1
|
Kernan KF, Adkins A, Jha RM, Kochanek PM, Carcillo JA, Berg RA, Wessel D, Pollack MM, Meert K, Hall M, Newth C, Lin JC, Doctor A, Cornell T, Harrison RE, Zuppa AF, Notterman DA, Aneja RK. IMPACT OF ABCC8 AND TRPM4 GENETIC VARIATION IN CENTRAL NERVOUS SYSTEM DYSFUNCTION ASSOCIATED WITH PEDIATRIC SEPSIS. Shock 2024; 62:688-697. [PMID: 39227362 PMCID: PMC12001876 DOI: 10.1097/shk.0000000000002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Sepsis-associated brain injury is associated with deterioration of mental status, persistent cognitive impairment, and morbidity. The SUR1/TRPM4 channel is a nonselective cation channel that is transcriptionally upregulated in the central nervous system with injury, allowing sodium influx, depolarization, cellular swelling, and secondary injury. We hypothesized that genetic variation in ABCC8 (SUR1 gene) and TRPM4 would associate with central nervous system dysfunction in severe pediatric sepsis. Methods: 326 children with severe sepsis underwent whole exome sequencing in an observational cohort. We compared children with and without central nervous system dysfunction (Glasgow Coma Scale <12) to assess for associations with clinical characteristics and pooled rare variants in ABCC8 and TRPM4. Sites of variation were mapped onto protein structure and assessed for phenotypic impact. Results: Pooled rare variants in either ABCC8 or TRPM4 associated with decreased odds of central nervous system dysfunction in severe pediatric sepsis (OR 0.14, 95% CI 0.003-0.87), P = 0.025). This association persisted following adjustment for race, organ failure, viral infection, and continuous renal replacement therapy (aOR 0.11, 95% CI 0.01-0.59, P = 0.038). Structural mapping showed that rare variants concentrated in the nucleotide-binding domains of ABCC8 and N-terminal melastatin homology region of TRPM4 . Conclusion : This study suggests a role for the ABCC8/TRPM4 channel in central nervous system dysfunction in severe pediatric sepsis. Although exploratory, the lack of therapies to prevent or mitigate central nervous system dysfunction in pediatric sepsis warrants further studies to clarify the mechanism and confirm the potential protective effect of these rare ABCC8/TRPM4 variants.
Collapse
Affiliation(s)
- Kate F. Kernan
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Ashley Adkins
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Ruchira M. Jha
- Departments of Neurology, Neurological Surgery, Translational Neuroscience, Barrow Neurological Institute, and St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of School of Medicine, Pittsburgh, PA
| | - Joseph A. Carcillo
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Robert A. Berg
- Department of Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - David Wessel
- Division of Critical Care Medicine, Department of Pediatrics, Children’s National Hospital, Washington, DC
| | - Murray M. Pollack
- Division of Critical Care Medicine, Department of Pediatrics, Children’s National Hospital, Washington, DC
| | - Kathleen Meert
- Division of Critical Care Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI., Central Michigan University, Mt Pleasant MI
| | - Mark Hall
- Division of Critical Care Medicine, Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital Immune Surveillance Laboratory, and Nationwide Children’s Hospital, Columbus, OH
| | - Christopher Newth
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
| | - John C. Lin
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO
| | - Tim Cornell
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children’s Hospital, Ann Arbor, MI
| | - Rick E. Harrison
- Division of Critical Care Medicine, Department of Pediatrics, Mattel Children’s Hospital at University of California Los Angeles, Los Angeles, CA
| | - Athena F. Zuppa
- Department of Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Rajesh K. Aneja
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of School of Medicine, Pittsburgh, PA
| |
Collapse
|
2
|
Jha RM, Simard JM. Glibenclamide for Brain Contusions: Contextualizing a Promising Clinical Trial Design that Leverages an Imaging-Based TBI Endotype. Neurotherapeutics 2023; 20:1472-1481. [PMID: 37306928 PMCID: PMC10684438 DOI: 10.1007/s13311-023-01389-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
TBI heterogeneity is recognized as a major impediment to successful translation of therapies that could improve morbidity and mortality after injury. This heterogeneity exists on multiple levels including primary injury, secondary injury/host-response, and recovery. One widely accepted type of primary-injury related heterogeneity is pathoanatomic-the intracranial compartment that is predominantly affected, which can include any combination of subdural, subarachnoid, intraparenchymal, diffuse axonal, intraventricular and epidural hemorrhages. Intraparenchymal contusions carry the highest risk for progression. Contusion expansion is one of the most important drivers of death and disability after TBI. Over the past decade, there has been increasing evidence of the role of the sulfonylurea-receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel in secondary injury after TBI, including progression of both cerebral edema and intraparenchymal hemorrhage. Inhibition of SUR1-TRPM4 with glibenclamide has shown promising results in preclinical models of contusional TBI with benefits against cerebral edema, secondary hemorrhage progression of the contusion, and improved functional outcome. Early-stage human research supports the key role of this pathway in contusion expansion and suggests a benefit with glibenclamide inhibition. ASTRAL is an ongoing international multi-center double blind multidose placebo-controlled phase-II clinical trial evaluating the safety and efficacy of an intravenous formulation of glibenclamide (BIIB093). ASTRAL is a unique and innovative study that addresses TBI heterogeneity by limiting enrollment to patients with the TBI pathoanatomic endotype of brain contusion and using contusion-expansion (a mechanistically linked secondary injury) as its primary outcome. Both criteria are consistent with the strong supporting preclinical and molecular data. In this narrative review, we contextualize the development and design of ASTRAL, including the need to address TBI heterogeneity, the scientific rationale underlying the focus on brain contusions and contusion-expansion, and the preclinical and clinical data supporting benefit of SUR1-TRPM4 inhibition in this specific endotype. Within this framework, we summarize the current study design of ASTRAL which is sponsored by Biogen and actively enrolling with a goal of 160 participants.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, USA.
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, AZ, Phoenix, USA.
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
3
|
Catapano JS, Koester SW, Bond KM, Srinivasan VM, Farhadi DS, Rumalla K, Cole TS, Baranoski JF, Winkler EA, Graffeo CS, Muñoz-Casabella A, Jadhav AP, Ducruet AF, Albuquerque FC, Lawton MT, Jha RM. Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage Receiving Sulfonylureas: A Propensity-Adjusted Analysis. World Neurosurg 2023; 176:e400-e407. [PMID: 37236313 DOI: 10.1016/j.wneu.2023.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is associated with increased blood-brain barrier permeability, disrupted tight junctions, and increased cerebral edema. Sulfonylureas are associated with reduced tight-junction disturbance and edema and improved functional outcome in aSAH animal models, but human data are scant. We analyzed neurological outcomes in aSAH patients prescribed sulfonylureas for diabetes mellitus. METHODS Patients treated for aSAH at a single institution (August 1, 2007-July 31, 2019) were retrospectively reviewed. Patients with diabetes were grouped by presence or absence of sulfonylurea therapy at hospital admission. The primary outcome was favorable neurologic status at last follow-up (modified Rankin Scale score ≤2). Variables with an unadjusted P-value of <0.20 were included in a propensity-adjusted multivariable logistic regression analysis to identify predictors of favorable outcomes. RESULTS Of 1013 aSAH patients analyzed, 129 (13%) had diabetes at admission, and 16 of these (12%) were receiving sulfonylureas. Fewer diabetic than nondiabetic patients had favorable outcomes (40% [52/129] vs. 51% [453/884], P = 0.03). Among diabetic patients, sulfonylurea use (OR 3.90, 95% CI 1.05-15.9, P = 0.046), Charlson Comorbidity Index <4 (OR 3.66, 95% CI 1.24-12.1, P = 0.02), and absence of delayed cerebral infarction (OR 4.09, 95% CI 1.20-15.5, P = 0.03) were associated with favorable outcomes in the multivariable analysis. CONCLUSIONS Diabetes was strongly associated with unfavorable neurologic outcomes. An unfavorable outcome in this cohort was mitigated by sulfonylureas, supporting some preclinical evidence of a possible neuroprotective role for these medications in aSAH. These results warrant further study on dose, timing, and duration of administration in humans.
Collapse
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Stefan W Koester
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kamila M Bond
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dara S Farhadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kavelin Rumalla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tyler S Cole
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ethan A Winkler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Christopher S Graffeo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Amanda Muñoz-Casabella
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Felipe C Albuquerque
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ruchira M Jha
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
4
|
Precision Effects of Glibenclamide on MRI Endophenotypes in Clinically Relevant Murine Traumatic Brain Injury. Crit Care Med 2023; 51:e45-e59. [PMID: 36661464 PMCID: PMC9848216 DOI: 10.1097/ccm.0000000000005749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING Preclinical laboratory. SUBJECTS Adult male C57BL/6J mice (n = 54). INTERVENTIONS Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 μg/kg)/high-dose glibenclamide (10 μg/mouse). Seven-day subcutaneous infusions (0.4 μg/hr) were continued. MEASUREMENTS AND MAIN RESULTS Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.
Collapse
|
5
|
Liu D, Zusman BE, Shaffer JR, Li Y, Arockiaraj AI, Liu S, Weeks DE, Desai SM, Kochanek PM, Puccio AM, Okonkwo DO, Conley YP, Jha RM. Decreased DNA Methylation of RGMA is Associated with Intracranial Hypertension After Severe Traumatic Brain Injury: An Exploratory Epigenome-Wide Association Study. Neurocrit Care 2022; 37:26-37. [PMID: 35028889 PMCID: PMC9287123 DOI: 10.1007/s12028-021-01424-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cerebral edema and intracranial hypertension are major contributors to unfavorable prognosis in traumatic brain injury (TBI). Local epigenetic changes, particularly in DNA methylation, may influence gene expression and thus host response/secondary injury after TBI. It remains unknown whether DNA methylation in the central nervous system is associated with cerebral edema severity or intracranial hypertension post TBI. We sought to identify epigenome-wide DNA methylation patterns associated with these forms of secondary injury after TBI. METHODS We obtained genome-wide DNA methylation profiles of DNA extracted from ventricular cerebrospinal fluid samples at three different postinjury time points from a prospective cohort of patients with severe TBI (n = 89 patients, 254 samples). Cerebral edema and intracranial pressure (ICP) measures were clustered to generate composite end points of cerebral edema and ICP severity. We performed an unbiased epigenome-wide association study (EWAS) to test associations between DNA methylation at 419,895 cytosine-phosphate-guanine (CpG) sites and cerebral edema/ICP severity categories. Given inflated p values, we conducted permutation tests for top CpG sites to filter out potential false discoveries. RESULTS Our data-driven hierarchical clustering across six cerebral edema and ICP measures identified two groups differing significantly in ICP based on the EWAS-identified CpG site cg22111818 in RGMA (Repulsive guidance molecule A, permutation p = 4.20 × 10-8). At 3-4 days post TBI, patients with severe intracranial hypertension had significantly lower levels of methylation at cg22111818. CONCLUSIONS We report a novel potential relationship between intracranial hypertension after TBI and an acute, nonsustained reduction in DNA methylation at cg22111818 in the RGMA gene. To our knowledge, this is the largest EWAS in severe TBI. Our findings are further strengthened by previous findings that RGMA modulates axonal repair in other central nervous system disorders, but a role in intracranial hypertension or TBI has not been previously identified. Additional work is warranted to validate and extend these findings, including assessment of its possible role in risk stratification, identification of novel druggable targets, and ultimately our ability to personalize therapy in TBI.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Benjamin E Zusman
- School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15213, USA
| | - Yunqi Li
- Institute for Public Health Genetics, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Annie I Arockiaraj
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shuwei Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shashvat M Desai
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Ava M Puccio
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - David O Okonkwo
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA
| | - Yvette P Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA.
| | - Ruchira M Jha
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- St Joseph's Hospital and Medical Center, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
6
|
Qu D, Schürmann P, Rothämel T, Dörk T, Klintschar M. Variants in genes encoding the SUR1-TRPM4 non-selective cation channel and sudden infant death syndrome (SIDS): potentially increased risk for cerebral edema. Int J Legal Med 2022; 136:1113-1120. [PMID: 35474489 PMCID: PMC9170623 DOI: 10.1007/s00414-022-02819-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Increasing evidence suggests that brain edema might play an important role in the pathogenesis of sudden infant death syndrome (SIDS) and that variants of genes for cerebral water channels might be associated with SIDS. The role of the sulfonylurea receptor 1 (SUR1)-transient receptor potential melastatin 4 (TRPM4) non-selective cation channel in cerebral edema was demonstrated by extensive studies. Therefore, we hypothesized that variants at genes of the SUR1-TRPM4 channel complex might be linked to SIDS. Twenty-four polymorphisms in candidate genes involved in the SUR1-TRPM4 non-selective cation channel were investigated in 185 SIDS cases and 339 controls. One (rs11667393 in TRPM4) of these analyzed SNPs reached nominal significance regarding an association with SIDS in the overall analysis (additive model: p = 0.015, OR = 1.438, 95% CI = 1.074-1.925; dominant model: p = 0.036; OR = 1.468, 95% CI = 1.024-2.106). In the stratified analysis, further 8 variants in ABCC8 (encoding SUR1) or TRPM4 showed pronounced associations. However, none of the results remained significant after correction for multiple testing. This preliminary study has provided the first evidence for a genetic role of the SUR1-TRPM4 complex in the etiology of SIDS, and we suggest that our initial results should be evaluated by further studies.
Collapse
Affiliation(s)
- Dong Qu
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Rothämel
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
8
|
Vacher M, Porter T, Milicic L, Bourgeat P, Dore V, Villemagne VL, Laws SM, Doecke JD. A Targeted Association Study of Blood-Brain Barrier Gene SNPs and Brain Atrophy. J Alzheimers Dis 2022; 86:1817-1829. [DOI: 10.3233/jad-210644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The blood-brain barrier (BBB) is formed by a high-density lining of endothelial cells, providing a border between circulating blood and the brain interstitial fluid. This structure plays a key role in protecting the brain microenvironment by restricting passage of certain molecules and circulating pathogens. Objective: To identify associations between brain volumetric changes and a set of 355 BBB-related single nucleotide polymorphisms (SNP). Method: In a population of 721 unrelated individuals, linear mixed effect models were used to assess if specific variants were linked to regional rates of atrophy over a 12-year time span. Four brain regions were investigated, including cortical grey matter, cortical white matter, ventricle, and hippocampus. Further, we also investigated the potential impact of history of hypertension, diabetes, and the incidence of stroke on regional brain volume change. Results: History of hypertension, diabetes, and stroke was not associated with longitudinal brain volume change. However, we identified a series of genetic variants associated with regional brain volume changes. The associations were independent of variation due to the APOEɛ4 allele and were significant post correction for multiple comparisons. Conclusion: This study suggests that key genes involved in the regulation of BBB integrity may be associated with longitudinal changes in specific brain regions. The derived polygenic risk scores indicate that these interactions are multigenic. Further research needs to be conducted to investigate how BBB functions maybe compromised by genetic variation.
Collapse
Affiliation(s)
- Michael Vacher
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia
| | - Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Pierrick Bourgeat
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Herston, Queensland, Australia
| | - Vincent Dore
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Herston, Queensland, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Herston, Queensland, Australia
| |
Collapse
|
9
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
11
|
Jha RM, Zusman BE, Puccio AM, Okonkwo DO, Pease M, Desai SM, Leach M, Conley YP, Kochanek PM. Genetic Variants Associated With Intraparenchymal Hemorrhage Progression After Traumatic Brain Injury. JAMA Netw Open 2021; 4:e2116839. [PMID: 34309670 PMCID: PMC8314141 DOI: 10.1001/jamanetworkopen.2021.16839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Intracerebral hemorrhage progression is associated with unfavorable outcome after traumatic brain injury (TBI). No effective treatments are currently available. This secondary injury process reflects an extreme form of vasogenic edema and blood-brain barrier breakdown. The sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) cation channel is a key underlying mechanism. A phase 2 trial of SUR1-TRPM4 inhibition in contusional TBI is ongoing, and a phase 3 trial is being designed. Targeted identification of patients at increased risk for hemorrhage progression may inform prognostication, trial design (including patient selection), and ultimately treatment response. OBJECTIVE To determine whether ABCC8 (SUR1) and TRPM4 genetic variability are associated with intraparenchymal hemorrhage (IPH) progression after severe TBI, based on the putative involvement of the SUR1-TRPM4 channel in this pathophysiology. DESIGN, SETTING, AND PARTICIPANTS In this genetic association study, DNA was extracted from 416 patients with severe TBI prospectively enrolled from a level I trauma academic medical center from May 9, 2002, to August 8, 2014. Forty ABCC8 and TRPM4 single-nucleotide variants (SNVs) were genotyped (multiplex, unbiased). Data were analyzed from January 7, 2020, to May 3, 2021. MAIN OUTCOMES AND MEASURES Primary analyses addressed IPH progression at 6, 24, and 120 hours in patients without acute craniectomy (n = 321). Multivariable regressions and receiver operating characteristic curves assessed SNV and haplotype associations with progression. Spatial modeling and functional predictions were determined using standard software. RESULTS Of the 321 patients included in the analysis (mean [SD] age, 37.0 [16.3] years; 247 [76.9%] male), IPH progression occurred in 102. Four ABCC8 SNVs were associated with markedly increased odds of progression (rs2237982 [odds ratio (OR), 2.60-3.80; 95% CI, 1.14-5.90 to 1.80-8.02; P = .02 to P < .001], rs2283261 [OR, 3.37-4.77; 95% CI, 1.07-10.77 to 1.89-12.07; P = .04 to P = .001], rs3819521 [OR, 2.96-3.92; 95% CI, 1.13-7.75 to 1.42-10.87; P = .03 to P = .009], and rs8192695 [OR, 3.06-4.95; 95% CI, 1.02-9.12 to 1.67-14.68]; P = .03-.004). These are brain-specific expression quantitative trait loci (eQTL) associated with increased ABCC8 messenger RNA levels. Regulatory annotations revealed promoter and enhancer marks and strong and/or active brain-tissue transcription, directionally consistent with increased progression. Three SNVs (rs2283261, rs2237982, and rs3819521) in this cohort have been associated with intracranial hypertension. Four TRPM4 SNVs were associated with decreased IPH progression (rs3760666 [OR, 0.40-0.49; 95% CI, 0.19-0.86 to 0.27-0.89; P = .02 to P = .009], rs1477363 [OR, 0.40-0.43; 95% CI, 0.18-0.88 to 0.23-0.81; P = .02 to P = .006], rs10410857 [OR, 0.36-0.41; 95% CI, 0.20-0.67 to 0.20-0.85; P = .02 to P = .001], and rs909010 [OR, 0.27-0.40; 95% CI, 0.12-0.62 to 0.16-0.58; P = .002 to P < .001]). Significant SNVs in both genes cluster downstream, flanking exons encoding the receptor site and SUR1-TRPM4 binding interface. Adding genetic variation to clinical models improved receiver operating characteristic curve performance from 0.6959 to 0.8030 (P = .003). CONCLUSIONS AND RELEVANCE In this genetic association study, 8 ABCC8 and TRPM4 SNVs were associated with IPH progression. Spatial clustering, brain-specific eQTL, and regulatory annotations suggest biological plausibility. These findings may have important implications for neurocritical care risk stratification, patient selection, and precision medicine, including an upcoming phase 3 trial design for SUR1-TRPM4 inhibition in severe TBI.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Benjamin E. Zusman
- medical student at School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- now affiliated with Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ava M. Puccio
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David O. Okonkwo
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Pease
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Matthew Leach
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
13
|
Zusman BE, Kochanek PM, Bell MJ, Adelson PD, Wisniewski SR, Au AK, Clark RSB, Bayır H, Janesko-Feldman K, Jha RM. Cerebrospinal Fluid Sulfonylurea Receptor-1 is Associated with Intracranial Pressure and Outcome after Pediatric TBI: An Exploratory Analysis of the Cool Kids Trial. J Neurotrauma 2021; 38:1615-1619. [PMID: 33430695 DOI: 10.1089/neu.2020.7501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfonylurea receptor-1 (SUR1) is recognized increasingly as a key contributor to cerebral edema, hemorrhage progression, and possibly neuronal death in multiple forms of acute brain injury. SUR1 inhibition may be protective and is actively undergoing evaluation in Phase-2/3 trials of traumatic brain injury (TBI) and stroke. In adult TBI, SUR1 expression is associated with intracranial hypertension and contusion expansion; its role in pediatric TBI remains unexplored. We tested 61 cerebrospinal fluid (CSF) samples from 16 pediatric patients with severe TBI enrolled in the multicenter Phase-3 randomized controlled "Cool Kids" trial and seven non-brain injured pediatric controls for SUR1 expression by enzyme-linked immunosorbent assay. Linear mixed models evaluated associations between mean SUR1 and intracranial pressure (ICP) over the first seven days and pediatric Glasgow Outcome Scale-Extended (GOS-E Peds) over the initial year after injury. SUR1 was undetectable in control CSF and increased versus control in nine of 16 patients with TBI. Mean SUR1 was not associated with age, sex, or therapeutic hypothermia. Each 1-point increase in initial Glasgow Coma Score was associated with a 1.68 ng/mL decrease in CSF SUR1. The CSF SUR1 was associated with increased ICP over seven days (b = 0.73, p = 0.004) and worse (higher) GOS-E Peds score (b = 0.24, p = 0.004). In this exploratory pediatric study, CSF SUR1 was undetectable in controls and variably elevated in severe TBI. Mean CSF SUR1 concentration was associated with ICP and outcome. These findings are distinct from our previous report in adults with severe TBI, where SUR1 was detected universally. SUR1 may be a viable therapeutic target in a subset of pediatric TBI, and further study is warranted.
Collapse
Affiliation(s)
- Benjamin E Zusman
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Children's Hospital of Pittsburgh, UPMC, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | | | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Publich Health, Pittsburgh, Pennsylvania, USA
| | - Alicia K Au
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Ruchira M Jha
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Jha RM, Mondello S, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Wang KKW, Yang Z, Hayes RL, Poloyac SM, Empey PE, Lafrenaye AD, Yan HQ, Carlson SW, Povlishock JT, Gilsdorf JS, Kochanek PM. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2020; 38:628-645. [PMID: 33203303 DOI: 10.1089/neu.2020.7421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-μg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 μg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Neurology, Neurobiology, and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
17
|
Kirsch E, Szejko N, Falcone GJ. Genetic underpinnings of cerebral edema in acute brain injury: an opportunity for pathway discovery. Neurosci Lett 2020; 730:135046. [PMID: 32464484 PMCID: PMC7372633 DOI: 10.1016/j.neulet.2020.135046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022]
Abstract
Cerebral edema constitutes an important contributor to secondary injury in acute brain injury. The quantification of cerebral edema in neuroimaging, a well-established biomarker of secondary brain injury, represents a useful intermediate phenotype to study edema formation. Population genetics provides powerful tools to identify novel susceptibility genes, biological pathways and therapeutic targets related to brain edema formation. Here, we provide an overview of the pathogenesis of cerebral edema, introduce relevant genetic methods to study this process, and discuss the ongoing research on the genetic underpinnings of edema formation in acute brain injury. The epsilon 2 and 4 variants within the Apolipoprotein E (APOE) gene are associated with worse outcome after traumatic brain injury and intracerebral hemorrhage, and recent studies link these polymorphisms to inflammatory processes that lead to blood-brain barrier disruption and vasogenic edema. For the Haptoglobin gene (HP), the Hp 2-2 genotype associates with worse outcome after acute brain injury, whereas the haptoglobin Hp 1-1 genotype correlates with increased edema in the early phases of intracerebral hemorrhage. Another important protein in cerebral edema is aquaporin 4, coded by the AQP4 gene. AQP4 mutations contribute to the formation of cytotoxic edema, and further genetic research is necessary to help elucidate the mediating mechanism. Findings supporting the target genes outlined above require replication in larger samples and evaluation in non-white populations. These next steps will be significantly facilitated by the rapid changes observed in the field of population genetics, including large international collaborations, open access to genetic data, and significant reductions in the cost of genotyping technologies.
Collapse
Affiliation(s)
- Elayna Kirsch
- Duke University School of Medicine, Durham, NC, USA; Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT 06510, USA
| | - Natalia Szejko
- Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT 06510, USA; Department of Neurology, Medical University of Warsaw, Warsaw, Poland; Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
| | - Guido J Falcone
- Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1004D, P.O. Box 20801, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Ruchira M Jha
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, Menon DK, Aries M. Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Br J Anaesth 2020; 124:440-453. [PMID: 31983411 DOI: 10.1016/j.bja.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Impaired cerebrovascular reactivity in adult moderate and severe traumatic brain injury (TBI) is known to be associated with worse global outcome at 6-12 months. As technology has improved over the past decades, monitoring of cerebrovascular reactivity has shifted from intermittent measures, to experimentally validated continuously updating indices at the bedside. Such advances have led to the exploration of individualised physiologic targets in adult TBI management, such as optimal cerebral perfusion pressure (CPP) values, or CPP limits in which vascular reactivity is relatively intact. These targets have been shown to have a stronger association with outcome compared with existing consensus-based guideline thresholds in severe TBI care. This has sparked ongoing prospective trials of such personalised medicine approaches in adult TBI. In this narrative review paper, we focus on the concept of cerebral autoregulation, proposed mechanisms of control and methods of continuous monitoring used in TBI. We highlight multimodal cranial monitoring approaches for continuous cerebrovascular reactivity assessment, physiologic and neuroimaging correlates, and associations with outcome. Finally, we explore the recent 'state-of-the-art' advances in personalised physiologic targets based on continuous cerebrovascular reactivity monitoring, their benefits, and implications for future avenues of research in TBI.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada; Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK; Biomedical Engineering, Faculty of Engineering, Winnipeg, Canada; Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marek Czosnyka
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Section of Brain Physics, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Gregory Hawryluk
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, Winnipeg, Canada
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, the Netherlands
| |
Collapse
|
20
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Cohen M, Lamparello AJ, Schimunek L, El-Dehaibi F, Namas RA, Xu Y, Kaynar AM, Billiar TR, Vodovotz Y. Quality Control Measures and Validation in Gene Association Studies: Lessons for Acute Illness. Shock 2020; 53:256-268. [PMID: 31365490 PMCID: PMC6989353 DOI: 10.1097/shk.0000000000001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute illness is a complex constellation of responses involving dysregulated inflammatory and immune responses, which are ultimately associated with multiple organ dysfunction. Gene association studies have associated single-nucleotide polymorphisms (SNPs) with clinical and pharmacological outcomes in a variety of disease states, including acute illness. With approximately 4 to 5 million SNPs in the human genome and recent studies suggesting that a large portion of SNP studies are not reproducible, we suggest that the ultimate clinical utility of SNPs in acute illness depends on validation and quality control measures. To investigate this issue, in December 2018 and January 2019 we searched the literature for peer-reviewed studies reporting data on associations between SNPs and clinical outcomes and between SNPs and pharmaceuticals (i.e., pharmacogenomics) published between January 2011 to February 2019. We review key methodologies and results from a variety of clinical and pharmacological gene association studies, including trauma and sepsis studies, as illustrative examples on current SNP association studies. In this review article, we have found three key points which strengthen the potential accuracy of SNP association studies in acute illness and other diseases: providing evidence of following a protocol quality control method such as the one in Nature Protocols or the OncoArray QC Guidelines; enrolling enough patients to have large cohort groups; and validating the SNPs using an independent technique such as a second study using the same SNPs with new patient cohorts. Our survey suggests the need to standardize validation methods and SNP quality control measures in medicine in general, and specifically in the context of complex disease states such as acute illness.
Collapse
Affiliation(s)
- Maria Cohen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | | | - Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | - A Murat Kaynar
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15261
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
22
|
Abstract
Cerebral autoregulatory dysfunction after traumatic brain injury (TBI) is strongly linked to poor global outcome in patients at 6 months after injury. However, our understanding of the drivers of this dysfunction is limited. Genetic variation among individuals within a population gives rise to single-nucleotide polymorphisms (SNPs) that have the potential to influence a given patient's cerebrovascular response to an injury. Associations have been reported between a variety of genetic polymorphisms and global outcome in patients with TBI, but few studies have explored the association between genetic variants and cerebrovascular function after injury. In this Review, we explore polymorphisms that might play an important part in cerebral autoregulatory capacity after TBI. We outline a variety of SNPs, their biological substrates and their potential role in mediating cerebrovascular reactivity. A number of candidate polymorphisms exist in genes that are involved in myogenic, endothelial, metabolic and neurogenic vascular responses to injury. Furthermore, polymorphisms in genes involved in inflammation, the central autonomic response and cortical spreading depression might drive cerebrovascular reactivity. Identification of candidate genes involved in cerebral autoregulation after TBI provides a platform and rationale for further prospective investigation of the link between genetic polymorphisms and autoregulatory function.
Collapse
|
23
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, He F, Jain S, Hayman EG. Magnetic Resonance Imaging Pilot Study of Intravenous Glyburide in Traumatic Brain Injury. J Neurotrauma 2019; 37:185-193. [PMID: 31354055 PMCID: PMC6921286 DOI: 10.1089/neu.2019.6538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical studies of traumatic brain injury (TBI) show that glyburide reduces edema and hemorrhagic progression of contusions. We conducted a small Phase II, three-institution, randomized placebo-controlled trial of subjects with TBI to assess the safety and efficacy of intravenous (IV) glyburide. Twenty-eight subjects were randomized and underwent a 72-h infusion of IV glyburide or placebo, beginning within 10 h of trauma. Of the 28 subjects, 25 had Glasgow Coma Scale (GCS) scores of 6-10, and 14 had contusions. There were no differences in adverse events (AEs) or severe adverse events (ASEs) between groups. The magnetic resonance imaging (MRI) percent change at 72-168 h from screening/baseline was compared between the glyburide and placebo groups. Analysis of contusions (7 per group) showed that lesion volumes (hemorrhage plus edema) increased 1036% with placebo versus 136% with glyburide (p = 0.15), and that hemorrhage volumes increased 11.6% with placebo but decreased 29.6% with glyburide (p = 0.62). Three diffusion MRI measures of edema were quantified: mean diffusivity (MD), free water (FW), and tissue MD (MDt), corresponding to overall, extracellular, and intracellular water, respectively. The percent change with time for each measure was compared in lesions (n = 14) versus uninjured white matter (n = 24) in subjects receiving placebo (n = 20) or glyburide (n = 18). For placebo, the percent change in lesions for all three measures was significantly different compared with uninjured white matter (analysis of variance [ANOVA], p < 0.02), consistent with worsening of edema in untreated contusions. In contrast, for glyburide, the percent change in lesions for all three measures was not significantly different compared with uninjured white matter. Further study of IV glyburide in contusion TBI is warranted.
Collapse
Affiliation(s)
- Howard M Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, Massachusetts
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christina Aldrich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng He
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Erik G Hayman
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Zeiler FA, McFadyen C, Newcombe VFJ, Synnot A, Donoghue EL, Ripatti S, Steyerberg EW, Gruen RL, McAllister TW, Rosand J, Palotie A, Maas AIR, Menon DK. Genetic Influences on Patient-Oriented Outcomes in Traumatic Brain Injury: A Living Systematic Review of Non-Apolipoprotein E Single-Nucleotide Polymorphisms. J Neurotrauma 2019; 38:1107-1123. [PMID: 29799308 PMCID: PMC8054522 DOI: 10.1089/neu.2017.5583] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is a growing literature on the impact of genetic variation on outcome in traumatic brain injury (TBI). Whereas a substantial proportion of these publications have focused on the apolipoprotein E (APOE) gene, several have explored the influence of other polymorphisms. We undertook a systematic review of the impact of single-nucleotide polymorphisms (SNPs) in non–apolipoprotein E (non-APOE) genes associated with patient outcomes in adult TBI). We searched EMBASE, MEDLINE, CINAHL, and gray literature from inception to the beginning of August 2017 for studies of genetic variance in relation to patient outcomes in adult TBI. Sixty-eight articles were deemed eligible for inclusion into the systematic review. The SNPs described were in the following categories: neurotransmitter (NT) in 23, cytokine in nine, brain-derived neurotrophic factor (BDNF) in 12, mitochondrial genes in three, and miscellaneous SNPs in 21. All studies were based on small patient cohorts and suffered from potential bias. A range of SNPs associated with genes coding for monoamine NTs, BDNF, cytokines, and mitochondrial proteins have been reported to be associated with variation in global, neuropsychiatric, and behavioral outcomes. An analysis of the tissue, cellular, and subcellular location of the genes that harbored the SNPs studied showed that they could be clustered into blood–brain barrier associated, neuroprotective/regulatory, and neuropsychiatric/degenerative groups. Several small studies report that various NT, cytokine, and BDNF-related SNPs are associated with variations in global outcome at 6–12 months post-TBI. The association of these SNPs with neuropsychiatric and behavioral outcomes is less clear. A definitive assessment of role and effect size of genetic variation in these genes on outcome remains uncertain, but could be clarified by an adequately powered genome-wide association study with appropriate recording of outcomes.
Collapse
Affiliation(s)
- Frederick A Zeiler
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom.,Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada.,Clinician Investigator Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles McFadyen
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | | | - Anneliese Synnot
- Centre for Excellence in Traumatic Brain Injury Research, National Trauma Research Institute, Monash University, The Alfred Hospital, Melbourne, Australia and Cochrane Consumers and Communication Review Group, Centre for Health Communication and Participation, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emma L Donoghue
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine and Cochrane Australia, Monash University, Melbourne, Australia
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM) and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ewout W Steyerberg
- Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, the Netherlands and Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Russel L Gruen
- Central Clinical School, Monash University, Melbourne, Australia and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan Rosand
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Kochanek PM, Conley YP. Downstream TRPM4 Polymorphisms Are Associated with Intracranial Hypertension and Statistically Interact with ABCC8 Polymorphisms in a Prospective Cohort of Severe Traumatic Brain Injury. J Neurotrauma 2019; 36:1804-1817. [PMID: 30484364 PMCID: PMC6551973 DOI: 10.1089/neu.2018.6124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sulfonylurea-receptor-1(SUR1) and its associated transient-receptor-potential cation channel subfamily-M (TRPM4) channel are key contributors to cerebral edema and intracranial hypertension in traumatic brain injury (TBI) and other neurological disorders. Channel inhibition by glyburide is clinically promising. ABCC8 (encoding SUR1) single-nucleotide polymorphisms (SNPs) are reported as predictors of raised intracranial pressure (ICP). This project evaluated whether TRPM4 SNPs predicted ICP and TBI outcome. DNA was extracted from 435 consecutively enrolled severe TBI patients. Without a priori selection, all 11 TRPM4 SNPs available on the multiplex platform (Illumina:Human-Core-Exome v1.0) were genotyped spanning the 25 exon gene. A total of 385 patients were analyzed after quality control. Outcomes included ICP and 6 month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modeling, and functional predictions were determined using established software programs. rs8104571 (intron-20) and rs150391806 (exon-24) were predictors of ICP. rs8104571 heterozygotes predicted higher average ICP (β = 10.3 mm Hg, p = 0.00000029), peak ICP (β = 19.6 mm Hg, p = 0.0007), and proportion ICP >25 mm Hg (β = 0.16 p = 0.004). rs150391806 heterozygotes had higher mean (β = 7.2 mm Hg, p = 0.042) and peak (β = 28.9 mm Hg, p = 0.0015) ICPs. rs8104571, rs150391806, and 34 associated proxy SNPs in linkage-disequilibrium clustered downstream. This region encodes TRPM4's channel pore and a region postulated to juxtapose SUR1 sequences encoded by an ABCC8 DNA segment containing previously identified relevant SNPs. There was an interaction effect on ICP between rs8104571 and a cluster of predictive ABCC8 SNPs (rs2237982, rs2283261, rs11024286). Although not significant in univariable or a basic multivariable model, in an expanded model additionally accounting for injury pattern, computed tomographic (CT) appearance, and intracranial hypertension, heterozygous rs8104571 was associated with favorable 6 month GOS (odds ratio [OR] = 16.7, p = 0.007951). This trend persisted in a survivor-only subcohort (OR = 20.67, p = 0.0168). In this cohort, two TRPM4 SNPs predicted increased ICP with large effect sizes. Both clustered downstream, spanning a region encoding the channel pore and interacting with SUR1. If validated, this may guide risk stratification and eventually inform treatment-responder classification for SUR1-TRPM4 inhibition in TBI. Larger studies are warranted.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shashvat M. Desai
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin E. Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ava M. Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David O. Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lori A. Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yvette P. Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019; 317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Membrane transporters regulate the trafficking of endogenous and exogenous molecules across biological barriers and within the neurovascular unit. In traumatic brain injury (TBI), they moderate the dynamic movement of therapeutic drugs and injury mediators among neurons, endothelial cells and glial cells, thereby becoming important determinants of pathogenesis and effective pharmacotherapy after TBI. There are three ways transporters may impact outcomes in TBI. First, transporters likely play a key role in the clearance of injury mediators. Second, genetic association studies suggest transporters may be important in the transition of TBI from acute brain injury to a chronic neurological disease. Third, transporters dynamically control the brain penetration and efflux of many drugs and their distribution within and elimination from the brain, contributing to pharmacoresistance and possibly in some cases pharmacosensitivity. Understanding the nature of drugs or candidate drugs in development with respect to whether they are a transporter substrate or inhibitor is relevant to understand whether they distribute to their target in sufficient concentrations. Emerging data provide evidence of altered expression and function of transporters in humans after TBI. Genetic variability in expression and/or function of key transporters adds an additional dynamic, as shown in recent clinical studies. In this review, evidence supporting the role of individual membrane transporters in TBI are discussed as well as novel strategies for their modulation as possible therapeutic targets. Since data specifically targeting pediatric TBI are sparse, this review relies mainly on experimental studies using adult animals and clinical studies in adult patients.
Collapse
Affiliation(s)
- Fanuel T Hagos
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Solomon M Adams
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Samuel M Poloyac
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
28
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
29
|
Jha RM, Koleck TA, Puccio AM, Okonkwo DO, Park SY, Zusman BE, Clark RSB, Shutter LA, Wallisch JS, Empey PE, Kochanek PM, Conley YP. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry 2018; 89:1152-1162. [PMID: 29674479 PMCID: PMC6181785 DOI: 10.1136/jnnp-2017-317741] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE ABCC8 encodes sulfonylurea receptor 1, a key regulatory protein of cerebral oedema in many neurological disorders including traumatic brain injury (TBI). Sulfonylurea-receptor-1 inhibition has been promising in ameliorating cerebral oedema in clinical trials. We evaluated whether ABCC8 tag single-nucleotide polymorphisms predicted oedema and outcome in TBI. METHODS DNA was extracted from 485 prospectively enrolled patients with severe TBI. 410 were analysed after quality control. ABCC8 tag single-nucleotide polymorphisms (SNPs) were identified (Hapmap, r2>0.8, minor-allele frequency >0.20) and sequenced (iPlex-Gold, MassArray). Outcomes included radiographic oedema, intracranial pressure (ICP) and 3-month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modelling, amino acid topology and functional predictions were determined using established software programs. RESULTS Wild-type rs7105832 and rs2237982 alleles and genotypes were associated with lower average ICP (β=-2.91, p=0.001; β=-2.28, p=0.003) and decreased radiographic oedema (OR 0.42, p=0.012; OR 0.52, p=0.017). Wild-type rs2237982 also increased favourable 3-month GOS (OR 2.45, p=0.006); this was partially mediated by oedema (p=0.03). Different polymorphisms predicted 3-month outcome: variant rs11024286 increased (OR 1.84, p=0.006) and wild-type rs4148622 decreased (OR 0.40, p=0.01) the odds of favourable outcome. Significant tag and concordant proxy SNPs regionally span introns/exons 2-15 of the 39-exon gene. CONCLUSIONS This study identifies four ABCC8 tag SNPs associated with cerebral oedema and/or outcome in TBI, tagging a region including 33 polymorphisms. In polymorphisms predictive of oedema, variant alleles/genotypes confer increased risk. Different variant polymorphisms were associated with favourable outcome, potentially suggesting distinct mechanisms. Significant polymorphisms spatially clustered flanking exons encoding the sulfonylurea receptor site and transmembrane domain 0/loop 0 (juxtaposing the channel pore/binding site). This, if validated, may help build a foundation for developing future strategies that may guide individualised care, treatment response, prognosis and patient selection for clinical trials.
Collapse
Affiliation(s)
- Ruchira Menka Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Ava M Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David O Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin E Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lori A Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jessica S Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yvette P Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Wallisch JS, Conley YP, Kochanek PM. Intracranial Pressure Trajectories: A Novel Approach to Informing Severe Traumatic Brain Injury Phenotypes. Crit Care Med 2018; 46:1792-1802. [PMID: 30119071 PMCID: PMC6185785 DOI: 10.1097/ccm.0000000000003361] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intracranial pressure in traumatic brain injury is dynamic and influenced by factors like injury patterns, treatments, and genetics. Existing studies use time invariant summary intracranial pressure measures thus potentially losing critical information about temporal trends. We identified longitudinal intracranial pressure trajectories in severe traumatic brain injury and evaluated whether they predicted outcome. We further interrogated the model to explore whether ABCC8 polymorphisms (a known cerebraledema regulator) differed across trajectory groups. DESIGN Prospective observational cohort. SETTING Single-center academic medical center. PATIENTS Four-hundred four severe traumatic brain injury patients. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We used group-based trajectory modeling to identify hourly intracranial pressure trajectories in days 0-5 post traumatic brain injury incorporating risk factor adjustment (age, sex, Glasgow Coma Scale 6score, craniectomy, primary hemorrhage pattern). We compared 6-month outcomes (Glasgow Outcome Scale, Disability Rating Scale, mortality) and ABCC8 tag-single-nucleotide polymorphisms associated with cerebral edema (rs2237982, rs7105832) across groups. Regression models determined whether trajectory groups predicted outcome. A six trajectory group model best fit the data, identifying cohorts differing in initial intracranial pressure, evolution, and number/proportion of spikes greater than 20 mm Hg. There were pattern differences in age, hemorrhage type, and craniectomy rates. ABCC8 polymorphisms differed across groups. GOS (p = 0.006), Disability Rating Scale (p = 0.001), mortality (p < 0.0001), and rs2237982 (p = 0.035) differed across groups. Unfavorable outcomes were surprisingly predicted by both low intracranial pressure trajectories and sustained intracranial hypertension. Intracranial pressure variability differed across groups (p < 0.001) and may reflect preserved/impaired intracranial elastance/compliance. CONCLUSIONS We employed a novel approach investigating longitudinal/dynamic intracranial pressure patterns in traumatic brain injury. In a risk adjusted model, six groups were identified and predicted outcomes. If validated, trajectory modeling may be a first step toward developing a new, granular approach for intracranial pressure phenotyping in conjunction with other phenotyping tools like biomarkers and neuroimaging. This may be particularly relevant in light of changing traumatic brain injury demographics toward the elderly.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Department of Neurology, School of Medicine, University of Pittsburgh
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh
| | - Jonathan Elmer
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Department of Emergency Medicine, School of Medicine, University of Pittsburgh
| | - Benjamin E. Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - Shashvat Desai
- Department of Neurology, School of Medicine, University of Pittsburgh
| | - Ava M. Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - David O. Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - Seo Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh
- Department of Biostatistics, School of Public Health, University of Pittsburgh
| | - Lori A. Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Department of Neurology, School of Medicine, University of Pittsburgh
- Department of Neurosurgery, School of Medicine, University of Pittsburgh
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh
| | - Yvette P. Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh
- School of Nursing, University of Pittsburgh
- Department of Human Genetics, School of Medicine, University of Pittsburgh
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh
- Department of Anesthesia, School of Medicine, University of Pittsburgh
| |
Collapse
|
31
|
Gerzanich V, Stokum JA, Ivanova S, Woo SK, Tsymbalyuk O, Sharma A, Akkentli F, Imran Z, Aarabi B, Sahuquillo J, Simard JM. Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion. J Neurotrauma 2018; 36:1060-1079. [PMID: 30160201 PMCID: PMC6446209 DOI: 10.1089/neu.2018.5986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seung Kyoon Woo
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sharma
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fatih Akkentli
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ziyan Imran
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bizhan Aarabi
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- 2 Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,3 Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,4 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,5 Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Duration of therapeutic hypothermia or targeted temperature management in pediatric cardiac arrest: Seeing through the ice. Resuscitation 2018; 133:A3-A4. [PMID: 30278203 DOI: 10.1016/j.resuscitation.2018.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 11/23/2022]
|
33
|
Kochanek PM, Dixon CE, Mondello S, Wang KKK, Lafrenaye A, Bramlett HM, Dietrich WD, Hayes RL, Shear DA, Gilsdorf JS, Catania M, Poloyac SM, Empey PE, Jackson TC, Povlishock JT. Multi-Center Pre-clinical Consortia to Enhance Translation of Therapies and Biomarkers for Traumatic Brain Injury: Operation Brain Trauma Therapy and Beyond. Front Neurol 2018; 9:640. [PMID: 30131759 PMCID: PMC6090020 DOI: 10.3389/fneur.2018.00640] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Current approaches have failed to yield success in the translation of neuroprotective therapies from the pre-clinical to the clinical arena for traumatic brain injury (TBI). Numerous explanations have been put forth in both the pre-clinical and clinical arenas. Operation Brain Trauma Therapy (OBTT), a pre-clinical therapy and biomarker screening consortium has, to date, evaluated 10 therapies and assessed three serum biomarkers in nearly 1,500 animals across three rat models and a micro pig model of TBI. OBTT provides a unique platform to exploit heterogeneity of TBI and execute the research needed to identify effective injury specific therapies toward precision medicine. It also represents one of the first multi-center pre-clinical consortia for TBI, and through its work has yielded insight into the challenges and opportunities of this approach. In this review, important concepts related to consortium infrastructure, modeling, therapy selection, dosing and target engagement, outcomes, analytical approaches, reproducibility, and standardization will be discussed, with a focus on strategies to embellish and improve the chances for future success. We also address issues spanning the continuum of care. Linking the findings of optimized pre-clinical consortia to novel clinical trial designs has great potential to help address the barriers in translation and produce successes in both therapy and biomarker development across the field of TBI and beyond.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Oasi Research Institute (IRCCS), Troina, Italy
| | - Kevin K. K. Wang
- Program for Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, FL, United States
| | - Audrey Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Helen M. Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - W. Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ronald L. Hayes
- Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers Research, Banyan Biomarkers, Inc., Alachua, FL, United States
| | - Deborah A. Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice S. Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Samuel M. Poloyac
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Philip E. Empey
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences and the Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
34
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
35
|
Gorse KM, Lantzy MK, Lee ED, Lafrenaye AD. Transient Receptor Potential Melastatin 4 Induces Astrocyte Swelling But Not Death after Diffuse Traumatic Brain Injury. J Neurotrauma 2018; 35:1694-1704. [PMID: 29390943 DOI: 10.1089/neu.2017.5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disease with significant costs. Although progress has been made in understanding the complex pathobiology of focal lesions associated with TBI, questions remain regarding the diffuse responses to injury. Expression of the transient receptor potential melastatin 4 (Trpm4) channel is linked to cytotoxic edema during hemorrhagic contusion expansion. However, little is known about Trpm4 following diffuse TBI. To explore Trpm4 expression in diffuse TBI, rats were subjected to a diffuse central fluid percussion injury (CFPI) and survived for 1.5 h to 8 weeks. The total number of Trpm4+ cells, as well as individual cellular intensity/expression of Trpm4, were assessed. Hemotoxylin and eosin (H&E) labeling was performed to evaluate cell damage/death potentially associated with Trpm4 expression following diffuse TBI. Finally, ultrastructural assessments were performed to evaluate the integrity of Trpm4+ cells and the potential for swelling associated with Trpm4 expression. Trpm4 was primarily restricted to astrocytes within the hippocampus and peaked at 6 h post-injury. While the number of Trpm4+ astrocytes returned to sham levels by 8 weeks post-CFPI, cellular intensity occurred in region-specific waves following injury. Correlative H&E assessments demonstrated little evidence of hippocampal damage, suggesting that Trpm4 expression by astrocytes does not precipitate cell death following diffuse TBI. Additionally, ultrastructural assessments showed Trpm4+ astrocytes exhibited twice the soma size compared with Trpm4- astrocytes, indicating that astrocyte swelling is associated with Trpm4 expression. This study provides a foundation for future investigations into the role of Trpm4 in astrocyte swelling and edema following diffuse TBI.
Collapse
Affiliation(s)
- Karen M Gorse
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | | | - Eun D Lee
- 3 Department of Obstetrics and Gynecology, Virginia Commonwealth University , Richmond, Virginia
| | - Audrey D Lafrenaye
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
36
|
Szeto V, Chen NH, Sun HS, Feng ZP. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin 2018; 39:683-694. [PMID: 29671418 PMCID: PMC5943906 DOI: 10.1038/aps.2018.10] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Vivian Szeto
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nai-hong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-shuo Sun
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Surgery
- Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
37
|
Adams SM, Conley YP, Wagner AK, Jha RM, Clark RSB, Poloyac SM, Kochanek PM, Empey PE. The pharmacogenomics of severe traumatic brain injury. Pharmacogenomics 2017; 18:1413-1425. [PMID: 28975867 PMCID: PMC5694019 DOI: 10.2217/pgs-2017-0073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
Pharmacotherapy for traumatic brain injury (TBI) is focused on resuscitation, prevention of secondary injury, rehabilitation and recovery. Pharmacogenomics may play a role in TBI for predicting therapies for sedation, analgesia, seizure prevention, intracranial pressure-directed therapy and neurobehavioral/psychiatric symptoms. Research into genetic predictors of outcomes and susceptibility to complications may also help clinicians to tailor therapeutics for high-risk individuals. Additionally, the expanding use of genomics in the drug development pipeline has provided insight to novel investigational and repurposed medications that may be useful in the treatment of TBI and its complications. Genomics in the context of treatment and prognostication for patients with TBI is a promising area for clinical progress of pharmacogenomics.
Collapse
Affiliation(s)
- Solomon M Adams
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yvette P Conley
- Health Promotion & Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ruchira M Jha
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert SB Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Patrick M Kochanek
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philip E Empey
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Pharmacy & Therapeutics, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Adams SM, Conley YP, Ren D, Okonkwo DO, Puccio AM, Dixon CE, Clark RSB, Kochanek PM, Empey PE. ABCG2 c.421C>A Is Associated with Outcomes after Severe Traumatic Brain Injury. J Neurotrauma 2017; 35:48-53. [PMID: 28747144 DOI: 10.1089/neu.2017.5000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death with no pharmacological treatments that improve outcomes. Transporter proteins participate in TBI recovery by maintaining the central nervous system (CNS) biochemical milieu. Genetic variations in transporters that alter expression and/or function have been associated with TBI outcomes. The ATP-binding cassette transporter, ABCG2, is a uric acid (UA) transporter that effluxes UA from cells in the CNS and is responsible for systemic UA clearance. Uric acid is a CNS antioxidant and/or a biomarker that might support TBI recovery. Our objective was to investigate the impact of ABCG2 SNP: c.421C>A on TBI outcomes. Two cohorts (discovery [N = 270] and replication [N = 166]) were genotyped for ABCG2 c.421C>A. Glasgow Outcome Scale (GOS) scores were collected at 3, 6, 12, and 24 months post-injury and compared with mixed-effects multiple ordinal regression controlled for time post-injury, age, sex, time, post-injury imaging determined hemorrhage types, and Glasgow Coma Scale score. Variant alleles (genotype) were associated with better GOS scores (p = 0.01 [discovery] and p = 0.02 [replication]), whereas genotype*age interaction was associated with worse GOS scores (p = 0.03 [discovery] and p = 0.01 [replication]). Reversed coefficient directionality suggests variant allele(s) are protective up to approximately age 34 years. Overall, variant alleles at ABCG2 c.421C>A associate with better GOS scores post-injury in two independently sampled cohorts. This finding is mitigated by increasing subject age. This suggests that ABCG2 might have an age-dependent effect on TBI recovery and should be explored in future mechanistic studies.
Collapse
Affiliation(s)
- Solomon M Adams
- 1 Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yvette P Conley
- 2 Health Promotion and Development, School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Human Genetics, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dianxu Ren
- 4 Health and Community Systems, School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David O Okonkwo
- 5 Neurological Surgery, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ava M Puccio
- 5 Neurological Surgery, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 5 Neurological Surgery, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert S B Clark
- 6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Philip E Empey
- 6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Jha RM, Kochanek PM. Adding insight to injury: a new era in neurotrauma. Lancet Neurol 2017; 16:578-580. [PMID: 28721915 PMCID: PMC6589099 DOI: 10.1016/s1474-4422(17)30225-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Kochanek PM, Bayır H. Titrating the Dose of Oxygen after Severe Traumatic Brain Injury in the Era of Precision Medicine. J Neurotrauma 2017; 34:3067-3069. [PMID: 28537530 DOI: 10.1089/neu.2017.5159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Patrick M Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center , Pittsburgh, Pennsylvania
| | - Hülya Bayır
- 2 Departments of Critical Care Medicine and Environmental and Occupational Health, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center , Pittsburgh, Pennsylvania
| |
Collapse
|