scalp ABR may represent a complementary non-invasive marker for IC activity in the mouse. Further, the latency of synchronized click-evoked activity in the IC supports the view that IC contributes to ABR wave V, and possibly also to ABR wave IV.
Collapse
|
31
|
Sukhinin DI, Engel AK, Manger P, Hilgetag CC. Building the Ferretome. Front Neuroinform 2016; 10:16. [PMID: 27242503 PMCID: PMC4861729 DOI: 10.3389/fninf.2016.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/14/2016] [Indexed: 11/13/2022] Open
Abstract
Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity.
Collapse
Affiliation(s)
- Dmitrii I Sukhinin
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Paul Manger
- School of Anatomical Science, University of the Witwatersrand Johannesburg, South Africa
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-EppendorfHamburg, Germany; Department of Health Sciences, Boston University, BostonMA, USA
| |
Collapse
|
32
|
Patterson D, Hicks T, Dufilie A, Grinstein G, Plante E. Dynamic Data Visualization with Weave and Brain Choropleths. PLoS One 2015; 10:e0139453. [PMID: 26418012 PMCID: PMC4587848 DOI: 10.1371/journal.pone.0139453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/13/2015] [Indexed: 12/01/2022] Open
Abstract
This article introduces the neuroimaging community to the dynamic visualization workbench, Weave (https://www.oicweave.org/), and a set of enhancements to allow the visualization of brain maps. The enhancements comprise a set of brain choropleths and the ability to display these as stacked slices, accessible with a slider. For the first time, this allows the neuroimaging community to take advantage of the advanced tools already available for exploring geographic data. Our brain choropleths are modeled after widely used geographic maps but this mashup of brain choropleths with extant visualization software fills an important neuroinformatic niche. To date, most neuroinformatic tools have provided online databases and atlases of the brain, but not good ways to display the related data (e.g., behavioral, genetic, medical, etc). The extension of the choropleth to brain maps allows us to leverage general-purpose visualization tools for concurrent exploration of brain images and related data. Related data can be represented as a variety of tables, charts and graphs that are dynamically linked to each other and to the brain choropleths. We demonstrate that the simplified region-based analyses that underlay choropleths can provide insights into neuroimaging data comparable to those achieved by using more conventional methods. In addition, the interactive interface facilitates additional insights by allowing the user to filter, compare, and drill down into the visual representations of the data. This enhanced data visualization capability is useful during the initial phases of data analysis and the resulting visualizations provide a compelling way to publish data as an online supplement to journal articles.
Collapse
Affiliation(s)
- Dianne Patterson
- The University of Arizona, Speech, Language, and Hearing Sciences Department, Tucson, AZ, United States of America
- * E-mail:
| | - Thomas Hicks
- The University of Arizona, School of Information: Science, Technology, and Arts, Tucson, AZ, United States of America
| | - Andrew Dufilie
- The University of Massachusetts Lowell, Computer Science Department, Lowell, MA, United States of America
| | - Georges Grinstein
- The University of Massachusetts Lowell, Computer Science Department, Lowell, MA, United States of America
| | - Elena Plante
- The University of Arizona, Speech, Language, and Hearing Sciences Department, Tucson, AZ, United States of America
| |
Collapse
|
33
|
Zakiewicz IM, Majka P, Wójcik DK, Bjaalie JG, Leergaard TB. Three-Dimensional Histology Volume Reconstruction of Axonal Tract Tracing Data: Exploring Topographical Organization in Subcortical Projections from Rat Barrel Cortex. PLoS One 2015; 10:e0137571. [PMID: 26398192 PMCID: PMC4580429 DOI: 10.1371/journal.pone.0137571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022] Open
Abstract
Topographical organization is a hallmark of the mammalian brain, and the spatial organization of axonal connections in different brain regions provides a structural framework accommodating specific patterns of neural activity. The presence, amount, and spatial distribution of axonal connections are typically studied in tract tracing experiments in which axons or neurons are labeled and examined in histological sections. Three-dimensional (3-D) reconstruction techniques are used to achieve more complete visualization and improved understanding of complex topographical relationships. 3-D reconstruction approaches based on manually or semi-automatically recorded spatial points representing axonal labeling have been successfully applied for investigation of smaller brain regions, but are not practically feasible for whole-brain analysis of multiple regions. We here reconstruct serial histological images from four whole brains (originally acquired for conventional microscopic analysis) into volumetric images that are spatially registered to a 3-D atlas template. The aims were firstly to evaluate the quality of the 3-D reconstructions and the usefulness of the approach, and secondly to investigate axonal projection patterns and topographical organization in rat corticostriatal and corticothalamic pathways. We demonstrate that even with the limitations of the original routine histological material, the 3-D reconstructed volumetric images allow efficient visualization of tracer injection sites and axonal labeling, facilitating detection of spatial distributions and across-case comparisons. Our results further show that clusters of S1 corticostriatal and corticothalamic projections are distributed within narrow, elongated or spherical subspaces extending across the entire striatum / thalamus. We conclude that histology volume reconstructions facilitate mapping of spatial distribution patterns and topographical organization. The reconstructed image volumes are shared via the Rodent Brain Workbench (www.rbwb.org).
Collapse
Affiliation(s)
- Izabela M. Zakiewicz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Piotr Majka
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Daniel K. Wójcik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jan G. Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
34
|
Abstract
While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings.
Collapse
|
35
|
Bakker R, Tiesinga P, Kötter R. The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content. Neuroinformatics 2015; 13:353-66. [PMID: 25682754 PMCID: PMC4469098 DOI: 10.1007/s12021-014-9258-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Scalable Brain Atlas (SBA) is a collection of web services that provide unified access to a large collection of brain atlas templates for different species. Its main component is an atlas viewer that displays brain atlas data as a stack of slices in which stereotaxic coordinates and brain regions can be selected. These are subsequently used to launch web queries to resources that require coordinates or region names as input. It supports plugins which run inside the viewer and respond when a new slice, coordinate or region is selected. It contains 20 atlas templates in six species, and plugins to compute coordinate transformations, display anatomical connectivity and fiducial points, and retrieve properties, descriptions, definitions and 3d reconstructions of brain regions. The ambition of SBA is to provide a unified representation of all publicly available brain atlases directly in the web browser, while remaining a responsive and light weight resource that specializes in atlas comparisons, searches, coordinate transformations and interactive displays.
Collapse
Affiliation(s)
- Rembrandt Bakker
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands,
| | | | | |
Collapse
|
36
|
A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS One 2015; 10:e0122363. [PMID: 25823005 PMCID: PMC4379068 DOI: 10.1371/journal.pone.0122363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].
Collapse
|
37
|
Janke AL, Ullmann JFP. Robust methods to create ex vivo minimum deformation atlases for brain mapping. Methods 2015; 73:18-26. [PMID: 25620005 DOI: 10.1016/j.ymeth.2015.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 10/24/2022] Open
Abstract
Highly detailed ex vivo 3D atlases of average structure are of critical importance to neuroscience and its current push to understanding the global microstructure of the brain. Multiple single slice histology sections can no longer provide sufficient detail of inter-slice microstructure and lack out of plane resolution. Two ex vivo methods have emerged that can create such detailed models. High-field micro MRI with the addition of contrast media has allowed intact whole brain microstructure imaging with an isotropic resolution of 15 μm in mouse. Blockface imaging has similarly evolved to a point where it is now possible to image an entire brain in a rigorous fashion with an out of plane resolution of 10 μm. Despite the destruction of the tissue as part of this process it allows a reconstructed model that is free from cutting artifacts. Both of these methods have been utilised to create minimum deformation atlases that are representative of the respective populations. The MDA atlases allow us unprecedented insight into the commonality and differences in microstructure in cortical structures in specific taxa. In this paper we provide an overview of how to create such MDA models from ex vivo data.
Collapse
Affiliation(s)
- Andrew L Janke
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia.
| | - Jeremy F P Ullmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| |
Collapse
|
38
|
Ullmann JFP, Janke AL, Reutens D, Watson C. Development of MRI-based atlases of non-human brains. J Comp Neurol 2014; 523:391-405. [PMID: 25236843 DOI: 10.1002/cne.23678] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
Abstract
Brain atlases are a fundamental resource for neuroscience research. In the past few decades they have undergone a transition from traditional printed histological atlases to digital atlases made up of multiple data sets from multiple modalities, and atlases based on magnetic resonance imaging (MRI) have become widespread. Here we discuss the methods involved in making an MRI brain atlas, including registration of multiple data sets into a model, ontological classification, segmentation of a minimum deformation model, dissemination strategies, and applications of these atlases. Finally, we discuss possible future directions in the development of brain atlases.
Collapse
Affiliation(s)
- Jeremy F P Ullmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | | |
Collapse
|
39
|
Majka P, Kowalski JM, Chlodzinska N, Wójcik DK. 3D brain atlas reconstructor service--online repository of three-dimensional models of brain structures. Neuroinformatics 2013; 11:507-18. [PMID: 23943281 PMCID: PMC3824210 DOI: 10.1007/s12021-013-9199-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain atlases are important tools of neuroscience. Traditionally prepared in paper book format, more and more commonly they take digital form which extends their utility. To simplify work with different atlases, to lay the ground for developing universal tools which could abstract from the origin of the atlas, efforts are being made to provide common interfaces to these atlases. 3D Brain Atlas Reconstructor service (3dBARs) described here is a repository of digital representations of different brain atlases in CAF format which we recently proposed and a repository of 3D models of brain structures. A graphical front-end is provided for creating and viewing the reconstructed models as well as the underlying 2D atlas data. An application programming interface (API) facilitates programmatic access to the service contents from other websites. From a typical user's point of view, 3dBARs offers an accessible way to mine publicly available atlasing data with a convenient browser based interface, without the need to install extra software. For a developer of services related to brain atlases, 3dBARs supplies mechanisms for enhancing functionality of other software. The policy of the service is to accept new datasets as delivered by interested parties and we work with the researchers who obtain original data to make them available to the neuroscience community at large. The functionality offered by the 3dBARs situates it at the core of present and future general atlasing services tying it strongly to the global atlasing neuroinformatics infrastructure.
Collapse
Affiliation(s)
- Piotr Majka
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland,
| | | | | | | |
Collapse
|