1
|
Hernandez-Franco JF, Jan IM, Elzey BD, HogenEsch H. Intradermal vaccination with a phytoglycogen nanoparticle and STING agonist induces cytotoxic T lymphocyte-mediated antitumor immunity. NPJ Vaccines 2024; 9:149. [PMID: 39152131 PMCID: PMC11329758 DOI: 10.1038/s41541-024-00943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
A critical aspect of cancer vaccine development is the formulation with effective adjuvants. This study evaluated whether combining a cationic plant-derived nanoparticle adjuvant (Nano-11) with the clinically tested STING agonist ADU-S100 (MIW815) could stimulate anticancer immunity by intradermal vaccination. Nano-11 combined with ADU-S100 (NanoST) synergistically activated antigen-presenting cells, facilitating protein antigen cross-presentation in vitro and in vivo. Intradermal vaccination using ovalbumin (OVA) as a tumor antigen and combined with Nano-11 or NanoST prevented the development of murine B16-OVA melanoma and E.G7-OVA lymphoma tumors. The antitumor immunity was abolished by CD8+ T cell depletion but not by CD4+ T cell depletion. Therapeutic vaccination with NanoST increased mouse survival by inhibiting B16-OVA tumor growth, and this effect was further enhanced by PD-1 checkpoint blockade. Our study provides a strong rationale for developing NanoST as an adjuvant for intradermal vaccination and next-generation preventative and therapeutic cancer vaccines by STING-targeted activation.
Collapse
Affiliation(s)
- Juan F Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN, 47907, USA.
| | - Imran M Jan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN, 47907, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1225 Morris Park Ave, Bronx, NY, 10461, USA
| | - Bennett D Elzey
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN, 47907, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Xie T, Zhong LL. Association of serum pertussis antibodies with acute asthma attacks in children. Allergy Asthma Proc 2024; 45:e54-e61. [PMID: 38982606 DOI: 10.2500/aap.2024.45.240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Objective: The aim of this study was to examine the serum antibody levels against pertussis toxin (PT) in children experiencing an acute asthma attack and to explore the potential association between these levels and asthma. Methods: A prospective investigation was conducted, which involved 107 children with acute asthma attacks and 77 children diagnosed with bronchitis. The serum immunoglobulin G (IgG) antibody levels specific to PT were measured by using an in-house enzyme-linked immunosorbent assay. Based on the serum PT-IgG antibody levels, the children with asthma were categorized into three groups: non-pertussis infected, suspected pertussis infected, and recent pertussis infected. The clinical manifestations and pulmonary function of pediatric patients diagnosed with asthma were assessed and compared across various groups. Results: Of the total asthma group, 25 patients tested positive for PT-IgG, whereas only six patients in the bronchitis group were PT-IgG positive. The prevalence of recent pertussis infection was observed to be higher in the asthma group compared with the bronchitis group. Within the asthma group, those with recent pertussis infection exhibited a higher likelihood of experiencing wheezing and impaired lung function in comparison with the non-pertussis infection group. Conclusion: Pertussis infection is relatively common in children with asthma and correlates with the severity of asthma.
Collapse
|
3
|
Mitchell AE, Scanlon KM, Flowers EM, Jordan CM, Tibbs EJ, Bukowski A, Gallop D, Carbonetti NH. Age-dependent natural killer cell and interferon γ deficits contribute to severe pertussis in infant mice. J Leukoc Biol 2024; 115:1143-1153. [PMID: 38285898 PMCID: PMC11135619 DOI: 10.1093/jleuko/qiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Many respiratory infections are selectively injurious to infants, yet the etiology of age-associated susceptibility is unknown. One such bacterial pathogen is Bordetella pertussis. In adult mice, innate interferon γ (IFN-γ) is produced by natural killer (NK) cells and restricts infection to the respiratory tract. In contrast, infant pertussis resembles disease in NK cell- and IFN-γ-deficient adult mice that experience disseminated lethal infection. We hypothesized that infants exhibit age-associated deficits in NK cell frequency, maturation, and responsiveness to B. pertussis, associated with low IFN-γ levels. To delineate mechanisms behind age-dependent susceptibility, we compared infant and adult mouse models of infection. Infection in infant mice resulted in impaired upregulation of IFN-γ and substantial bacterial dissemination. B. pertussis-infected infant mice displayed fewer pulmonary NK cells than adult mice. Furthermore, the NK cells in the infant mouse lungs had an immature phenotype, and the infant lung showed no upregulation of the IFN-γ-inducing cytokine IL-12p70. Adoptive transfer of adult NK cells into infants, or treatment with exogenous IFN-γ, significantly reduced bacterial dissemination. These data indicate that the lack of NK cell-produced IFN-γ significantly contributes to infant fulminant pertussis and could be the basis for other pathogen-induced, age-dependent respiratory diseases.
Collapse
Affiliation(s)
- Ashley E. Mitchell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Karen M. Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Emily M. Flowers
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cassandra M. Jordan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ellis J. Tibbs
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alicia Bukowski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Danisha Gallop
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nicholas H. Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
4
|
Van averbeke V, Berkell M, Mysara M, Rodriguez-Ruiz JP, Xavier BB, De Winter FHR, Jongers B‘, Jairam RK, Hotterbeekx A, Goossens H, Cohen ES, Malhotra-Kumar S, Kumar-Singh S. Host Immunity Influences the Composition of Murine Gut Microbiota. Front Immunol 2022; 13:828016. [PMID: 35371073 PMCID: PMC8965567 DOI: 10.3389/fimmu.2022.828016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of gut microbiota on host immunity is widely studied, and its disturbance has been linked to several immune-mediated disorders. Conversely, whether and how inherently disturbed canonical Th1 (pro-inflammatory) and/or Th2 (anti-inflammatory) immune pathways modify the host microbiome is not sufficiently investigated. Here, we characterized the humoral, cellular, and cytokine immunity, and associated alterations in gut microbiota of naïve wild-type mice (C57BL/6 and BALB/c), and mice with deficiencies in Th2 responses (IL-4Rα and IL-33 knockout mice) or in both Th1 and Th2 responses (NOD scid gamma, NSG mice). A global analysis by de novo clustering of 16S rRNA profiles of the gut microbiota independently grouped wild-type immunocompetent (C57BL/6 and BALB/c), Th2-deficient (IL-4Rα-/- and IL-33-/-), and severely immunodeficient (NSG) mice; where wild-type mice, but not Th2 or severely immunodeficient mice, were enriched in gut bacteria that produce short-chain fatty acids. These include members of phyla Firmicutes, Verrucomicrobia, and Bacteroidetes such as Lactobacillus spp., Akkermansia muciniphila, and Odoribacter spp. Further comparison of the two naïve wild-type mouse strains showed higher microbial diversity (Shannon), primarily linked to higher richness (Chao1), as well as a distinct difference in microbial composition (weighted UniFrac) in BALB/c mice compared to C57BL/6. T-cell and blood cytokine analyses demonstrated a Th1-polarization in naïve adaptive immunity in C57BL/6 animals compared to BALB/c mice, and an expected Th2 deficient cellular response in IL-4Rα-/- and IL-33-/- mice compared to its genetic background BALB/c strain. Together, these data suggest that alterations in the Th1/Th2 balance or a complete ablation of Th1/Th2 responses can lead to major alterations in gut microbiota composition and function. Given the similarities between the human and mouse immune systems and gut microbiota, our finding that immune status is a strong driver of gut microbiota composition has important consequences for human immunodeficiency studies.
Collapse
Affiliation(s)
- Vincent Van averbeke
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Matilda Berkell
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - Juan Pablo Rodriguez-Ruiz
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Bart ‘s Jongers
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ravi Kumar Jairam
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - E. Suzanne Cohen
- Bioscience Asthma, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
A Combined Adjuvant TF-Al Consisting of TFPR1 and Aluminum Hydroxide Augments Strong Humoral and Cellular Immune Responses in Both C57BL/6 and BALB/c Mice. Vaccines (Basel) 2021; 9:vaccines9121408. [PMID: 34960154 PMCID: PMC8705145 DOI: 10.3390/vaccines9121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF-Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF-Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.
Collapse
|
6
|
Ma L, Dewan KK, Taylor-Mulneix DL, Wagner SM, Linz B, Rivera I, Su Y, Caulfield AD, Blas-Machado U, Harvill ET. Pertactin contributes to shedding and transmission of Bordetella bronchiseptica. PLoS Pathog 2021; 17:e1009735. [PMID: 34347835 PMCID: PMC8336816 DOI: 10.1371/journal.ppat.1009735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Whooping cough is resurging in the United States despite high vaccine coverage. The rapid rise of Bordetella pertussis isolates lacking pertactin (PRN), a key vaccine antigen, has led to concerns about vaccine-driven evolution. Previous studies showed that pertactin can mediate binding to mammalian cells in vitro and act as an immunomodulatory factor in resisting neutrophil-mediated clearance. To further investigate the role of PRN in vivo, we examined the functions of pertactin in the context of a more naturally low dose inoculation experimental system using C3H/HeJ mice that is more sensitive to effects on colonization, growth and spread within the respiratory tract, as well as an experimental approach to measure shedding and transmission between hosts. A B. bronchiseptica pertactin deletion mutant was found to behave similarly to its wild-type (WT) parental strain in colonization of the nasal cavity, trachea, and lungs of mice. However, the pertactin-deficient strain was shed from the nares of mice in much lower numbers, resulting in a significantly lower rate of transmission between hosts. Histological examination of respiratory epithelia revealed that pertactin-deficient bacteria induced substantially less inflammation and mucus accumulation than the WT strain and in vitro assays verified the effect of PRN on the induction of TNF-α by murine macrophages. Interestingly, only WT B. bronchiseptica could be recovered from the spleen of infected mice and were further observed to be intracellular among isolated splenocytes, indicating that pertactin contributes to systemic dissemination involving intracellular survival. These results suggest that pertactin can mediate interactions with immune cells and augments inflammation that contributes to bacterial shedding and transmission between hosts. Understanding the relative contributions of various factors to inflammation, mucus production, shedding and transmission will guide novel strategies to interfere with the reemergence of pertussis. B. pertussis strains lacking pertactin have been rising in prevalence especially in countries using acellular vaccines containing pertactin as a key, membrane-associated surface antigen. Previous in vivo studies revealed immunomodulatory properties of pertactin in conventional B. pertussis infection models in which roughly one million bacteria are delivered into lungs, leading to severe pneumonic disease and a strong immune response. However, natural infections begin in the nasopharyngeal region, progress slowly during a prolonged catarrhal stage, only later reaching the trachea and rarely involve the lungs. In this study, a more natural experimental system takes advantage of the ability of B. bronchiseptica, a closely related species, to naturally colonize mice with inocula as low as 5 colony forming units (CFU). In this system B. bronchiseptica can be observed to efficiently colonize, grow, spread within the respiratory tract, is shed from the nares, and transmits between hosts, allowing each of these steps to be measured and studied. Under these conditions, an isogenic pertactin deletion strain was indistinguishable from its parental strain in its abilities to colonize, grow in numbers and spread within the respiratory tract. However, the pertactin-deficient mutant was shed from these mice in lower numbers than wild type, and was defective in transmission between mice. These assays reveal novel roles of pertactin in the induction of inflammation, mucus production, shedding and transmission.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Dawn L. Taylor-Mulneix
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Shannon M. Wagner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry, University of Georgia, Athens, Georgia, United States of America
| | - Amanda D. Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
7
|
Live attenuated Bordetella pertussis vaccine candidate BPZE1 transiently protects against lethal pneumococcal disease in mice. Vaccine 2021; 40:1555-1562. [PMID: 33509692 DOI: 10.1016/j.vaccine.2021.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
BPZE1 is a live attenuated vaccine against infection by Bordetella pertussis, the causative agent of whooping cough. It was previously shown that BPZE1 provides heterologous protection in mouse models of disease caused by unrelated pathogens, such as influenza virus and respiratory syncytial virus. Protection was also observed in mouse models of asthma and contact dermatitis. In this study, we demonstrate that BPZE1 also displays protection against an unrelated bacterial pathogen in a mouse model of invasive pneumococcal disease mediated by Streptococcus pneumoniae. While a single administration of BPZE1 provided no protection, two doses of 106 colony-forming units of BPZE1 given in a three-week interval protected against mortality, lung colonization and dissemination in both BALB/c and C57BL/6 mice. Unlike for the previously reported influenza challenge model, protection was short-lived, and waned within days after booster vaccination. Formaldehyde-killed BPZE1 protected only when administered following a live prime, indicating that priming requires live BPZE1 for protection. Protection against mortality was directly linked to substantially decreased bacterial dissemination in the blood and was lost in MyD88 knock-out mice, demonstrating the role of the innate immune system in the mechanism of protection. This is the first report on a heterologous protective effect of the live BPZE1 vaccine candidate against an unrelated bacterial infection.
Collapse
|
8
|
Magaña-Guerrero FS, Quiroz-Mercado J, Garfias-Zenteno N, Garfias Y. Comparative analysis of inflammatory response in the BALB/c and C57BL/6 mouse strains in an endotoxin-induced uveitis model. J Immunol Methods 2019; 476:112677. [PMID: 31626758 DOI: 10.1016/j.jim.2019.112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
Abstract
Uveitis is an inflammatory disease associated with diverse systemic and autoimmune diseases, defined as the inflammation of any given segment of the uveal tract, uveitis contributes with 5-20% cases of blindness in the USA/Europe and >25% of cases in third-world countries. To understand its pathogenic mechanisms, BALB/c and C57BL/6 mice were induced to develop the condition by a single intraperitoneal injection of E. coli lipopolysaccharide, the aim of the present work is to determine leukocyte infiltration in an endotoxin-induced uveitis (EIU) in two non-related mouse strains. Histopathological findings and clinical analysis were conducted 24 and 48 h postinjection. Both strains presented conventional clinical signs of uveitis 24 h post LPS injection and the highest inflammatory leukocyte infiltration in the uveal tract was found in the BALB/c mouse strain. This article will give an insight on the difference of the inflammatory response in the EIU model in two different mouse strains and the relationship between the pathologic response.
Collapse
Affiliation(s)
- Fátima Sofía Magaña-Guerrero
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico.
| | - Joaquín Quiroz-Mercado
- Department of Medicine, Surgery and Zootechnics for Small Animals, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - Nicolás Garfias-Zenteno
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis S/N, 11340 Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico.
| |
Collapse
|
9
|
Li L, Chen X, Zhang Y, Li Q, Qi C, Fei X, Zheng F, Gong F, Fang M. Toll-like receptor 2 deficiency promotes the generation of alloreactive Th17 cells after cardiac transplantation in mice. Cell Immunol 2019; 338:9-20. [DOI: 10.1016/j.cellimm.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
|
10
|
IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol 2018; 11:1753-1762. [PMID: 30115992 DOI: 10.1038/s41385-018-0073-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023]
Abstract
BPZE1 is a live attenuated Bordetella pertussis vaccine for nasal administration to mimic the natural route of infection. Here, we studied the mechanism of BPZE1-induced immunity in the murine nasal cavity in contrast to acellular vaccine (aPV), although both vaccines protected against lung colonization. Transfer of splenocytes or serum from BPZE1-vaccinated or aPV-vaccinated mice protected naïve mice against lung colonization but not against nasal colonization. However, transfer of nasal washes from BPZE1-vaccinated mice resulted in protection against nasal colonization, which was lost in IgA-deficient or poly-Ig receptor-deficient mice, indicating that it depends on secretory IgA (SIgA) induction induced in the nose. BPZE1-induced protection against nasal colonization was long-lived despite the relatively rapid decay of SIgA, indicating a potent BPZE1-induced local memory response, likely due to CD4+ tissue-resident memory T cells induced in the nose by BPZE1. These cells produced interleukin-17 (IL-17), known to be important for SIgA secretion. Furthermore, BPZE1 failed to protect Il17-/- mice against nasal colonization by B. pertussis and induced only background levels of nasal SIgA. Thus, our results show important differences in the protective mechanism between the upper and the lower murine respiratory tract and demonstrate an IL-17-dependent SIgA-mediated mechanism of BPZE1-induced protection against B. pertussis nasopharyngeal colonization.
Collapse
|