1
|
Boschiero C, Beshah E, Zhu X, Tuo W, Liu GE. Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi. Int J Mol Sci 2024; 26:89. [PMID: 39795948 PMCID: PMC11719486 DOI: 10.3390/ijms26010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with Ostertagia ostertagi (the brown stomach worm) or given tap water only as a control. Animals were euthanized 30 days post-infection, and tissues were collected at necropsy. We conducted epigenome-wide profiling using a mammalian methylation array to explore the impact of infection on methylation patterns in the mucosa from abomasal fundus (FUN), pylorus (PYL), draining lymph nodes (dLNs), and the duodenum (DUO). The analysis covered 31,107 cattle CpGs of 5082 genes and revealed infection-driven, tissue-specific, differential methylation patterns. A total of 389 shared and 2770 tissue-specific, differentially methylated positions (DMPs) were identified in dLN and FUN, particularly in genes associated with immune responses. The shared DMPs were found in 263 genes, many of which are involved in immune responses. Furthermore, 282, 244, 52, and 24 differentially methylated regions (DMRs) were observed in dLN, FUN, PYL, and DUO, respectively. More hypomethylated DMRs were detected in dLN and FUN, while more hypermethylated DMRs were found in PYL and DUO. Genes carrying DMPs and DMRs and enriched pathways relating to immune functions/responses were detected in infected animals, indicating a link between DNA methylation and the infection. The data may implicate a crucial role of DNAm in regulating the nature/strength of host immunity to infection and contribute to a deeper understanding of the epigenetic regulatory landscape in cattle infected by GI nematodes.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
3
|
Weng Y, Yuan J, Cui X, Wang J, Chen H, Xu L, Chen X, Peng M, Song Q. The impact of tertiary lymphoid structures on tumor prognosis and the immune microenvironment in non-small cell lung cancer. Sci Rep 2024; 14:16246. [PMID: 39009684 PMCID: PMC11250816 DOI: 10.1038/s41598-024-64980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy whose prognosis and treatment outcome are influenced by many factors. Some studies have found that tertiary lymphoid structures (TLSs) in cancer may contribute to prognosis and the prediction of immunotherapy efficacy However, the combined role of TLSs in NSCLC remains unclear. We accessed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to obtain mRNA sequencing data and clinical information as the TCGA cohort, and used our own sample of 53 advanced NSCLC as a study cohort. The samples were divided into TLS+ and TLS- groups by pathological tissue sections. Patients of the TLS+ group had a better OS (p = 0.022), PFS (p = 0.042), and DSS (p = 0.004) in the TCGA cohort, and the results were confirmed by the study cohort (PFS, p = 0.012). Furthermore, our result showed that the count and size of TLSs are closely associated with the efficacy of immunotherapy. In addition, the TLS+ group was associated with better immune status and lower tumor mutation load. In the tumor microenvironment (TME), the expression levels of CD4+ T cells and CD8+ T cells of different phenotypes were associated with TLSs. Overall, TLSs are a strong predictor of survival and immunotherapeutic efficacy in advanced NSCLC, and T cell-rich TLSs suggest a more ordered and active immune response site, which aids in the decision-making and application of immunotherapy in the clinic.
Collapse
Affiliation(s)
- Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Li Xu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Huang Y, Gu W, Qin Z, Jin Y. Bromuconazole exposure induces cardiac dysfunction by upregulating the expression LEF1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173113. [PMID: 38735319 DOI: 10.1016/j.scitotenv.2024.173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/β-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.
Collapse
Affiliation(s)
- Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weijie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
5
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
6
|
de Brot S, Cobb J, Alibhai AA, Jackson-Oxley J, Haque M, Patke R, Harris AE, Woodcock CL, Lothion-Roy J, Varun D, Thompson R, Gomes C, Kubale V, Dunning MD, Jeyapalan JN, Mongan NP, Rutland CS. Immunohistochemical Investigation into Protein Expression Patterns of FOXO4, IRF8 and LEF1 in Canine Osteosarcoma. Cancers (Basel) 2024; 16:1945. [PMID: 38792023 PMCID: PMC11120020 DOI: 10.3390/cancers16101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteosarcoma (OSA) is the most common type of primary bone malignancy in people and dogs. Our previous molecular comparisons of canine OSA against healthy bone resulted in the identification of differentially expressed protein-expressing genes (forkhead box protein O4 (FOXO4), interferon regulatory factor 8 (IRF8), and lymphoid enhancer binding factor 1 (LEF1)). Immunohistochemistry (IHC) and H-scoring provided semi-quantitative assessment of nuclear and cytoplasmic staining alongside qualitative data to contextualise staining (n = 26 patients). FOXO4 was expressed predominantly in the cytoplasm with significantly lower nuclear H-scores. IRF8 H-scores ranged from 0 to 3 throughout the cohort in the nucleus and cytoplasm. LEF1 was expressed in all patients with significantly lower cytoplasmic staining compared to nuclear. No sex or anatomical location differences were observed. While reduced levels of FOXO4 might indicate malignancy, the weak or absent protein expression limits its primary use as diagnostic tumour marker. IRF8 and LEF1 have more potential for prognostic and diagnostic uses and facilitate further understanding of their roles within their respective molecular pathways, including Wnt/beta-catenin/LEF1 signalling and differential regulation of tumour suppressor genes. Deeper understanding of the mechanisms involved in OSA are essential contributions towards the development of novel diagnostic, prognostic, and treatment options in human and veterinary medicine contexts.
Collapse
Affiliation(s)
- Simone de Brot
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Comparative Pathology Platform of the University of Bern (COMPATH), Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Jack Cobb
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Aziza A. Alibhai
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jorja Jackson-Oxley
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Maria Haque
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rodhan Patke
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Anna E. Harris
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Corinne L. Woodcock
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jennifer Lothion-Roy
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Dhruvika Varun
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rachel Thompson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Claudia Gomes
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mark D. Dunning
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
| | - Jennie N. Jeyapalan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel P. Mongan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10075, USA
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
7
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Cunha SMF, Lam S, Mallard B, Karrow NA, Cánovas Á. Genomic Regions Associated with Resistance to Gastrointestinal Nematode Parasites in Sheep-A Review. Genes (Basel) 2024; 15:187. [PMID: 38397178 PMCID: PMC10888242 DOI: 10.3390/genes15020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Gastrointestinal nematodes (GINs) can be a major constraint and global challenge to the sheep industry. These nematodes infect the small intestine and abomasum of grazing sheep, causing symptoms such as weight loss, diarrhea, hypoproteinemia, and anemia, which can lead to death. The use of anthelmintics to treat infected animals has led to GIN resistance, and excessive use of these drugs has resulted in residue traced in food and the environment. Resistance to GINs can be measured using multiple traits, including fecal egg count (FEC), Faffa Malan Chart scores, hematocrit, packed cell volume, eosinophilia, immunoglobulin (Ig), and dagginess scores. Genetic variation among animals exists, and understanding these differences can help identify genomic regions associated with resistance to GINs in sheep. Genes playing important roles in the immune system were identified in several studies in this review, such as the CFI and MUC15 genes. Results from several studies showed overlapping quantitative trait loci (QTLs) associated with multiple traits measuring resistance to GINs, mainly FEC. The discovery of genomic regions, positional candidate genes, and QTLs associated with resistance to GINs can help increase and accelerate genetic gains in sheep breeding programs and reveal the genetic basis and biological mechanisms underlying this trait.
Collapse
Affiliation(s)
- Samla Marques Freire Cunha
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Bonnie Mallard
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| |
Collapse
|
9
|
Lee Y, Piao HL, Kim J. OTUD7B Activates Wnt Signaling Pathway through the Interaction with LEF1. Biomolecules 2023; 13:1001. [PMID: 37371581 DOI: 10.3390/biom13061001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The Wnt signaling pathway plays a critical role in regulating normal cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of Wnt signaling has been implicated in various human diseases, including cancer. β-catenin and LEF1 are key mediators of Wnt signaling, and their dysregulation is a hallmark of many cancer types. In this study, we aimed to identify the deubiquitinases (DUBs) that regulate the Wnt signaling pathway through the essential component LEF1. Screening candidate DUBs from the human DUB library, we discovered that OTUD7B interacts with LEF1 and activates Wnt signaling. OTUD7B and LEF1 interact with each other through the UBA and HMG domains, respectively. Furthermore, OTUD7B promotes the nuclear localization of LEF1, leading to an increased interaction with β-catenin in the nucleus while not noticeably affecting ubiquitination on LEF1. Using qPCR array analysis, we found that OTUD7B overexpression leads to an upregulation of 75% of the tested Wnt target genes compared to the control. These findings suggest that OTUD7B may serve as a potential therapeutic target in human diseases, including cancers where Wnt signaling is frequently dysregulated.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
10
|
Zhao X, Zhu S, Peng W, Xue HH. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2269-2278. [PMID: 36469845 PMCID: PMC9731349 DOI: 10.4049/jimmunol.2200625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023]
Abstract
T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
- New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|
11
|
Broeders M, van Rooij J, Oussoren E, van Gestel T, Smith C, Kimber S, Verdijk R, Wagenmakers M, van den Hout J, van der Ploeg A, Narcisi R, Pijnappel W. Modeling cartilage pathology in mucopolysaccharidosis VI using iPSCs reveals early dysregulation of chondrogenic and metabolic gene expression. Front Bioeng Biotechnol 2022; 10:949063. [PMID: 36561048 PMCID: PMC9763729 DOI: 10.3389/fbioe.2022.949063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is a metabolic disorder caused by disease-associated variants in the Arylsulfatase B (ARSB) gene, resulting in ARSB enzyme deficiency, lysosomal glycosaminoglycan accumulation, and cartilage and bone pathology. The molecular response to MPS VI that results in cartilage pathology in human patients is largely unknown. Here, we generated a disease model to study the early stages of cartilage pathology in MPS VI. We generated iPSCs from four patients and isogenic controls by inserting the ARSB cDNA in the AAVS1 safe harbor locus using CRISPR/Cas9. Using an optimized chondrogenic differentiation protocol, we found Periodic acid-Schiff positive inclusions in hiPSC-derived chondrogenic cells with MPS VI. Genome-wide mRNA expression analysis showed that hiPSC-derived chondrogenic cells with MPS VI downregulated expression of genes involved in TGF-β/BMP signalling, and upregulated expression of inhibitors of the Wnt/β-catenin signalling pathway. Expression of genes involved in apoptosis and growth was upregulated, while expression of genes involved in glycosaminoglycan metabolism was dysregulated in hiPSC-derived chondrogenic cells with MPS VI. These results suggest that human ARSB deficiency in MPS VI causes changes in the transcriptional program underlying the early stages of chondrogenic differentiation and metabolism.
Collapse
Affiliation(s)
- M. Broeders
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jgj van Rooij
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - E. Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tjm van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ca Smith
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sj Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rm Verdijk
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maem Wagenmakers
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, Netherlands
| | - Jmp van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - At van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - R. Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wwmp Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Hu K, Liu H, Lawson ND, Zhu LJ. scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data. Front Cell Dev Biol 2022; 10:981859. [PMID: 36238687 PMCID: PMC9551270 DOI: 10.3389/fcell.2022.981859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Single cell ATAC-seq (scATAC-seq) has become the most widely used method for profiling open chromatin landscape of heterogeneous cell populations at a single-cell resolution. Although numerous software tools and pipelines have been developed, an easy-to-use, scalable, reproducible, and comprehensive pipeline for scATAC-seq data analyses is still lacking. To fill this gap, we developed scATACpipe, a Nextflow pipeline, for performing comprehensive analyses of scATAC-seq data including extensive quality assessment, preprocessing, dimension reduction, clustering, peak calling, differential accessibility inference, integration with scRNA-seq data, transcription factor activity and footprinting analysis, co-accessibility inference, and cell trajectory prediction. scATACpipe enables users to perform the end-to-end analysis of scATAC-seq data with three sub-workflow options for preprocessing that leverage 10x Genomics Cell Ranger ATAC software, the ultra-fast Chromap procedures, and a set of custom scripts implementing current best practices for scATAC-seq data preprocessing. The pipeline extends the R package ArchR for downstream analysis with added support to any eukaryotic species with an annotated reference genome. Importantly, scATACpipe generates an all-in-one HTML report for the entire analysis and outputs cluster-specific BAM, BED, and BigWig files for visualization in a genome browser. scATACpipe eliminates the need for users to chain different tools together and facilitates reproducible and comprehensive analyses of scATAC-seq data from raw reads to various biological insights with minimal changes of configuration settings for different computing environments or species. By applying it to public datasets, we illustrated the utility, flexibility, versatility, and reliability of our pipeline, and demonstrated that our scATACpipe outperforms other workflows.
Collapse
Affiliation(s)
- Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nathan D. Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
13
|
Liu Y, Ni M, Li L, Wang J, Tu Z, Zhou H, Zhang S. A novel four-gene signature predicts immunotherapy response of patients with different cancers. J Clin Lab Anal 2022; 36:e24494. [PMID: 35588138 PMCID: PMC9279975 DOI: 10.1002/jcla.24494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy has demonstrated favorable clinical efficacy, particularly for advanced or difficult-to-treat cancer types. However, this therapy is ineffective for many patients displaying lack of immune response or resistance to ICB. This study aimed to establish a novel four-gene signature (CD8A, CD8B, TCF7, and LEF1) to provide a prognostic immunotherapy biomarker for different cancers. METHODS Transcriptome profiles and clinical data were obtained from The Cancer Genome Atlas database. Multivariate Cox regression analysis was used to establish a four-gene signature. The R package estimate was used to obtain the immune score for every patient. RESULTS Risk scores of the novel four-gene signature could effectively divided all patients into high- and low-risk groups, with distinct outcomes. The immune score calculated via the estimate package demonstrated that the four-gene signature was significantly associated with the immune infiltration level. Furthermore, the four-gene signature could predict the response to atezolizumab immunotherapy in patients with metastatic urothelial cancer. CONCLUSIONS The novel four-gene signature developed in this study is a good prognostic biomarker, as it could identify many kinds of patients with cancer who are likely to respond to and benefit from immunotherapy.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Mingyue Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Lamei Li
- Department of DermatologyAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Junyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Department of Clinical Medicine (5+3 Programme)Anhui Medical UniversityHefeiChina
| | - Zhenzhen Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Siping Zhang
- Department of DermatologyAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
14
|
Takaya K, Sunohara A, Aramaki-Hattori N, Sakai S, Okabe K, Kanazawa H, Asou T, Kishi K. Role of Wnt Signaling in Mouse Fetal Skin Wound Healing. Biomedicines 2022; 10:biomedicines10071536. [PMID: 35884841 PMCID: PMC9312897 DOI: 10.3390/biomedicines10071536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/04/2023] Open
Abstract
Wnt proteins secrete glycoproteins that are involved in various cellular processes to maintain homeostasis during development and adulthood. However, the expression and role of Wnt in wound healing have not been fully documented. Our previous studies have shown that, in an early-stage mouse fetus, no scarring occurred after cutaneous wounding, and complete regeneration was achieved. In this study, the expression and localization of Wnt proteins in a mouse fetal-wound-healing model and their associations with scar formation were analyzed. Wnt-related molecules were detected by in-situ hybridization, immunostaining, and real-time polymerase chain reaction. The results showed altered expression of Wnt-related molecules during the wound-healing process. Moreover, scar formation was suppressed by Wnt inhibitors, suggesting that Wnt signaling may be involved in wound healing and scar formation. Thus, regulation of Wnt signaling may be a possible mechanism to control scar formation.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
- Correspondence: ; Tel.: +81-35-363-3814
| | - Ayano Sunohara
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| |
Collapse
|
15
|
Aberrant Expression of Lymphoid Enhancer-Binding Factor 1 (LEF1) in Hodgkin Lymphoma. Hum Pathol 2022; 125:2-10. [PMID: 35421421 DOI: 10.1016/j.humpath.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) is a transcription factor involved in T-cell maturation and is usually absent in mature B-cells. Previous studies have shown aberrant LEF1 expression as a sensitive and specific marker in chronic lymphocytic leukemia/small lymphocytic lymphoma. Our primary aims were i) to analyze LEF1 expression in classic Hodgkin lymphomas (CHL) including de novo and Richter syndrome (RS), and to assess if LEF1 can be a surrogate marker to assess clonal relationship in RS, and ii) to compare LEF1 expression in CHL and Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL). We included 117 patients: 24 CHL-RS, 66 CHL-de novo and 27 NLPHL. There was no significant difference in LEF1 expression between CHL-RS and CHL-de novo (79.2% vs 87.9%, P = 0.299), or in type I and type II CHL-RS (75% vs 81.3%, P = 1.000). However, CHL showed a significantly higher LEF1 expression compared to NLPHL (85.6% vs 44.4%, P<0.0001). As the Wnt/β-catenin pathway directly regulates LEF1 expression in a β-catenin-dependent way, β-catenin expression was assessed in 76 cases and all were negative. Additionally, no association between EBV-positivity and LEF1-expression was detected. Overall, our findings show high LEF1 expression in CHL, regardless of RS or de novo, indicating LEF1 cannot be utilized as a surrogate marker to suggest clonal relationship in RS. Compared with CHL, LEF1 expression is significantly less common in NLPHL, further attesting that they are biologically distinct entities. The absent β-catenin expression suggests LEF1 expression is independent of Wnt/β-catenin signaling pathway in Hodgkin lymphomas.
Collapse
|
16
|
Carr T, McGregor S, Dias S, Verykokakis M, Le Beau MM, Xue HH, Sigvardsson M, Bartom ET, Kee BL. Oncogenic and Tumor Suppressor Functions for Lymphoid Enhancer Factor 1 in E2a-/- T Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:845488. [PMID: 35371057 PMCID: PMC8971981 DOI: 10.3389/fimmu.2022.845488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.
Collapse
Affiliation(s)
- Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Stephanie McGregor
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
| | - Sheila Dias
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Mihalis Verykokakis
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Michelle M. Le Beau
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | | | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, United States
| | - Barbara L. Kee
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
- *Correspondence: Barbara L. Kee,
| |
Collapse
|
17
|
Abstract
TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.
Collapse
|
18
|
Liu Y, Guo J, Zhang J, Deng Y, Xiong G, Fu J, Wei L, Lu H. Chlorogenic acid alleviates thioacetamide-induced toxicity and promotes liver development in zebrafish (Danio rerio) through the Wnt signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106039. [PMID: 34856462 DOI: 10.1016/j.aquatox.2021.106039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Chlorogenic acid (CGA) is a phenylpropanoid compound that is well known to improve the antioxidant capacity and other biological activities. However, the roles of CGA in the liver development of organisms are unclear. In the present study, we aimed to investigate the function of CGA in the hepatic development in thioacetamide (TAA)-induced zebrafish embryos. We found that CGA exerted certain beneficial effects on zebrafish larvae from TAA-exposed zebrafish embryos, such as increasing the liver size, body length, heart rate, acetylcholinesterase activity, and motor ability. In addition, CGA displayed an antioxidant effect on TAA-induced zebrafish embryos by enhancing the activities of superoxide dismutase (SOD), catalase (CAT), and glucose-6-phosphate dehydrogenase (G6PDH), and decreasing of the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and nitric oxide (NO). The results of western blotting analysis showed that CGA inhibited cell apoptosis by increasing the levels of Bcl2 apoptosis regulator and decreasing the levels of Bcl2 associated X (Bax), apoptosis regulator and tumor protein P53. Moreover, CGA promoted cell proliferation in TAA-induced zebrafish larvae, as detected using proliferating cell nuclear antigen fluorescence immunostaining. In addition, CGA inhibited the expression of Wnt signaling pathway genes Dkk1 (encoding Dickkopf Wnt signaling pathway inhibitors), and promoted the expression of Lef1 (encoding lymphoid enhancer binding factor 1) and Wnt2bb (encoding wingless-type MMTV integration site family, member 2Bb). When the Wnt signal inhibitor IWR-1 was added, there was no significant change in liver development in the IWR-1 + TAA group compared with the IWR-1 + TAA + CGA group (p <0.05), which suggested that CGA regulates liver development via Wnt signaling pathway. Overall, our results suggested that CGA might alleviate TAA-induced toxicity in zebrafish and promote liver development through the Wnt signaling pathway, which provides a basis for the therapeutic effect of CGA on liver dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs; College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianpin Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs; College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
19
|
Ma Q, Xiao F, Hao Y, Song Z, Zhang J, Si C, Liang C, Liu D. The prognostic role of the Transducin-like Enhancer of split protein family in lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:3251-3263. [PMID: 34430362 PMCID: PMC8350083 DOI: 10.21037/tlcr-21-582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
Background Lung cancer claims more lives than any other cancer worldwide. Lung adenocarcinoma (LUAD) accounts for approximately 40% of all lung cancers. Members of the Transducin-like Enhancer of split (TLE) protein family repress transcription through multiple mechanisms; however, their prognostic value in LUAD is still unclear. Methods A dataset from The Cancer Genome Atlas was used to analyze the relationship between the expression of TLE family members and outcomes of LUAD. The expression of TLE family members in 59 normal and 513 tumor samples in the TCGA dataset was selected. For paired analysis, 57 normal and 57 tumor paired tissues were selected. Gene Ontology (GO) term and Reactome pathway enrichment analyses of the TLE family members were performed. Progression-free survival (PFS) and overall survival (OS) served as endpoints in this study. All statistical analyses were performed with R 3.6.0. Results The expression levels of TLE family proteins differed between 59 normal and 513 tumor samples. High TLE1 and low TLE2 levels were associated with poor progression-free and OS (all P<0.050). Multivariate analysis demonstrated that high TLE1 expression and low TLE2 expression were independent risk factors for a poor outcome in LUAD. Moreover, the combined expression of these two proteins was a good tool for prognostication. Conclusions High TLE1 expression and low TLE2 are independent adverse prognostic factors in LUAD and can serve as prognostic biomarkers.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yang Hao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Song
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
20
|
Luckett-Chastain LR, King CJ, McShan WM, Gipson JR, Gillaspy AF, Gallucci RM. Loss of Interleukin-6 Influences Transcriptional Immune Signatures and Alters Bacterial Colonization in the Skin. Front Microbiol 2021; 12:658980. [PMID: 34295313 PMCID: PMC8290525 DOI: 10.3389/fmicb.2021.658980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The skin functions as a protective barrier to inhibit the entry of foreign pathogens, all the while hosting a diverse milieu of microorganisms. Over time, skin cells, immune cells, cytokines, and microbes interact to integrate the processes of maintaining the skin's physical and immune barrier. In the present study, the basal expression of two immunologically divergent mouse strains C57BL/6 and BALB/c, as well as a strain on the C57 background lacking IL-6, was characterized. Additionally, cutaneous antimicrobial gene expression profiles and skin bacterial microbiome were assessed between strains. Total RNA sequencing was performed on untreated C57BL/6 (control), BALB/c, and IL-6-deficient skin samples and found over 3,400 genes differentially modulated between strains. It was found that each strain modulated its own transcriptional "profile" associated with skin homeostasis and also influenced the overall bacterial colonization as indicated by the differential phyla present on each strain. Together, these data not only provide a comprehensive view of the transcriptional changes in homeostatic skin of different mouse strains but also highlight the possible influence of the strain differences (e.g., Th1/Th2 balance) as well as a role for IL-6 in overall skin immunity and resident microbial populations.
Collapse
Affiliation(s)
- Lerin R. Luckett-Chastain
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Catherine J. King
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - William M. McShan
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Jenny R. Gipson
- College of Medicine Core Facilities, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Allison F. Gillaspy
- College of Medicine Core Facilities, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Randle M. Gallucci
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| |
Collapse
|
21
|
Peripheral Blood T Cell Gene Expression Responses to Exercise and HMB in Sarcopenia. Nutrients 2021; 13:nu13072313. [PMID: 34371826 PMCID: PMC8308783 DOI: 10.3390/nu13072313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Sarcopenia is a major health problem in older adults. Exercise and nutrient supplementation have been shown to be effective interventions but there are limited studies to investigate their effects on the management of sarcopenia and its possible underlying mechanisms. Here, we studied T cell gene expression responses to interventions in sarcopenia. Methods: The results of this study were part of a completed trial examining the effectiveness of a 12-week intervention with exercise and nutrition supplementation in community-dwelling Chinese older adults with sarcopenia, based on the available blood samples at baseline and 12 weeks from 46 randomized participants from three study groups, namely: exercise program alone (n = 11), combined-exercise program and nutrition supplement (n = 23), and waitlist control group (n = 12). T cell gene expression was evaluated, with emphasis on inflammation-related genes. Real-time PCR (RT-PCR) was performed on CD3 T cells in 38 selected genes. Correlation analysis was performed to relate the results of gene expression analysis with lower limb muscle strength performance, measured using leg extension tests. Results: Our results showed a significant improvement in leg extension for both the exercise program alone and the combined groups (p < 0.001). Nine genes showed significant pre- and post-difference in gene expression over 12 weeks of intervention in the combined group. Seven genes (RASGRP1, BIN1, LEF1, ANXA6, IL-7R, LRRN3, and PRKCQ) showed an interaction effect between intervention and gene expression levels on leg extension in the confirmatory analysis, with confounder variables controlled and FDR correction. Conclusions: Our findings showed that T cell-specific inflammatory gene expression was changed significantly after 12 weeks of intervention with combined exercise and HMB supplementation in sarcopenia, and that this was associated with lower limb muscle strength performance.
Collapse
|
22
|
Targeting of canonical WNT signaling ameliorates experimental sclerodermatous chronic graft-versus-host disease. Blood 2021; 137:2403-2416. [PMID: 33529322 DOI: 10.1182/blood.2020008720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major life-threatening complication of allogeneic hematopoietic stem cell transplantation. The molecular mechanisms underlying cGVHD remain poorly understood, and targeted therapies for clinical use are not well established. Here, we examined the role of the canonical WNT pathway in sclerodermatous cGVHD (sclGVHD). WNT signaling was activated in human sclGVHD with increased nuclear accumulation of the transcription factor β-catenin and a WNT-biased gene expression signature in lesional skin. Treatment with the highly selective tankryase inhibitor G007-LK, the CK1α agonist pyrvinium, or the LRP6 inhibitor salinomycin abrogated the activation of WNT signaling and protected against experimental cGVHD, without a significant impact on graft-versus-leukemia effect (GVL). Treatment with G007-LK, pyrvinium, or salinomycin almost completely prevented the development of clinical and histological features in the B10.D2 (H-2d) → BALB/c (H-2d) and LP/J (H-2b) → C57BL/6 (H-2b) models of sclGVHD. Inhibition of canonical WNT signaling reduced the release of extracellular matrix from fibroblasts and reduced leukocyte influx, suggesting that WNT signaling stimulates fibrotic tissue remodeling by direct effects on fibroblasts and by indirect inflammation-dependent effects in sclGVHD. Our findings may have direct translational potential, because pyrvinium is in clinical use, and tankyrase inhibitors are in clinical trials for other indications.
Collapse
|
23
|
Abstract
Long-term pathogen and tumor control as well as checkpoint immunotherapies rely on ‘stem-like’ CD8+ T cells. New results uncover BACH2 as a key regulator of this subpopulation and solve an important piece of the puzzle.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Li F, Zhao X, Zhang Y, Shao P, Ma X, Paradee WJ, Liu C, Wang J, Xue HH. T FH cells depend on Tcf1-intrinsic HDAC activity to suppress CTLA4 and guard B-cell help function. Proc Natl Acad Sci U S A 2021; 118:e2014562118. [PMID: 33372138 PMCID: PMC7812797 DOI: 10.1073/pnas.2014562118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Precise regulation of coinhibitory receptors is essential for maintaining immune tolerance without interfering with protective immunity, yet the mechanism underlying such a balanced act remains poorly understood. In response to protein immunization, T follicular helper (TFH) cells lacking Tcf1 and Lef1 transcription factors were phenotypically normal but failed to promote germinal center formation and antibody production. Transcriptomic profiling revealed that Tcf1/Lef1-deficient TFH cells aberrantly up-regulated CTLA4 and LAG3 expression, and treatment with anti-CTLA4 alone or combined with anti-LAG3 substantially rectified B-cell help defects by Tcf1/Lef1-deficient TFH cells. Mechanistically, Tcf1 and Lef1 restrain chromatin accessibility at the Ctla4 and Lag3 loci. Groucho/Tle corepressors, which are known to cooperate with Tcf/Lef factors, were essential for TFH cell expansion but dispensable for repressing coinhibitory receptors. In contrast, mutating key amino acids in histone deacetylase (HDAC) domain in Tcf1 resulted in CTLA4 derepression in TFH cells. These findings demonstrate that Tcf1-instrinsic HDAC activity is necessary for preventing excessive CTLA4 induction in protein immunization-elicited TFH cells and hence guarding their B-cell help function.
Collapse
Affiliation(s)
- Fengyin Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui, People's Republic of China;
- Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, Anhui, People's Republic of China
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, 215123 Xi'an, Shanxi, People's Republic of China
| | - William J Paradee
- Genome Editing Core Facility, University of Iowa, Coralville, IA 52241
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263;
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110;
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Immunology Research Laboratory, New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|
25
|
Zhao X, Shao P, Gai K, Li F, Shan Q, Xue HH. β-catenin and γ-catenin are dispensable for T lymphocytes and AML leukemic stem cells. eLife 2020; 9:55360. [PMID: 32820720 PMCID: PMC7462606 DOI: 10.7554/elife.55360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The β-catenin transcriptional coregulator is involved in various biological and pathological processes; however, its requirements in hematopoietic cells remain controversial. We re-targeted the Ctnnb1 gene locus to generate a true β-catenin-null mutant mouse strain. Ablation of β-catenin alone, or in combination with its homologue γ-catenin, did not affect thymocyte maturation, survival or proliferation. Deficiency in β/γ-catenin did not detectably affect differentiation of CD4+T follicular helper cells or that of effector and memory CD8+ cytotoxic cells in response to acute viral infection. In an MLL-AF9 AML mouse model, genetic deletion of β-catenin, or even all four Tcf/Lef family transcription factors that interact with β-catenin, did not affect AML onset in primary recipients, or the ability of leukemic stem cells (LSCs) in propagating AML in secondary recipients. Our data thus clarify on a long-standing controversy and indicate that β-catenin is dispensable for T cells and AML LSCs.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kexin Gai
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Fengyin Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States.,New Jersey Veterans Affairs Health Care System, East Orange, United States
| |
Collapse
|
26
|
Han W, Shi J, Cao J, Dong B, Guan W. Current advances of long non-coding RNAs mediated by wnt signaling in glioma. Pathol Res Pract 2020; 216:153008. [PMID: 32703485 DOI: 10.1016/j.prp.2020.153008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Glioma is the most common and aggressive brain tumor in the central nervous system (CNS), in which Wnt signaling pathway has been verified to play a pivotal role in regulating the initiation and progression. Currently, numerous studies have indicated that long non-coding RNAs (lncRNAs) have critical functions across biological processes including cell proliferation, colony formation, migration, invasion and apoptosis via Wnt signaling pathway in glioma. This review depicts canonical and non-canonical Wnt/β-catenin signaling pathway properties and relative processing mechanisms in gliomas, and summarizes the function and regulation of lncRNAs mediated by Wnt signaling pathway in the development and progression of glioma. Ultimately, we hope to seek out promising biomarkers and reliable therapeutic targets for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
27
|
Ectopic Tcf1 expression instills a stem-like program in exhausted CD8 + T cells to enhance viral and tumor immunity. Cell Mol Immunol 2020; 18:1262-1277. [PMID: 32341523 DOI: 10.1038/s41423-020-0436-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are dysfunctional due to persistent antigen exposure in chronic viral infection and tumor contexts. A stem cell-like Tex (Tex-stem) subset can self-renew and differentiate into terminally exhausted (Tex-term) cells. Here, we show that ectopic Tcf1 expression potently promoted the generation of Tex-stem cells in both a chronic viral infection and preclinical tumor models. Tcf1 overexpression diminished coinhibitory receptor expression and enhanced polycytokine-producing capacity while retaining a heightened responses to checkpoint blockade, leading to enhanced viral and tumor control. Mechanistically, ectopically expressed Tcf1 exploited existing and novel chromatin accessible sites as transcriptional enhancers or repressors and modulated the transcriptome by enforcing pre-existing expression patterns in Tex-stem cells, such as enhanced suppression of Blimp1 and Bim and acquisition of new downstream genes, including Mx1, Tox2, and Runx3. These findings reveal a pronounced impact of ectopic Tcf1 expression on Tex functional restoration and highlight the therapeutic potential of harnessing Tcf1-enforced transcriptional programs.
Collapse
|
28
|
Zhou S, Li W, Xiao Y, Zhu X, Zhong Z, Li Q, Cheng F, Zou P, You Y, Zhu X. A novel chimeric antigen receptor redirecting T-cell specificity towards CD26 + cancer cells. Leukemia 2020; 35:119-129. [PMID: 32317776 DOI: 10.1038/s41375-020-0824-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy is rapidly emerging as a promising novel treatment for malignancies. To broaden the success of CAR T-cell treatment for chronic myeloid leukaemia (CML), we attempted to construct a CD26 CAR T-cell product to target tyrosine kinase inhibitor-insensitive leukaemia stem cells (LSCs), which have been a challenge to cure for several decades and can be discriminated from healthy stem cells by the robust biomarker CD26. Of additional interest is that CD26 has also been reported to be a multi-purpose therapeutic target for other malignancies. Here, we constructed CD26 CAR T cells utilizing lentiviral transduction methods and verified them by flow cytometry analysis and RNA-seq. We found that the initial expansion of CD26 CAR-transduced T cells was delayed due to transient fratricide, but subsequent expansion was accelerated. CD26 CAR T cells exhibited cytotoxicity against the CD26+ T-cell lymphoma cell line Karpas 299, CD26-overexpressing K562 cells and primary CML LSCs, activated multiple effector functions in co-culture assays, and limited tumour progression in a mouse model; but there was some off-tumour cytotoxicity towards activated lymphocytes. In conclusion, these results establish the feasibility of using CD26 as an antigen for CAR T cells targeting CD26+ tumour cells.
Collapse
Affiliation(s)
- Shu Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiming Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoying Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing Li
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Chen X, Cao G, Wu J, Wang X, Pan Z, Gao J, Tian Q, Xu L, Li Z, Hao Y, Huang Q, Wang P, Xiao M, Xie L, Tang S, Liu Z, Hu L, Tang J, He R, Wang L, Zhou X, Wu Y, Chen M, Sun B, Zhu B, Huang J, Ye L. The histone methyltransferase EZH2 primes the early differentiation of follicular helper T cells during acute viral infection. Cell Mol Immunol 2020; 17:247-260. [PMID: 30842630 PMCID: PMC7052164 DOI: 10.1038/s41423-019-0219-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications to histones dictate the differentiation of naïve CD4+ T cells into different subsets of effector T helper (TH) cells. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) has been implicated in the mechanism regulating the differentiation of TH1, TH2 and regulatory T (Treg) cells. However, whether and how EZH2 regulates follicular helper T (TFH) cell differentiation remain unknown. Using a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection, we observed abundant EZH2 expression and associated H3K27me3 modifications preferentially in the early committed virus-specific TFH cells compared to those in TH1 cells. Ablation of EZH2 in LCMV-specific CD4+ T cells leads to a selective impairment of early TFH cell fate commitment, but not late TFH differentiation or memory TFH maintenance. Mechanistically, EZH2 specifically stabilizes the chromatin accessibility of a cluster of genes that are important for TFH fate commitment, particularly B cell lymphoma 6 (Bcl6), and thus directs TFH cell commitment. Therefore, we identified the chromatin-modifying enzyme EZH2 as a novel regulator of early TFH differentiation during acute viral infection.
Collapse
Affiliation(s)
- Xiangyu Chen
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Guoshuai Cao
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jialin Wu
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Zhiwei Pan
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Qin Tian
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Zhirong Li
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Yaxing Hao
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Pengcheng Wang
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Minglu Xiao
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Luoyingzi Xie
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Shupei Tang
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Zhenyu Liu
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Li Hu
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Ran He
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Li Wang
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Xinyuan Zhou
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, Jiangsu, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, 400038, Chongqing, China.
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| | - Lilin Ye
- Institute of Immunology, PLA, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
30
|
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells 2019; 8:cells8111380. [PMID: 31684152 PMCID: PMC6912555 DOI: 10.3390/cells8111380] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling performs an essential function in immune cell modulation and counteracts various disorders. Nonetheless, the emerging role and mechanism of action of this signaling cascade in immune cell regulation, as well as its involvement in various cancers, remain debatable. The Wnt signaling in immune cells is very diverse, e.g., the tolerogenic role of dendritic cells, the development of natural killer cells, thymopoiesis of T cells, B-cell-driven initiation of T-cells, and macrophage actions in tissue repair, regeneration, and fibrosis. The purpose of this review is to highlight the current therapeutic targets in (and the prospects of) Wnt signaling, as well as the potential suitability of available modulators for the development of cancer immunotherapies. Although there are several Wnt inhibitors relevant to cancer, it would be worthwhile to extend this approach to immune cells.
Collapse
|
31
|
Effects of Glycogen Synthase Kinase-3β Inhibitor TWS119 on Proliferation and Cytokine Production of TILs From Human Lung Cancer. J Immunother 2019; 41:319-328. [PMID: 29877972 PMCID: PMC6092086 DOI: 10.1097/cji.0000000000000234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The canonical Wnt-β-catenin signaling pathway arrests the differentiation of T cells and plays an important role in phenotypic maintenance of naive T cells and stem cell-like memory T cells in human peripheral blood, but its effect on tumor-infiltrating lymphocytes (TILs) from non-small cell lung cancer is little known. In this study, we showed that glycogen synthase kinase-3β inhibitor TWS119 has different effects on CD4 and CD8 T cells in TILs. TWS119 preserved the expansion of naive T cell and CD8 stem cell-like memory T cells, and induced CD8 effector T-cell proliferation in TILs. To further determine whether TWS119 impaired the effector function of TILs, TILs were stimulated with polyclonal stimulation, IL-2 and IFN-γ production were detected. Our data showed that TWS119 does not affect the production of IFN-γ in TILs compared with the control group; whereas TWS119 inhibited IFN-γ secretion of T cells from healthy donor. IL-2 production in CD4 central memory T cells and CD4 effector memory T cells from TILs was significantly increased with the TWS119 treatment; TWS119 also promoted the secretion of IL-2 in all cell subsets of CD8 TILs. These findings reveal that TWS119 has a distinct effect on the proliferation and cytokine production of TILs, and provide new insights into the clinical application of TILs with TWS119 treatment for the adoptive immunotherapy.
Collapse
|
32
|
Koizumi SI, Ishikawa H. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells. Cells 2019; 8:E939. [PMID: 31434282 PMCID: PMC6721668 DOI: 10.3390/cells8080939] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells, which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in terms of their ability to localize to specific tissues and suppress particular types of immune responses. Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors that are activated by antigens and cytokines. In this article, we review the current understanding of the transcriptional regulation of differentiation and function of eTreg cells.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
33
|
Shao P, Li F, Wang J, Chen X, Liu C, Xue HH. Cutting Edge: Tcf1 Instructs T Follicular Helper Cell Differentiation by Repressing Blimp1 in Response to Acute Viral Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:801-806. [PMID: 31300510 DOI: 10.4049/jimmunol.1900581] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Differentiation of T follicular helper (TFH) cells is regulated by a complex transcriptional network, with mutually antagonistic Bcl6-Blimp1 as a core regulatory axis. It is well established that Tcf1 acts upstream of Bcl6 for its optimal induction to program TFH cell differentiation. In this study, we show that whereas genetic ablation of Tcf1 in mice greatly diminished TFH cells in response to viral infection, compound deletion of Blimp1 with Tcf1 restored TFH cell frequency, numbers, and generation of germinal center B cells. Aberrant upregulation of T-bet and Id2 in Tcf1-deficient TFH cells was also largely rectified by ablating Blimp1. Tcf1 chromatin immunoprecipitation sequencing in TFH cells identified two strong Tcf1 binding sites in the Blimp1 gene at a 24-kb upstream and an intron-3 element. Deletion of the intron-3 element, but not the 24-kb upstream element, compromised production of TFH cells. Our data demonstrate that Tcf1-mediated Blimp1 repression is functionally critical for safeguarding TFH cell differentiation.
Collapse
Affiliation(s)
- Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Fengyin Li
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jinyong Wang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xia Chen
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Iowa City Veterans Affairs Health Care System, Iowa City, IA 52246
| |
Collapse
|
34
|
Zhu M, Li M, Zhou W, Yang Y, Li F, Zhang L, Ji G. Qianggan extract improved nonalcoholic steatohepatitis by modulating lncRNA/circRNA immune ceRNA networks. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:156. [PMID: 31269941 PMCID: PMC6609373 DOI: 10.1186/s12906-019-2577-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The traditional Chinese medicine prescription, Qianggan formula have been confirmed to be effective on non-alcoholic steatohepatitis (NASH), however, the underlying molecular mechanisms remain obscure. METHODS Thirty-six male C57BL/6 mice were randomly divided into three groups: normal chow diet group; methionine-and-choline-deficient diet (MCD) group, and Qianggan extract (QG) intervention group (0.4 g/kg daily) that fed with MCD. The efficacy of QG was biochemically and histologically evaluated. The expression profiles of messenger ribonucleic acids (mRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) were examined using microarray and verified by RT-qPCR. RESULTS QG significantly improved the phenotypic characteristics of NASH, as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) levels and liver inflammatory cytokines were significantly decreased. By the cutoff of a 1.5-fold change and P < 0.05, 6193 mRNAs, 5692 lncRNAs and 4843 circRNAs were identified as differentially expressed between the MCD and normal groups, and 514 mRNAs, 1182 lncRNAs and 443 circRNAs were identified as differentially expressed between the QG and MCD groups. The intersections (244 mRNAs, 259 lncRNAs and 98 circRNAs) among the three groups were chosen for analysis. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that most overlapping mRNAs were related to immune functions such as natural-killer-cell-mediated cytotoxicity, intestinal immune network for IgA production, and T cell receptor signaling pathway. Pathway interactions, protein-protein interactions and molecular complex detection (MCODE) analysis identified numerous immune-related hub genes e.g. natural cytotoxicity triggering receptor 1(Ncr1), C-X-C motif chemokine ligand 9 (Cxcl9), Klra1, and Cd28. Finally, two lncRNAs (Sngh1 and Slc36a3os) and four circRNAs (circ_0009029, circ_0004572, circ_0009212 and circ_0009453) in competing endogenous RNA (ceRNA) networks were constructed by Cytoscape, and immune-related mRNAs (e.g., Cd28, Cd8a, Il15, and Klrk1) were involved in the ceRNA networks. CONCLUSIONS LncRNA and circRNA-associated immune ceRNA networks might be the targets of QG in alleviating NASH, and our work may provide valuable clues for exploring the mechanisms underlying the effect of QG.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032 China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032 China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032 China
| | - Yang Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Fenghua Li
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032 China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032 China
| |
Collapse
|
35
|
Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, Zhao X, Chen X, Paradee WJ, Meyerholz DK, Peng W, Xue HH. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med 2019; 216:847-866. [PMID: 30837262 PMCID: PMC6446865 DOI: 10.1084/jem.20182010] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Tcf1 and Lef1 are underexpressed in T reg cells compared with conventional CD4+ T cells. Xing et al. demonstrate that genetic ablation of both factors impairs immunosuppressive function of T reg cells and leads to spontaneous multi-organ autoimmunity. Tcf1 and Lef1 have versatile functions in regulating T cell development and differentiation, but intrinsic requirements for these factors in regulatory T (T reg) cells remain to be unequivocally defined. Specific ablation of Tcf1 and Lef1 in T reg cells resulted in spontaneous multi-organ autoimmunity that became more evident with age. Tcf1/Lef1-deficient T regs showed reduced protection against experimentally induced colitis, indicative of diminished immuno-suppressive capacity. Transcriptomic analysis revealed that Tcf1 and Lef1 were responsible for positive regulation of a subset of T reg–overrepresented signature genes such as Ikzf4 and Izumo1r. Unexpectedly, Tcf1 and Lef1 were necessary for restraining expression of cytotoxic CD8+ effector T cell–associated genes in T reg cells, including Prdm1 and Ifng. Tcf1 ChIP-seq revealed substantial overlap between Tcf1 and Foxp3 binding peaks in the T reg cell genome, with Tcf1-Foxp3 cooccupancy observed at key T reg signature and cytotoxic effector genes. Our data collectively indicate that Tcf1 and Lef1 are critical for sustaining T reg suppressive functions and preventing loss of self-tolerance.
Collapse
Affiliation(s)
- Shaojun Xing
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Kexin Gai
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xiang Li
- Department of Physics, The George Washington University, Washington DC
| | - Peng Shao
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington DC
| | - Xudong Zhao
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xin Zhao
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xia Chen
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC
| | - Hai-Hui Xue
- Departments of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA .,Iowa City Veterans Affairs Health Care System, Iowa City, IA
| |
Collapse
|
36
|
Brassesco MS, Pezuk JA, Cortez MA, Bezerra Salomão K, Scrideli CA, Tone LG. TLE1 as an indicator of adverse prognosis in pediatric acute lymphoblastic leukemia. Leuk Res 2018; 74:42-46. [PMID: 30286331 DOI: 10.1016/j.leukres.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 06/27/2018] [Accepted: 09/22/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children, and despite the high rate of cure (over 80%) it still has a big impact on morbidity and mortality. The Transducin-like enhancer of split 1 (TLE1), a transcriptional corepressor, has been described as dysregulated and recently emerged as a tumor marker in several cancer types, including hematologic malignancies. METHODS In the present study TLE1 gene expression was evaluated by RT-qPCR. A total of 60 consecutive pathological ALL samples and 8 normal bone marrow samples were included. Associations between TLE1 levels and clinicopathological features were estimated using Mann-Whitney tests. RESULTS TLE1 mRNA levels were significantly diminished in ALL samples when compared to normal counterparts (fold change -1.45, p-value 0.039). Lower TLE1 expression levels were associated with poorer prognostic features such as age at diagnosis (<1 or >9 years-old), absence of the Common Acute Lymphoblastic Leukemia Antigen (CALLA) and high white cell count. Considering immunophenotype, decreased expression of TLE1 was only evident for T-cell ALL, what was validated using gene expression profiling data available in public repositories. No associations with event or overall survival were observed. However, TLE1 expression was statistically different between patients who achieved complete clinical remission (CCR) from those that relapsed or died. CONCLUSION These data are of particular interest and give support for a plausible role of TLE1 as a tumor suppressor in T-cell ALL. Moreover, the prognostic value of this corepressor may assist ALL treatment stratification and suggest the need of alternative regimens.
Collapse
Affiliation(s)
- María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Brazil.
| | - Julia Alejandra Pezuk
- Department of Pharmacy and Department of Biotechnology and Health Innovation, Anhanguera University of Sao Paulo, UNIAN/SP, Brazil
| | - Maria Angelica Cortez
- Experimental Radiation Oncology, The University of Texas, MD Anderson Cancer Center, USA
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| |
Collapse
|
37
|
Contribution of the Wnt Pathway to Defining Biology of Glioblastoma. Neuromolecular Med 2018; 20:437-451. [PMID: 30259273 DOI: 10.1007/s12017-018-8514-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM), a highly lethal brain tumor, has been comprehensively characterized at the molecular level with the identification of several potential treatment targets. Data concerning the Wnt pathway are relatively sparse, but apparently very important in defining several aspects of tumor biology. The Wnt ligands are involved in numerous basic biological processes including regulation of embryogenic development, cell fate determination, and organogenesis, but growing amount of data also support the roles of Wnt pathways in the formation of many tumors, including gliomas. Two main Wnt pathways are distinguished: the canonical (β-catenin) and non-canonical (planar cell polarity, Wnt/Ca2+) routes. Wnt signaling regulates glioma stem cells (GSCs), thereby defining invasive potential, recurrence, and treatment resistance of GBM. Some observations suggest that the Wnt pathways are differentially active in molecular subtypes of this tumor, thereby may also guide prognostication and novel therapeutic decisions. In this review, we highlight main elements and biological relevance of the Wnt pathways, primarily focusing on the pathogenesis and subtypes of GBM. Finally, we briefly summarize newer therapeutic strategies targeting networks of the Wnt signaling cascades and their molecular associates that appear to be marked contributors to GBM aggressiveness.
Collapse
|
38
|
Chae WJ, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol 2018; 39:830-847. [PMID: 30213499 DOI: 10.1016/j.it.2018.08.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Cell differentiation, proliferation, and death are vital for immune homeostasis. Wnt signaling plays essential roles in processes across species. The roles of Wnt signaling proteins and Wnt ligands have been studied in the past, but the context-dependent mechanisms and functions of these pathways in immune responses remain unclear. Recent findings regarding the role of Wnt ligands and Wnt signaling in immune cells and their immunomodulatory mechanisms suggest that Wnt ligands and signaling are significant in regulating immune responses. We introduce recent key findings and future perspectives on Wnt ligands and their signaling pathways in immune cells as well as the immunological roles and functions of Wnt antagonists.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Xing S, Shao P, Li F, Zhao X, Seo W, Wheat JC, Ramasamy S, Wang J, Li X, Peng W, Yu S, Liu C, Taniuchi I, Sweetser DA, Xue HH. Tle corepressors are differentially partitioned to instruct CD8 + T cell lineage choice and identity. J Exp Med 2018; 215:2211-2226. [PMID: 30045946 PMCID: PMC6080905 DOI: 10.1084/jem.20171514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/05/2018] [Accepted: 06/29/2018] [Indexed: 01/15/2023] Open
Abstract
Xing et al demonstrate the requirements for Tle transcriptional corepressors in CD8+ T cell development. Tle proteins are differentially partitioned to the Runx and Tcf/Lef complexes to promote CD8+ lineage choice and establish CD8+ T cell identity, respectively. Tle/Groucho proteins are transcriptional corepressors interacting with Tcf/Lef and Runx transcription factors, but their physiological roles in T cell development remain unknown. Conditional targeting of Tle1, Tle3 and Tle4 revealed gene dose–dependent requirements for Tle proteins in CD8+ lineage cells. Upon ablating all three Tle proteins, generation of CD8+ T cells was greatly diminished, largely owing to redirection of MHC-I–selected thymocytes to CD4+ lineage; the remaining CD8-positive T cells showed aberrant up-regulation of CD4+ lineage-associated genes including Cd4, Thpok, St8sia6, and Foxp3. Mechanistically, Tle3 bound to Runx-occupied Thpok silencer, in post-selection double-positive thymocytes to prevent excessive ThPOK induction and in mature CD8+ T cells to silence Thpok expression. Tle3 also bound to Tcf1-occupied sites in a few CD4+ lineage-associated genes, including Cd4 silencer and St8sia6 introns, to repress their expression in mature CD8+ T cells. These findings indicate that Tle corepressors are differentially partitioned to Runx and Tcf/Lef complexes to instruct CD8+ lineage choice and cooperatively establish CD8+ T cell identity, respectively.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Fengyin Li
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xudong Zhao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Justin C Wheat
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Selvi Ramasamy
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Jianfeng Wang
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Xiang Li
- Department of Physics, The George Washington University, Washington, DC
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC
| | - Shuyang Yu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - David A Sweetser
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
40
|
Wang H, Hogquist KA. How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Front Immunol 2018; 9:1450. [PMID: 29997620 PMCID: PMC6028555 DOI: 10.3389/fimmu.2018.01450] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
In contrast to peptide-recognizing T cells, invariant natural killer T (iNKT) cells express a semi-invariant T cell receptor that specifically recognizes self- or foreign-lipids presented by CD1d molecules. There are three major functionally distinct effector states for iNKT cells. Owning to these innate-like effector states, iNKT cells have been implicated in early protective immunity against pathogens. Yet, growing evidence suggests that iNKT cells play a role in tissue homeostasis as well. In this review, we discuss current knowledge about the underlying mechanisms that regulate the effector states of iNKT subsets, with a highlight on the roles of a variety of transcription factors and describe how each subset influences different facets of thymus homeostasis.
Collapse
Affiliation(s)
- Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
41
|
Zhu J. GATA3 Regulates the Development and Functions of Innate Lymphoid Cell Subsets at Multiple Stages. Front Immunol 2017; 8:1571. [PMID: 29184556 PMCID: PMC5694433 DOI: 10.3389/fimmu.2017.01571] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are regarded as the innate counterpart of effector CD4 T helper (Th) cells. Just as Th cells, ILCs are classified into distinct subsets based on their functions that are delivered mainly through effector cytokine production. Both ILCs and Th cells play critical roles in various protective immune responses and inflammatory diseases. Similar to Th cell differentiation, the development of ILC subsets depends on several master transcription factors, among which GATA3 is critical for the development and maintenance of type 2 ILCs (ILC2s). However, GATA3 is expressed by all ILC subsets and ILC progenitors, albeit at different levels. In a striking parallel with GATA3 function in T cell development and differentiation, GATA3 also has multiple functions in different ILCs at various stages. In this review, I will discuss how quantitative and dynamic expression of GATA3 regulates the development and functions of ILC subsets.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Brignall R, Cauchy P, Bevington SL, Gorman B, Pisco AO, Bagnall J, Boddington C, Rowe W, England H, Rich K, Schmidt L, Dyer NP, Travis MA, Ott S, Jackson DA, Cockerill PN, Paszek P. Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2652-2667. [PMID: 28904128 PMCID: PMC5632840 DOI: 10.4049/jimmunol.1602033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.
Collapse
Affiliation(s)
- Ruth Brignall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sarah L Bevington
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bethany Gorman
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Angela O Pisco
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christopher Boddington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - William Rowe
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin Rich
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel P Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark A Travis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
43
|
Gullicksrud JA, Li F, Xing S, Zeng Z, Peng W, Badovinac VP, Harty JT, Xue HH. Differential Requirements for Tcf1 Long Isoforms in CD8 + and CD4 + T Cell Responses to Acute Viral Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:911-919. [PMID: 28652395 DOI: 10.4049/jimmunol.1700595] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022]
Abstract
In response to acute viral infection, activated naive T cells give rise to effector T cells that clear the pathogen and memory T cells that persist long-term and provide heightened protection. T cell factor 1 (Tcf1) is essential for several of these differentiation processes. Tcf1 is expressed in multiple isoforms, with all isoforms sharing the same HDAC and DNA-binding domains and the long isoforms containing a unique N-terminal β-catenin-interacting domain. In this study, we specifically ablated Tcf1 long isoforms in mice, while retaining expression of Tcf1 short isoforms. During CD8+ T cell responses, Tcf1 long isoforms were dispensable for generating cytotoxic CD8+ effector T cells and maintaining memory CD8+ T cell pool size, but they contributed to optimal maturation of central memory CD8+ T cells and their optimal secondary expansion in a recall response. In contrast, Tcf1 long isoforms were required for differentiation of T follicular helper (TFH) cells, but not TH1 effectors, elicited by viral infection. Although Tcf1 short isoforms adequately supported Bcl6 and ICOS expression in TFH cells, Tcf1 long isoforms remained important for suppressing the expression of Blimp1 and TH1-associated genes and for positively regulating Id3 to restrain germinal center TFH cell differentiation. Furthermore, formation of memory TH1 and memory TFH cells strongly depended on Tcf1 long isoforms. These data reveal that Tcf1 long and short isoforms have distinct, yet complementary, functions and may represent an evolutionarily conserved means to ensure proper programming of CD8+ and CD4+ T cell responses to viral infection.
Collapse
Affiliation(s)
- Jodi A Gullicksrud
- Department of Microbiology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242
| | - Fengyin Li
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Shaojun Xing
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington, DC 20052; and
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052; and
| | - Vladimir P Badovinac
- Department of Microbiology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242.,Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242
| | - Hai-Hui Xue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; .,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
44
|
The transcription factor Runx3 guards cytotoxic CD8 + effector T cells against deviation towards follicular helper T cell lineage. Nat Immunol 2017; 18:931-939. [PMID: 28604718 PMCID: PMC5564218 DOI: 10.1038/ni.3773] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Activated CD8+ T cells differentiate into cytotoxic effector (TEFF) cells that eliminate target cells. How TEFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in TEFF cells. Runx3-deficient CD8+ TEFF cells aberrantly upregulated genes characteristic of follicular helper T (TFH) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the TFH program. Ablating Tcf7 in Runx3-deficient CD8+ TEFF cells prevented the upregulation of TFH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing TFH-lineage deviation.
Collapse
|
45
|
Cho S, Wu CJ, Nguyen DT, Lin LL, Chen MC, Khan AA, Yang BH, Fu W, Lu LF. A Novel miR-24-TCF1 Axis in Modulating Effector T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2017; 198:3919-3926. [PMID: 28404635 DOI: 10.4049/jimmunol.1601404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/15/2017] [Indexed: 01/17/2023]
Abstract
miR-23∼27∼24 was recently implicated in restricting Th2 immunity, as well as the differentiation and function of other effector T cell lineages. Interestingly, miR-24, unlike other family members, actually promotes Th1 and Th17 responses. In this article, we show that miR-24 drives the production of IFN-γ and IL-17 in T cells at least in part through targeting TCF1, a transcription factor known for its role in limiting Th1 and Th17 immunity. Surprisingly, whereas TCF1 was previously shown to promote Th2 responses through inducing GATA3, enforced TCF1 expression in miR-24-overexpressing T cells led to further downregulation of IL-4 and GATA3 expression, suggesting miR-24-mediated inhibition of Th2 immunity cannot be attributed to TCF1 repression by miR-24. Together, our data demonstrate a novel miR-24-TCF1 pathway in controlling effector cytokine production by T cells and further suggest miR-24 could function as a key upstream molecule regulating TCF1-mediated immune responses.
Collapse
Affiliation(s)
- Sunglim Cho
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Cheng-Jang Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Duc T Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Ling-Li Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Aly Azeem Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637
| | - Bi-Huei Yang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Wenxian Fu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; .,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093; and.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
46
|
Xu Z, Xing S, Shan Q, Gullicksrud JA, Bair TB, Du Y, Liu C, Xue HH. Cutting Edge: β-Catenin-Interacting Tcf1 Isoforms Are Essential for Thymocyte Survival but Dispensable for Thymic Maturation Transitions. THE JOURNAL OF IMMUNOLOGY 2017; 198:3404-3409. [PMID: 28348272 DOI: 10.4049/jimmunol.1602139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/05/2017] [Indexed: 11/19/2022]
Abstract
T cell factor 1 (Tcf1) is essential for T cell development; however, it remains controversial whether β-catenin, a known coactivator of Tcf1, has a role. Tcf1 is expressed in multiple isoforms in T lineage cells, with the long isoforms interacting with β-catenin through an N-terminal domain. In this study, we specifically ablated Tcf1 long isoforms in mice (p45-/-mice) to abrogate β-catenin interaction. Although thymic cellularity was diminished in p45-/- mice, transition of thymocytes through the maturation stages was unaffected, with no overt signs of developmental blocks. p45-/- thymocytes showed increased apoptosis and alterations in transcriptome, but these changes were substantially more modest than in thymocytes lacking all Tcf1 isoforms. These data indicate that Tcf1-β-catenin interaction is necessary for promoting thymocyte survival to maintain thymic output. Rather than being dominant-negative regulators, Tcf1 short isoforms are adequate in supporting developing thymocytes to traverse through maturation steps and in regulating the expression of most Tcf1 target genes.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jodi A Gullicksrud
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242
| | - Thomas B Bair
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; and
| | - Yubin Du
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
47
|
Issuree PDA, Ng CP, Littman DR. Heritable Gene Regulation in the CD4:CD8 T Cell Lineage Choice. Front Immunol 2017; 8:291. [PMID: 28382035 PMCID: PMC5360760 DOI: 10.3389/fimmu.2017.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
The adaptive immune system is dependent on functionally distinct lineages of T cell antigen receptor αβ-expressing T cells that differentiate from a common progenitor in the thymus. CD4+CD8+ progenitor thymocytes undergo selection following interaction with MHC class I and class II molecules bearing peptide self-antigens, giving rise to CD8+ cytotoxic and CD4+ helper or regulatory T cell lineages, respectively. The strict correspondence of CD4 and CD8 expression with distinct cellular phenotypes has made their genes useful surrogates for investigating molecular mechanisms of lineage commitment. Studies of Cd4 and Cd8 transcriptional regulation have uncovered cis-regulatory elements that are critical for mediating epigenetic modifications at distinct stages of development to establish heritable transcriptional programs. In this review, we examine the epigenetic mechanisms involved in Cd4 and Cd8 gene regulation during T cell lineage specification and highlight the features that make this an attractive system for uncovering molecular mechanisms of heritability.
Collapse
Affiliation(s)
- Priya D A Issuree
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Charles P Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
48
|
Ferreira RC, Rainbow DB, Rubio García A, Pekalski ML, Porter L, Oliveira JJ, Waldron-Lynch F, Wicker LS, Todd JA. Human IL-6R hiTIGIT - CD4 +CD127 lowCD25 + T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clin Immunol 2017; 179:25-39. [PMID: 28284938 PMCID: PMC5471606 DOI: 10.1016/j.clim.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
To date many clinical studies aim to increase the number and/or fitness of CD4+ CD127lowCD25+ regulatory T cells (Tregs) in vivo to harness their regulatory potential in the context of treating autoimmune disease. Here, we sought to define the phenotype and function of Tregs expressing the highest levels of IL-6 receptor (IL-6R). We have identified a population of CD4+ CD127lowCD25+ TIGIT− T cells distinguished by their elevated IL-6R expression that lacked expression of HELIOS, showed higher CTLA-4 expression, and displayed increased suppressive capacity compared to IL-6RhiTIGIT+ Tregs. IL-6RhiTIGIT− CD127lowCD25+ T cells contained a majority of cells demethylated at FOXP3 and displayed a Th17 transcriptional signature, including RORC (RORγt) and the capacity of producing both pro- and anti-inflammatory cytokines, such as IL-17, IL-22 and IL-10. We propose that in vivo, in the presence of IL-6-associated inflammation, the suppressive function of CD4+ CD127lowCD25+ FOXP3+ IL-6RhiTIGIT− T cells is temporarily disarmed allowing further activation of the effector functions and potential pathogenic tissue damage. IL-6R is highly expressed in certain Treg subsets. IL-6RhiTIGIT− CD127lowCD25+ T cells contain a subset of antigen-experienced Tregs with potent suppression capacity. IL-6RhiTIGIT− Tregs display a Th17 transcriptional profile ex vivo, and the capacity to migrate to the gut. IL-2 treatment in humans elicits the trafficking and expansion of Tregs in circulation.
Collapse
Affiliation(s)
- Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Arcadio Rubio García
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Linsey Porter
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - João J Oliveira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Frank Waldron-Lynch
- Experimental Medicine and Immunotherapeutics, Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; NIHR Cambridge Clinical Trial Unit, Cambridge NHS University Hospitals Trust, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Tiffen JC, Gallagher SJ, Tseng HY, Filipp FV, Fazekas de St. Groth B, Hersey P. EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell Melanoma Res 2016; 29:500-7. [PMID: 27063195 PMCID: PMC5021620 DOI: 10.1111/pcmr.12481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 12/27/2022]
Abstract
Direct treatments of cancer such as chemotherapy, radiotherapy and targeted therapy have been shown to depend on recruitment of the immune system for their effectiveness. Recent studies have shown that development of resistance to direct therapies such as BRAF inhibitors in melanoma is associated with suppression of immune responses. We point to emerging data that implicate activation of the polycomb repressive complex 2 (PRC2) and its catalytic component-enhancer of zeste homolog 2 (EZH2)-in progression of melanoma and suppression of immune responses. EZH2 appears to have an important role in differentiation of CD4 T cells and particularly in the function of T regulatory cells, which suppress immune responses to melanoma. We review mechanisms of EZH2 activation at the genomic level and from activation of the MAP kinase, E2F or NF-kB2 pathways. These studies are consistent with activation of EZH2 as a common mechanism for induction of immune suppression in patients failing direct therapies and suggest EZH2 inhibitors may have a role in combination with immunotherapy and targeted therapies to prevent development of immunosuppression.
Collapse
Affiliation(s)
- Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, CA, USA
| | | | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
50
|
Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips FC, Maina PK, Qi HH, Liu C, Zhu J, Pope RM, Musselman CA, Zeng C, Peng W, Xue HH. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol 2016; 17:695-703. [PMID: 27111144 PMCID: PMC4873337 DOI: 10.1038/ni.3456] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
The CD4+ and CD8+ T cell dichotomy is essential for effective cellular immunity. How the individual T cell identity is established remains poorly understood. Here we show that the high mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4+ lineage-associated genes including Cd4, Foxp3 and Rorc in CD8+ T cells. Tcf1- and Lef1-deficient CD8+ T cells exhibit histone hyperacetylation, which is ascribed to an unexpected intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutating five conserved amino acids in the Tcf1 HDAC domain diminishes the HDAC activity and the ability to suppress CD4+ lineage genes in CD8+ T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Fengyin Li
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Yunjie Zhao
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yalan Li
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Farrah C Phillips
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Peterson K Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|