1
|
Sluzala ZB, Shan Y, Elghazi L, Cárdenas EL, Hamati A, Garner AL, Fort PE. Novel mTORC2/HSPB4 Interaction: Role and Regulation of HSPB4 T148 Phosphorylation. Cells 2024; 13:2000. [PMID: 39682748 PMCID: PMC11640050 DOI: 10.3390/cells13232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity. We recently demonstrated that this phosphorylation is reduced in retinal tissues from patients with diabetic retinopathy, raising the question of its regulation during diseases. The kinase(s) responsible for regulating this phosphorylation, however, have yet to be identified. To this end, we employed a multi-tier strategy utilizing in vitro kinome profiling, bioinformatics, and chemoproteomics to predict and discover the kinases capable of phosphorylating T148. Several kinases were identified as being capable of specifically phosphorylating T148 in vitro, and further analysis highlighted mTORC2 as a particularly strong candidate. Altogether, our data demonstrate that the HSPB4-mTORC2 interaction is multi-faceted. Our data support the role of mTORC2 as a specific kinase phosphorylating HSPB4 at T148, but also provide evidence that the HSPB4 chaperone function further strengthens the interaction. This study addresses a critical gap in our understanding of the regulatory underpinnings of T148 phosphorylation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Yang Shan
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Lynda Elghazi
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Emilio L. Cárdenas
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Amanda L. Garner
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, Zapata-Muñoz J, Villarejo-Zori B, Gómez-Sintes R, Boya P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205. [PMID: 37454969 DOI: 10.1016/j.preteyeres.2023.101205] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Rocío Benítez-Fernández
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
3
|
Gu Q, Kumar A, Hook M, Xu F, Bajpai AK, Starlard-Davenport A, Yue J, Jablonski MM, Lu L. Exploring Early-Stage Retinal Neurodegeneration in Murine Pigmentary Glaucoma: Insights From Gene Networks and miRNA Regulation Analyses. Invest Ophthalmol Vis Sci 2023; 64:25. [PMID: 37707836 PMCID: PMC10506683 DOI: 10.1167/iovs.64.12.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose Glaucoma is a group of heterogeneous optic neuropathies characterized by the progressive degeneration of retinal ganglion cells. However, the underlying mechanisms have not been understood completely. We aimed to elucidate the genetic network associated with the development of pigmentary glaucoma with DBA/2J (D2) mouse model of glaucoma and corresponding genetic control D2-Gpnmb (D2G) mice carrying the wild type (WT) Gpnmb allele. Methods Retinas isolated from 13 D2 and 12 D2G mice were subdivided into 2 age groups: pre-onset (1-6 months: samples were collected at approximately 1-2, 2-4, and 5-6 months) and post-onset (7-15 months: samples were collected at approximately 7-9, 10-12, and 13-15 months) glaucoma were compared. Differential gene expression (DEG) analysis and gene-set enrichment analyses were performed. To identify micro-RNAs (miRNAs) that target Gpnmb, miRNA expression levels were correlated with time point matched mRNA expression levels. A weighted gene co-expression network analysis (WGCNA) was performed using the reference BXD mouse population. Quantitative real-time PCR (qRT-PCR) was used to validate Gpnmb and miRNA expression levels. Results A total of 314 and 86 DEGs were identified in the pre-onset and post-onset glaucoma groups, respectively. DEGs in the pre-onset glaucoma group were associated with the crystallin gene family, whereas those in the post-onset group were related to innate immune system response. Of 1329 miRNAs predicted to target Gpnmb, 3 miRNAs (miR-125a-3p, miR-3076-5p, and miR-214-5p) were selected. A total of 47 genes demonstrated overlapping with the identified DEGs between D2 and D2G, segregated into their time-relevant stages. Gpnmb was significantly downregulated, whereas 2 out of 3 miRNAs were significantly upregulated (P < 0.05) in D2 mice at both 3-and 10-month time points. Conclusions These findings suggest distinct gene-sets involved in pre-and post-glaucoma in the D2 mouse. We identified three miRNAs regulating Gpnmb in the development of murine pigmentary glaucoma.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aman Kumar
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
4
|
Amin D, Kuwajima T. Differential Retinal Ganglion Cell Vulnerability, A Critical Clue for the Identification of Neuroprotective Genes in Glaucoma. FRONTIERS IN OPHTHALMOLOGY 2022; 2:905352. [PMID: 38983528 PMCID: PMC11182220 DOI: 10.3389/fopht.2022.905352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 07/11/2024]
Abstract
Retinal ganglion cells (RGCs) are the neurons in the retina which directly project to the brain and transmit visual information along the optic nerve. Glaucoma, one of the leading causes of blindness, is characterized by elevated intraocular pressure (IOP) and degeneration of the optic nerve, which is followed by RGC death. Currently, there are no clinical therapeutic drugs or molecular interventions that prevent RGC death outside of IOP reduction. In order to overcome these major barriers, an increased number of studies have utilized the following combined analytical methods: well-established rodent models of glaucoma including optic nerve injury models and transcriptomic gene expression profiling, resulting in the successful identification of molecules and signaling pathways relevant to RGC protection. In this review, we present a comprehensive overview of pathological features in a variety of animal models of glaucoma and top differentially expressed genes (DEGs) depending on disease progression, RGC subtypes, retinal regions or animal species. By comparing top DEGs among those different transcriptome profiles, we discuss whether commonly listed DEGs could be defined as potential novel therapeutic targets in glaucoma, which will facilitate development of future therapeutic neuroprotective strategies for treatments of human patients in glaucoma.
Collapse
Affiliation(s)
- Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Nath M, Fort PE. αA-Crystallin Mediated Neuroprotection in the Retinal Neurons Is Independent of Protein Kinase B. Front Neurosci 2022; 16:912757. [PMID: 35669493 PMCID: PMC9163390 DOI: 10.3389/fnins.2022.912757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway mediates pro-survival function in neurons. In the retina, PI3K/AKT/mTOR signaling pathway is related to the early pathogenesis of diabetic retinopathy. Signaling molecules in the membrane-initiated signaling pathway exhibiting neuroprotective function interacts with the PI3K/Akt pathway as an important survival pathway. Molecular chaperone α-crystallins are known to potentially interact and/or regulate various pro-survival and pro-apoptotic proteins to regulate cell survival. Among these demonstrated mechanisms, they are well-reported to regulate and inhibit apoptosis by interacting and sequestrating the proapoptotic proteins such as Bax and Bcl-Xs. We studied the importance of metabolic stress-induced enhanced Akt signaling and αA-crystallin interdependence for exhibiting neuroprotection in metabolically challenged retinal neurons. For the first time, this study has revealed that αA-crystallin and activated Akt are significantly neuroprotective in the stressed retinal neurons, independent of each other. Furthermore, the study also highlighted that significant inhibition of the PI3K-Akt pathway does not alter the neuroprotective ability of αA-crystallin in stressed retinal neurons. Interestingly, our study also demonstrated that in the absence of Akt activation, αA-crystallin inhibits the translocation of Bax in the mitochondria during metabolic stress, and this function is regulated by the phosphorylation of αA-crystallin on residue 148.
Collapse
Affiliation(s)
- Madhu Nath
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Patrice Elie Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Evidence for Paracrine Protective Role of Exogenous αA-Crystallin in Retinal Ganglion Cells. eNeuro 2022; 9:ENEURO.0045-22.2022. [PMID: 35168949 PMCID: PMC8906792 DOI: 10.1523/eneuro.0045-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Expression and secretion of neurotrophic factors have long been known as a key mechanism of neuroglial interaction in the central nervous system. In addition, several other intrinsic neuroprotective pathways have been described, including those involving small heat shock proteins such as α-crystallins. While initially considered as a purely intracellular mechanism, both αA-crystallins and αB-crystallins have been recently reported to be secreted by glial cells. While an anti-apoptotic effect of such secreted αA-crystallin has been suggested, its regulation and protective potential remain unclear. We recently identified residue threonine 148 (T148) and its phosphorylation as a critical regulator of αA-crystallin intrinsic neuroprotective function. In the current study, we explored how mutation of this residue affected αA-crystallin chaperone function, secretion, and paracrine protective function using primary glial and neuronal cells. After demonstrating the paracrine protective effect of αA-crystallins secreted by primary Müller glial cells (MGCs), we purified and characterized recombinant αA-crystallin proteins mutated on the T148 regulatory residue. Characterization of the biochemical properties of these mutants revealed an increased chaperone activity of the phosphomimetic T148D mutant. Consistent with this observation, we also show that exogeneous supplementation of the phosphomimetic T148D mutant protein protected primary retinal neurons from metabolic stress despite similar cellular uptake. In contrast, the nonphosphorylatable mutant was completely ineffective. Altogether, our study demonstrates the paracrine role of αA-crystallin in the central nervous system as well as the therapeutic potential of functionally enhanced αA-crystallin recombinant proteins to prevent metabolic-stress induced neurodegeneration.
Collapse
|
7
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
8
|
Phadte AS, Sluzala ZB, Fort PE. Therapeutic Potential of α-Crystallins in Retinal Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:1001. [PMID: 34201535 PMCID: PMC8300683 DOI: 10.3390/antiox10071001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The chaperone and anti-apoptotic activity of α-crystallins (αA- and αB-) and their derivatives has received increasing attention due to their tremendous potential in preventing cell death. While originally known and described for their role in the lens, the upregulation of these proteins in cells and animal models of neurodegenerative diseases highlighted their involvement in adaptive protective responses to neurodegeneration associated stress. However, several studies also suggest that chronic neurodegenerative conditions are associated with progressive loss of function of these proteins. Thus, while external supplementation of α-crystallin shows promise, their potential as a protein-based therapeutic for the treatment of chronic neurodegenerative diseases remains ambiguous. The current review aims at assessing the current literature supporting the anti-apoptotic potential of αA- and αB-crystallins and its potential involvement in retinal neurodegenerative diseases. The review further extends into potentially modulating the chaperone and the anti-apoptotic function of α-crystallins and the use of such functionally enhanced proteins for promoting neuronal viability in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Ashutosh S. Phadte
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Zachary B. Sluzala
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
9
|
Zhou J, Wu J, Zheng S, Chen X, Zhou D, Shentu X. Integrated Transcriptomic and Proteomic Analysis Reveals Up-Regulation of Apoptosis and Small Heat Shock Proteins in Lens of Rats Under Low Temperature. Front Physiol 2021; 12:683056. [PMID: 34220548 PMCID: PMC8247577 DOI: 10.3389/fphys.2021.683056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Cold cataract is the reversible opacification of the lens when the temperature decreases. However, we observed that when temperature of the rats’ lens was maintained at a lower temperature for a prolonged time, the opacification of lens was only partly reversible. To review the potential molecular mechanism of the irreversible part of opacification under cold stimulation, we applied comparative transcriptomic and proteomic analysis to systematically investigate the molecular changes that occurred in the lens capsules of rats under low temperature treatments. The RNA sequencing based transcriptomic analysis showed a significant up-regulation of genes related to the lens structure and development in the Hypothermia Group. Hub genes were small heat shock proteins (sHSPs). Besides the same findings as the transcriptomic results, the liquid chromatography-tandem mass spectrometry based proteomic analysis also revealed the up-regulation of the apoptotic process. To further analyze the regulatory mechanism in this process, we subsequently performed integrated analysis and identified the down-regulation of Notch3/Hes1 and PI3K/Akt/Xiap signaling axis. Our research revealed the activation of the apoptotic process in rats’ lens under cold stimulation, and the sHSP related heat shock response as a potential protective factor through our transcriptomic and proteomic data.
Collapse
Affiliation(s)
- Jiayue Zhou
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wu
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - Xiangjun Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Daizhan Zhou
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingchao Shentu
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Bell K, Rosignol I, Sierra-Filardi E, Rodriguez-Muela N, Schmelter C, Cecconi F, Grus F, Boya P. Age related retinal Ganglion cell susceptibility in context of autophagy deficiency. Cell Death Discov 2020; 6:21. [PMID: 32337073 PMCID: PMC7165178 DOI: 10.1038/s41420-020-0257-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is a common age-related disease leading to progressive retinal ganglion cell (RGC) death, visual field defects and vision loss and is the second leading cause of blindness in the elderly worldwide. Mitochondrial dysfunction and impaired autophagy have been linked to glaucoma and induction of autophagy shows neuroprotective effects in glaucoma animal models. We have shown that autophagy decreases with aging in the retina and that autophagy can be neuroprotective for RGCs, but it is currently unknown how aging and autophagy deficiency impact RGCs susceptibility and survival. Using the optic nerve crush model in young and olWelcome@1234d Ambra1 +/gt (autophagy/beclin-1 regulator 1+/gt) mice we analysed the contribution of autophagy deficiency on retinal ganglion cell survival in an age dependent context. Interestingly, old Ambra1 +/gt mice showed decreased RGC survival after optic nerve crush in comparison to old Ambra1 +/+, an effect that was not observed in the young animals. Proteomics and mRNA expression data point towards altered oxidative stress response and mitochondrial alterations in old Ambra1 +/gt animals. This effect is intensified after RGC axonal damage, resulting in reduced oxidative stress response showing decreased levels of Nqo1, as well as failure of Nrf2 induction in the old Ambra1 +/gt. Old Ambra1 +/gt also failed to show increase in Bnip3l and Bnip3 expression after optic nerve crush, a response that is found in the Ambra1 +/+ controls. Primary RGCs derived from Ambra1 +/gt mice show decreased neurite projection and increased levels of apoptosis in comparison to Ambra1 +/+ animals. Our results lead to the conclusion that oxidative stress response pathways are altered in old Ambra1 +/gt mice leading to impaired damage responses upon additional external stress factors.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ines Rosignol
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Elena Sierra-Filardi
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Natalia Rodriguez-Muela
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Deutsche Zentrum für Neurodegenerative Erkrankungen e.V, DZNE/German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Carsten Schmelter
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Franz Grus
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
11
|
Hamadmad S, Shah MH, Kusibati R, Kim B, Erickson B, Heisler-Taylor T, Bhattacharya SK, Abdel-Rahman MH, Cebulla CM. Significant upregulation of small heat shock protein αA-crystallin in retinal detachment. Exp Eye Res 2019; 189:107811. [PMID: 31550446 DOI: 10.1016/j.exer.2019.107811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Sumaya Hamadmad
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Mohd Hussain Shah
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Rania Kusibati
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Bongsu Kim
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Brandon Erickson
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Tyler Heisler-Taylor
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, Department of Ophthalmology, The Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohamed H Abdel-Rahman
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA; Division Human Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43240, USA
| | | | - Colleen M Cebulla
- The Ohio State University Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43212, USA.
| |
Collapse
|
12
|
Lam C, Li KK, Do CW, Chan H, To CH, Kwong JMK. Quantitative profiling of regional protein expression in rat retina after partial optic nerve transection using fluorescence difference two‑dimensional gel electrophoresis. Mol Med Rep 2019; 20:2734-2742. [PMID: 31524249 PMCID: PMC6691257 DOI: 10.3892/mmr.2019.10525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
To examine the difference between primary and secondary retinal ganglion cell (RGC) degeneration, the protein expression at four regions of retina including superior, temporal, inferior and nasal quadrant in a rat model of partial optic nerve transection (pONT) using 2-D Fluorescence Difference Gel Electrophoresis (DIGE) were investigated. Unilateral pONT was performed on the temporal side of optic nerves of adult Wistar rats to separate primary and secondary RGC loss. Topographical quantification of RGCs labeled by Rbpms antibody and analysis of axonal injury by grading of optic nerve damage at 1 week (n=8) and 8 weeks (n=15) after pONT demonstrated early RGC loss at temporal region, which is considered as primary RGC degeneration and progressing RGC loss at nasal region, which is considered as secondary RGC degeneration. Early protein expression in each retinal quadrant (n=4) at 2 weeks after pONT was compared with the corresponding quadrant in the contralateral control eye by DIGE. For all comparisons, 24 differentially expressed proteins (>1.2-fold; P<0.05; ≥3 non-duplicated peptide matches) were identified by mass spectrometry (MS). Interestingly, in the nasal retina, serum albumin and members of crystallin family, including αA, αB, βA2, βA3, βB2 and γS indicating stress response were upregulated. By contrast, only αB and βA2 crystallin proteins were altered in temporal quadrant. In the superior and inferior quadrants, βB2 crystallin, keratin type I, S-arrestin and lamin-B1 were upregulated, while heat shock cognate 71 kDa protein and heterogeneous nuclear ribonucleoproteins A2/B1 were downregulated. In summary, the use of DIGE followed by MS is useful to detect early regional protein regulation in the retina after localized optic nerve injury.
Collapse
Affiliation(s)
- Chuen Lam
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - King Kit Li
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Chi Wai Do
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Henry Chan
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Chi Ho To
- School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Jacky Man Kwong Kwong
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Bastakis GG, Ktena N, Karagogeos D, Savvaki M. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis. Dev Neurobiol 2019; 79:819-836. [PMID: 31297983 DOI: 10.1002/dneu.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni- or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.
Collapse
Affiliation(s)
| | - Niki Ktena
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Domna Karagogeos
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Maria Savvaki
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
14
|
Stankowska DL, Nam MH, Nahomi RB, Chaphalkar RM, Nandi SK, Fudala R, Krishnamoorthy RR, Nagaraj RH. Systemically administered peptain-1 inhibits retinal ganglion cell death in animal models: implications for neuroprotection in glaucoma. Cell Death Discov 2019; 5:112. [PMID: 31285855 PMCID: PMC6609721 DOI: 10.1038/s41420-019-0194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration and death of retinal ganglion cells (RGCs) are the primary causes of vision loss in glaucoma. In this study, we evaluated the efficacy of a peptide (peptain-1) that exhibits robust chaperone and anti-apoptotic activities against RGC loss in two rodent models and in cultured RGCs. In cultures of rat primary RGCs and in rat retinal explants peptain-1 significantly decreased hypoxia-induced RGC loss when compared to a scrambled peptide. Intraperitoneally (i.p.) injected peptain-1 (conjugated to a Cy7 fluorophore) was detected in the retina indicative of its ability to cross the blood-retinal barrier. Peptain-1 treatment inhibited RGC loss in the retina of mice subjected to ischemia/reperfusion (I/R) injury. A reduction in anterograde axonal transport was also ameliorated by peptain-1 treatment in the retina of I/R injured mice. Furthermore, i.p. injections of peptain-1 significantly reduced RGC death and axonal loss and partially restored retinal mitochondrial cytochrome c oxidase subunit 6b2 (COX 6b2) levels in rats subjected to five weeks of elevated intraocular pressure. We conclude that i.p. injected peptain-1 gains access to the retina and protects both RGC somas and axons against the injury caused by I/R and ocular hypertension. Based on these findings, peptain-1 has the potential to be developed as an efficacious neuroprotective agent for the treatment of glaucoma.
Collapse
Affiliation(s)
- Dorota L Stankowska
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Mi-Hyun Nam
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Rooban B Nahomi
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Renuka M Chaphalkar
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Sandip K Nandi
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Rafal Fudala
- 3Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Raghu R Krishnamoorthy
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Ram H Nagaraj
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA.,4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045 USA
| |
Collapse
|
15
|
A monoclonal antibody targeted to the functional peptide of αB-crystallin inhibits the chaperone and anti-apoptotic activities. J Immunol Methods 2019; 467:37-47. [PMID: 30738041 DOI: 10.1016/j.jim.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Abstract
αB-Crystallin is a member of the small heat shock protein family. It is a molecular chaperone and an anti-apoptotic protein. Previous studies have shown that the peptide (73DRFSVNLDVKHFSPEELKVKV93, hereafter referred to as peptain-1) from the core domain of αB-crystallin exhibits both chaperone and anti-apoptotic properties similar to the parent protein. We developed a mouse monoclonal antibody against peptain-1 with the aim of blocking the functions of αB-crystallin. The antibody reacted with peptain-1, it did not react with the chaperone peptide of αA-crystallin. The antibody strongly reacted with human recombinant αB-crystallin but weakly with Hsp20; it did not react with αA-crystallin or Hsp27. The antibody specifically reacted with αB-crystallin in human and mouse lens proteins but not with αA-crystallin. The antibody reacted with αB-crystallin in human lens epithelial cells, human retinal endothelial cells, and with peptain-1 in peptain-1-transduced cells. Unlike the commercial antibodies against αB-crystallin, the antibody against peptain-1 inhibited the chaperone and anti-apoptotic activities of peptain-1. The antibody might find use in inhibiting αB-crystallin's chaperone and anti-apoptotic activities in diseases where αB-crystallin is a causative or contributing factor.
Collapse
|
16
|
Karthikkeyan G, Subbannayya Y, Najar MA, Mohanty V, Pinto SM, Arunachalam C, Prasad TSK, Murthy KR. Human Optic Nerve: An Enhanced Proteomic Expression Profile. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:642-652. [PMID: 30346883 DOI: 10.1089/omi.2018.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ophthalmology and visual health are new frontiers for postgenomic research and technologies such as proteomics. In this context, the optic nerve and retina extend as the outgrowth of the brain, wherein the latter receives the optical input and the former relays the information for processing. While efforts to understand the optic nerve proteome have been made earlier, there exists a lacuna in its biochemical composition and molecular functions. We report, in this study, a high-resolution mass spectrometry-based approach using an Orbitrap Fusion Tribrid mass spectrometer to elucidate the human optic nerve proteomic profile. Raw spectra were searched against NCBI Human RefSeq 75 database using SEQUEST HT and MASCOT algorithms. We identified nearly 35,000 peptides in human optic nerve samples, corresponding to 5682 proteins, of which 3222 proteins are being reported for the first time. Label-free quantification using spectral abundance pointed out to neuronal structural proteins such as myelin basic protein, glial fibrillary acidic protein, and proteolipid protein 1 as the most abundant proteins. We also identified several neurotransmitter receptors and postsynaptic density synaptosomal scaffold proteins. Pathway analysis revealed that a majority of the proteins are structural proteins and have catalytic and binding activity. This study is one of the largest proteomic profiles of the human optic nerve and offers the research community an initial baseline optic nerve proteome for further studies. This will also help understand the protein dynamics of the human optic nerve under normal conditions.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Yashwanth Subbannayya
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Mohd Altaf Najar
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Varshasnata Mohanty
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Sneha M Pinto
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India
| | - Cynthia Arunachalam
- 2 Department of Ophthalmology, Yenepoya Medical College, Yenepoya (Deemed to be University) , Mangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- 1 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University) , Mangalore, India .,3 Institute of Bioinformatics , International Tech Park, Bangalore, Karnataka, India
| | - Krishna R Murthy
- 3 Institute of Bioinformatics , International Tech Park, Bangalore, Karnataka, India .,4 Vittala International Institute of Ophthalmology , Bangalore, Karnataka, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| |
Collapse
|
17
|
Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 2018; 115:69-79. [PMID: 29425965 DOI: 10.1016/j.neuint.2018.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding and damaging protein aggregates, like Glial fibrillary acidic protein in AxD, β-amyloid peptides aggregates in Alzheimer's disease, Superoxide dismutase 1 in Amyotrophic lateral sclerosis and cytosine-adenine-guanine/polyglutamine (CAG/PolyQ) in Huntington's disease, Spinocerebellar ataxia type 3, Spinal-bulbar muscular atrophy, to reduce the toxicity or increase the clearance of these protein aggregates. The degree of HspB4 expression in brain is still debated. For neuroprotective mechanisms, sHsps attenuate mitochondrial dysfunctions, reduce accumulation of misfolded proteins, block oxidative/nitrosative stress, and minimize neuronal apoptosis and neuroinflammation, which are molecular mechanisms commonly accepted to mirror the progression and development of neurodegenerative diseases. The increasing incidence of the neurodegenerative diseases enhanced search for effective approaches to rescue neural tissue from degeneration with minimal side effects. sHsps have been found to exert neuroprotective functions. HspB5 has been emphasized to reduce the paralysis in a mouse model of experimental autoimmune encephalomyelitis, providing a therapeutic basis for the disease. In this review, we discuss the current understanding of the properties and the mechanisms of protection orchestrated by sHsps in the nervous system, highlighting the promising therapeutic role of sHsps in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhihui Zhu
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany; College of Medicine, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
18
|
The Protective Effects of αB-Crystallin on Ischemia-Reperfusion Injury in the Rat Retina. J Ophthalmol 2017; 2017:7205408. [PMID: 29098085 PMCID: PMC5643040 DOI: 10.1155/2017/7205408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022] Open
Abstract
To investigate whether αB-crystallin protects against acute retinal ischemic reperfusion injury (I/R) and elucidate the potential antioxidant mechanisms. Retinal I/R injury was made by elevating the intraocular pressure (IOP) 110 mmHg for 60 min, and αB-crystallin (1 × 10−5 g/L) or vehicle solution was administered intravitreously immediately after I/R injury. The animal was sacrificed 24 h, 1 w, and 1 m after the I/R injury. The retina damage was detected by hematoxylin and eosin (HE) staining and electroretinography (ERG). The level of malondialdehyde (MDA), nitric oxide (NO), and the total superoxide dismutase (T-SOD) was determined. An immunohistochemical study was performed to detect the activation of inducible nitric oxide synthase (iNOS) and NF- (nuclear factor-) kappaB (NF-κB) p65. The decrease of retinal thickness and the number of retinal ganglion cells (RGCs) can be suppressed by αB-crystallin. And the amplitudes of a- and b-wave were remarkably greater without αB-crystallin. Similarly, αB-crystallin also significantly decreased the level of MDA and NO and enhanced the activities of T-SOD. The positive expression of iNOS and NF-kappaB p65 was obviously reduced while treated with αB-crystallin. αB-crystallin can inhibit the expression of NF-κB and its antioxidative effect to protect the retina from I/R injury.
Collapse
|
19
|
Nuzzi R, Tridico F. Glaucoma: Biological Trabecular and Neuroretinal Pathology with Perspectives of Therapy Innovation and Preventive Diagnosis. Front Neurosci 2017; 11:494. [PMID: 28928631 PMCID: PMC5591842 DOI: 10.3389/fnins.2017.00494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a common degenerative disease affecting retinal ganglion cells (RGC) and optic nerve axons, with progressive and chronic course. It is one of the most important reasons of social blindness in industrialized countries. Glaucoma can lead to the development of irreversible visual field loss, if not treated. Diagnosis may be difficult due to lack of symptoms in early stages of disease. In many cases, when patients arrive at clinical evaluation, a severe neuronal damage may have already occurred. In recent years, newer perspective in glaucoma treatment have emerged. The current research is focusing on finding newer drugs and associations or better delivery systems in order to improve the pharmacological treatment and patient compliance. Moreover, the application of various stem cell types with restorative and neuroprotective intent may be found appealing (intravitreal autologous cellular therapy). Advances are made also in terms of parasurgical treatment, characterized by various laser types and techniques. Moreover, recent research has led to the development of central and peripheral retinal rehabilitation (featuring residing cells reactivation and replacement of defective elements), as well as innovations in diagnosis through more specific and refined methods and inexpensive tests.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic Section, Department of Surgical Sciences, University of Turin, Ophthalmic HospitalTurin, Italy
| | - Federico Tridico
- Eye Clinic Section, Department of Surgical Sciences, University of Turin, Ophthalmic HospitalTurin, Italy
| |
Collapse
|
20
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|
21
|
Holtman IR, Bsibsi M, Gerritsen WH, Boddeke HWGM, Eggen BJL, van der Valk P, Kipp M, van Noort JM, Amor S. Identification of highly connected hub genes in the protective response program of human macrophages and microglia activated by alpha B-crystallin. Glia 2017; 65:460-473. [DOI: 10.1002/glia.23104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Inge R. Holtman
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | | | - Wouter H. Gerritsen
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Hendrikus W. G. M. Boddeke
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Bart J. L. Eggen
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Paul van der Valk
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Markus Kipp
- Department of Neuroanatomy; University of Munich; Munich Germany
| | - Johannes M. van Noort
- Delta Crystallon BV; Beverwijk ED the Netherlands
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Sandra Amor
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry; Queen Mary University of London; London United Kingdom
| |
Collapse
|
22
|
Wang YH, Yin ZQ, Wang Y. Synergistic effect of olfactory ensheathing cells and alpha-crystallin on restoration of adult rat optic nerve injury. Neurosci Lett 2016; 638:167-174. [PMID: 28007643 DOI: 10.1016/j.neulet.2016.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/29/2023]
Abstract
Olfactory enshesathing cells (OECs) and α-crystallin all can promote axonal regeneration after optic nerve injury. However, their mechanisms were different. Here, we study the synergistic effect of OECs and α-crystallin on the optic nerve regeneration. α-Crystallin was injected into vitreous cavity, and OECs were transplanted to the optic nerve injury area. The regeneration length of optic nerve were measured by anterograde tracing using cholera toxin subunit B (CTB). The survival of RGCs were assessed by counting the numbers of βIII-tubulin-labeled RGCs in a retinal whole mount. The results that OECs and α-crystallin all could promoted RGCs survival and axonal regeneration (P<0.01). Especially in the combination group, the length of axonal regeneration was 5.6mm after optic nerve injury for 3 months. These findings indicated that compared to OECs and α-crystallin alone, the combination of OECs and α-crystallin could promote axonal regeneration more effectively.
Collapse
Affiliation(s)
- Yan Hua Wang
- Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, PR China; Taiyuan Aier Eye Hospital, Aier Eye Hospital Group, Taiyuan 030000, PR China
| | - Zheng Qin Yin
- Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, PR China; Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Yi Wang
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
23
|
Shao WY, Liu X, Gu XL, Ying X, Wu N, Xu HW, Wang Y. Promotion of axon regeneration and inhibition of astrocyte activation by alpha A-crystallin on crushed optic nerve. Int J Ophthalmol 2016; 9:955-66. [PMID: 27500100 DOI: 10.18240/ijo.2016.07.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the effects of αA-crystallin in astrocyte gliosis after optic nerve crush (ONC) and the mechanism of α-crystallin in neuroprotection and axon regeneration. METHODS ONC was established on the Sprague-Dawley rat model and αA-crystallin (10(-4) g/L, 4 µL) was intravitreously injected into the rat model. Flash-visual evoked potential (F-VEP) was examined 14d after ONC, and the glial fibrillary acidic protein (GFAP) levels in the retina and crush site were analyzed 1, 3, 5, 7 and 14d after ONC by immunohistochemistry (IHC) and Western blot respectively. The levels of beta Tubulin (TUJ1), growth-associated membrane phosphoprotein-43 (GAP-43), chondroitin sulfate proteoglycans (CSPGs) and neurocan were also determined by IHC 14d after ONC. RESULTS GFAP level in the retina and the optic nerve significantly increased 1d after ONC, and reached the peak level 7d post-ONC. Injection of αA-crystallin significantly decreased GFAP level in both the retina and the crush site 3d after ONC, and induced astrocytes architecture remodeling at the crush site. Quantification of retinal ganglion cell (RGC) axons indicated αA-crystallin markedly promoted axon regeneration in ONC rats and enhanced the regenerated axons penetrated into the glial scar. CSPGs and neurocan expression also decreased 14d after αA-crystallin injection. The amplitude (N1-P1) and latency (P1) of F-VEP were also restored. CONCLUSION Our results suggest α-crystallin promotes the axon regeneration of RGCs and suppresses the activation of astrocytes.
Collapse
Affiliation(s)
- Wei-Yang Shao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xian-Liang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xi Ying
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Nan Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
24
|
Piri N, Kwong JMK, Gu L, Caprioli J. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 2016; 52:22-46. [PMID: 27017896 PMCID: PMC4842330 DOI: 10.1016/j.preteyeres.2016.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' anti-apoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies.
Collapse
Affiliation(s)
- Natik Piri
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | - Jacky M K Kwong
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Gu
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Joseph Caprioli
- Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Schmidt T, Fischer D, Andreadaki A, Bartelt-Kirbach B, Golenhofen N. Induction and phosphorylation of the small heat shock proteins HspB1/Hsp25 and HspB5/αB-crystallin in the rat retina upon optic nerve injury. Cell Stress Chaperones 2016; 21:167-178. [PMID: 26475352 PMCID: PMC4679741 DOI: 10.1007/s12192-015-0650-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022] Open
Abstract
Several eye diseases are associated with axonal injury in the optic nerve, which normally leads to degeneration of retinal ganglion cells (RGCs) and subsequently to loss of vision. There is experimental evidence that some members of the small heat shock protein family (HspBs) are upregulated upon optic nerve injury (ONI) in the retina and sufficient to promote RGC survival. These data raise the question as to whether other family members may play a similar role in this context. Here, we performed a comprehensive comparative study comprising all HspBs in an experimental model of ONI. We found that five HspBs were expressed in the adult rat retina at control conditions but only HspB1 and HspB5 were upregulated in response to ONI. Furthermore, HspB1 and HspB5 were constitutively phosphorylated in Müller cells at serine 15 and serine 59, respectively. In RGCs, phosphorylation was stimulated by ONI and occurred at serine 86 of HspB1 and at serine 19 and 45 of HspB5. These data suggest that of all small heat shock proteins, only HspB1 and HspB5 might be of protective value for RGCs after ONI and that this process might be regulated by phosphorylation at serine 86 of HspB1 and serine 19 and serine 45 of HspB5. The molecular targets of phosphoHspB1 and phosphoHspB5 remain to be identified.
Collapse
Affiliation(s)
- Thomas Schmidt
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dietmar Fischer
- Department of Experimental Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Andreadaki
- Department of Experimental Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
26
|
van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EH. Therapeutic Intervention in Multiple Sclerosis with Alpha B-Crystallin: A Randomized Controlled Phase IIa Trial. PLoS One 2015; 10:e0143366. [PMID: 26599332 PMCID: PMC4657879 DOI: 10.1371/journal.pone.0143366] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
As a molecular chaperone and activator of Toll-like receptor 2-mediated protective responses by microglia and macrophages, the small heat shock protein alpha B-crystallin (HspB5) exerts therapeutic effects in different animal models for neuroinflammation, including the model for multiple sclerosis (MS). Yet, HspB5 can also stimulate human antigen-specific memory T cells to release IFN-γ, a cytokine with well-documented detrimental effects during MS. In this study, we explored in a Phase IIa randomized clinical trial the therapeutic application of HspB5 in relapsing-remitting MS (RR-MS), using intravenous doses sufficient to support its protective effects, but too low to trigger pathogenic memory T-cell responses. These sub-immunogenic doses were selected based on in vitro analysis of the dose-response profile of human T cells and macrophages to HspB5, and on the immunological effects of HspB5 in healthy humans as established in a preparatory Phase I study. In a 48-week randomized, placebo-controlled, double-blind Phase IIa trial, three bimonthly intravenous injections of 7.5, 12.5 or 17.5 mg HspB5 were found to be safe and well tolerated in RR-MS patients. While predefined clinical endpoints did not differ significantly between the relatively small groups of MS patients treated with either HspB5 or placebo, repeated administration especially of the lower doses of HspB5 led to a progressive decline in MS lesion activity as monitored by magnetic resonance imaging (MRI), which was not seen in the placebo group. Exploratory linear regression analysis revealed this decline to be significant in the combined group receiving either of the two lower doses, and to result in a 76% reduction in both number and total volumes of active MRI lesions at 9 months into the study. These data provide the first indication for clinical benefit resulting from intervention in RR-MS with HspB5. Trial Registration: ClinicalTrials.gov Phase I: NCT02442557; Phase IIa: NCT02442570
Collapse
|
27
|
Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Lens Biology and Biochemistry. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:169-201. [PMID: 26310155 DOI: 10.1016/bs.pmbts.2015.04.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary function of the lens resides in its transparency and ability to focus light on the retina. These require both that the lens cells contain high concentrations of densely packed lens crystallins to maintain a refractive index constant over distances approximating the wavelength of the light to be transmitted, and a specific arrangement of anterior epithelial cells and arcuate fiber cells lacking organelles in the nucleus to avoid blocking transmission of light. Because cells in the lens nucleus have shed their organelles, lens crystallins have to last for the lifetime of the organism, and are specifically adapted to this function. The lens crystallins comprise two major families: the βγ-crystallins are among the most stable proteins known and the α-crystallins, which have a chaperone-like function. Other proteins and metabolic activities of the lens are primarily organized to protect the crystallins from damage over time and to maintain homeostasis of the lens cells. Membrane protein channels maintain osmotic and ionic balance across the lens, while the lens cytoskeleton provides for the specific shape of the lens cells, especially the fiber cells of the nucleus. Perhaps most importantly, a large part of the metabolic activity in the lens is directed toward maintaining a reduced state, which shelters the lens crystallins and other cellular components from damage from UV light and oxidative stress. Finally, the energy requirements of the lens are met largely by glycolysis and the pentose phosphate pathway, perhaps in response to the avascular nature of the lens. Together, all these systems cooperate to maintain lens transparency over time.
Collapse
Affiliation(s)
- J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca McGreal
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ales Cvekl
- Department of Genetics and Ophthalmology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
28
|
Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta Gen Subj 2015; 1860:278-86. [PMID: 26049079 DOI: 10.1016/j.bbagen.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is an abundance of evidence to support the association of damaging neuroinflammation and neurodegeneration across a multitude of diseases. One of the links between these pathological phenomena is the role of chaperone proteins as both neuroprotective and immune-regulatory agents. SCOPE OF REVIEW Chaperone proteins are highly expressed at sites of neuroinflammation both in glial cells and in the injured neurons that initiate the immune response. For this reason, the use of chaperones as treatment for various diseases associated with neuroinflammation is a highly active area of investigation. This review explores the various ways that the small heat shock protein chaperones, α-crystallins, can affect glial cell function with a specific focus on their implication in the inflammatory response associated with neurodegenerative disorders, and their potential as therapeutic treatment. MAJOR CONCLUSIONS Although the mechanisms are still under investigation, a clear link has now been established between alpha-crystallins and neuroinflammation, especially through their roles in microglial and macroglial cells. Interestingly, similar to inflammation in itself, crystallins can have a beneficial or detrimental impact on the CNS based on the context and duration of the condition. GENERAL SIGNIFICANCE Overall this review points out the novel roles that chaperones such as alpha-crystallins can play outside of the classical protein folding pathways, and their potential in the development of new therapies for the treatment of neuroinflammatory/neurodegenerative diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|
29
|
Nagaraj RH, Nahomi RB, Mueller NH, Raghavan CT, Ammar DA, Petrash JM. Therapeutic potential of α-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:252-7. [PMID: 25840354 DOI: 10.1016/j.bbagen.2015.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/26/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The findings that α-crystallins are multi-functional proteins with diverse biological functions have generated considerable interest in understanding their role in health and disease. Recent studies have shown that chaperone peptides of α-crystallin could be delivered into cultured cells and in experimental animals with beneficial effects against protein aggregation, oxidation, inflammation and apoptosis. SCOPE OF REVIEW In this review, we will summarize the latest developments on the therapeutic potential of α-crystallins and their functional peptides. MAJOR CONCLUSIONS α-Crystallins and their functional peptides have shown significant favorable effects against several diseases. Their targeted delivery to tissues would be of great therapeutic benefit. However, α-crystallins can also function as disease-causing proteins. These seemingly contradictory functions must be carefully considered prior to their therapeutic use. GENERAL SIGNIFICANCE αA and αB-Crystallin are members of the small heat shock protein family. These proteins exhibit molecular chaperone and anti-apoptotic activities. The core crystallin domain within these proteins is largely responsible for these prosperities. Recent studies have identified peptides within the crystallin domain of both α- and αB-crystallins with remarkable chaperone and anti-apoptotic activities. Administration of α-crystallin or their functional peptides has shown substantial inhibition of pathologies in several diseases. However, α-crystallins have been shown to promote disease-causing pathways. These two sides of the proteins are discussed in this review. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Ram H Nagaraj
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Rooban B Nahomi
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Niklaus H Mueller
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cibin T Raghavan
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David A Ammar
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
31
|
Ying X, Peng Y, Zhang J, Wang X, Wu N, Zeng Y, Wang Y. Endogenous α-crystallin inhibits expression of caspase-3 induced by hypoxia in retinal neurons. Life Sci 2014; 111:42-6. [DOI: 10.1016/j.lfs.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 11/15/2022]
|
32
|
Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJL, van der Valk P, Amor S, van Noort JM. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014; 128:215-29. [PMID: 24997049 DOI: 10.1007/s00401-014-1317-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Collapse
Affiliation(s)
- Malika Bsibsi
- Delta Crystallon, Zernikedreef 9, 2333, CK Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu N, Yu J, Chen S, Xu J, Ying X, Ye M, Li Y, Wang Y. α-Crystallin protects RGC survival and inhibits microglial activation after optic nerve crush. Life Sci 2013; 94:17-23. [PMID: 24220677 DOI: 10.1016/j.lfs.2013.10.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/13/2013] [Accepted: 10/30/2013] [Indexed: 01/28/2023]
Abstract
AIMS Activation of retinal microglial cells (RMCs) is known to contribute to retinal ganglion cell (RGC) death after optic nerve injury. The purpose of this study was to investigate the effects of intravenous injection of α-crystallin on RGC survival and RMC activation in a rat model of optic nerve crush. MAIN METHODS RGCs were retrogradely labeled with fluorogold. Rats were intravenously injected with normal saline or α-crystallin (0.05g/kg, 0.5g/kg, and 5 g/kg) at 2, 4, 6, 8, 10, and 12 days after the optic nerve crush. Activated RMCs were characterized using immunofluorescence labeling with CD11b, and TNF-α and iNOS expression was detected using immunoblot analyses. We analyzed the morphology and numbers of RGC and RMC 2 and 4 weeks after injury using fluorescence and confocal microscopy. KEY FINDINGS The number of RGCs decreased after optic nerve injury, accompanied by significantly increased numbers of activated RMCs. Intravenous injection of α-crystallin decreased the number of RMCs, and enhanced the number of RGCs compared to saline injection. α-Crystallin administration inhibited TNF-α and iNOS protein expression induced by optic nerve injury. SIGNIFICANCE Our results suggest that α-crystallin promotes RGC survival and inhibits RMC activation. Intravenous injection of α-crystallin could be a possible strategy for the treatment of optic nerve injury.
Collapse
Affiliation(s)
- Nan Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jia Yu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shaojun Chen
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jiangning Xu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xi Ying
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Mao Ye
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yiru Li
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yi Wang
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
34
|
Crystallins in retinal ganglion cell survival and regeneration. Mol Neurobiol 2013; 48:819-28. [PMID: 23709342 DOI: 10.1007/s12035-013-8470-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/06/2013] [Indexed: 12/31/2022]
Abstract
Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells (RGCs) and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized RGCs in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta and gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells.
Collapse
|
35
|
Hamann S, Métrailler S, Schorderet DF, Cottet S. Analysis of the cytoprotective role of α-crystallins in cell survival and implication of the αA-crystallin C-terminal extension domain in preventing Bax-induced apoptosis. PLoS One 2013; 8:e55372. [PMID: 23383327 PMCID: PMC3562314 DOI: 10.1371/journal.pone.0055372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/21/2012] [Indexed: 12/17/2022] Open
Abstract
α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65⁻/⁻ mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.
Collapse
Affiliation(s)
- Séverine Hamann
- IRO, Institute for Research in Ophthalmology, Sion, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | - Daniel F. Schorderet
- IRO, Institute for Research in Ophthalmology, Sion, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Cottet
- IRO, Institute for Research in Ophthalmology, Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Theophylline regulates inflammatory and neurotrophic factor signals in functional recovery after C2-hemisection in adult rats. Exp Neurol 2012; 238:79-88. [PMID: 22981449 DOI: 10.1016/j.expneurol.2012.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 11/24/2022]
Abstract
Recovery of respiratory activity in an upper cervical hemisection model (C2H) of spinal cord injury (SCI) can be induced by systemic theophylline administration 24-48 h after injury. The objectives in the present study are (1) to identify pro-inflammatory and neurotrophic factors expressed after C2H and (2) molecular signals involved in functional recovery. Four groups of adult female rats classified as (i) sham (SH) controls, (ii) subjected to a left C2 hemisection (C2H) only, (iii) C2H rats administered theophylline for 3 consecutive days 2 days after C2H (C2H-T day 5) and (iv) C2H rats treated with theophylline for 3 consecutive days 2 days after C2H and then weaned for 12 days (C2H-T day 17) prior to assessment of respiratory function and molecular analysis were employed. Corresponding sham controls, C2H untreated (vehicle only controls) and C2H treated (theophylline) rats were sacrificed, C3-C6 spinal cord segments quickly dissected and left (ipsilateral) hemi spinal cord and right (contralateral) hemi spinal cord were separately harvested 2 days post surgery. Sham operated and C2H untreated-controls corresponding to C2H-T day 5 and C2H-T day 17 rats, respectively, were prepared similarly. Messenger RNA levels for pro-inflammatory genes (TXNIP, IL-1β, TNF-α and iNOS) and neurotrophic and survival factors (BDNF, GDNF, and Bcl2) were analyzed by real time quantitative PCR. Gene expression pattern was unaltered in SH rats. TXNIP, iNOS, BDNF, GDNF and Bcl2 mRNA levels were significantly increased in the ipsilateral hemi spinal cord in C2H rats. BDNF, GDNF and Bcl2 levels remained elevated in the ipsilateral hemi spinal cord in C2H-T day 5 rats. In this same group, there was further enhancement in TXNIP and IL-1β while iNOS returned to basal levels. Theophylline increased DNA binding activity of transcription factors - cyclic AMP responsive element (CRE) binding protein (CREB) and pro-inflammatory NF-κB. Messenger RNA levels for all genes returned to basal levels in C2H-T day 17 rats. However, BDNF mRNA levels remained significantly elevated after weaning from the drug. Our results suggest that enhanced resolution of early inflammatory processes and expression of pro-survival factors may underlie theophylline-induced respiratory recovery. The results identify potential targets for gene and drug therapies.
Collapse
|
37
|
Sreekumar PG, Hinton DR, Kannan R. Methionine sulfoxide reductase A: Structure, function and role in ocular pathology. World J Biol Chem 2011; 2:184-92. [PMID: 21909460 PMCID: PMC3163237 DOI: 10.4331/wjbc.v2.i8.184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 02/05/2023] Open
Abstract
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specificity, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrA with α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degeneration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- Parameswaran G Sreekumar, David R Hinton, Ram Kannan, Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
38
|
Magharious M, D'Onofrio PM, Hollander A, Zhu P, Chen J, Koeberle PD. Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush. J Proteome Res 2011; 10:3344-62. [PMID: 21627321 DOI: 10.1021/pr2004055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retinal ganglion cells (RGCs) are central nervous system (CNS) neurons that transmit visual information from the retina to the brain. Apoptotic RGC degeneration causes visual impairment that can be modeled by optic nerve crush. Neuronal apoptosis is also a salient feature of CNS trauma, ischemia (stroke), and diseases of the CNS such as Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. Optic nerve crush induces the apoptotic cell death of ∼ 70% of RGCs within the first 14 days after injury. This model is particularly attractive for studying adult neuron apoptosis because the time-course of RGC death is well established and axon regeneration within the myelinated optic nerve can be concurrently evaluated. Here, we performed a large scale iTRAQ proteomic study to identify and quantify proteins of the rat retina at 1, 3, 4, 7, 14, and 21 days after optic nerve crush. In total, 337 proteins were identified, and 110 were differentially regulated after injury. Of these, 58 proteins were upregulated (>1.3 ×), 46 were downregulated (<0.7 ×), and 6 showed both positive and negative regulation over 21 days, relative to normal retinas. Among the differentially expressed proteins, Thymosin-β4 showed an early upregulation at 3 days, the time-point that immediately precedes the induction of RGC apoptosis after injury. We examined the effect of exogenous Thymosin-β4 administration on RGC death after optic nerve injury. Intraocular injections of Thymosin-β4 significantly increased RGC survival by ∼ 3-fold compared to controls and enhanced axon regeneration after crush, demonstrating therapeutic potential for CNS insults. Overall, our study identified numerous proteins that are differentially regulated at key time-points after optic nerve crush, and how the temporal profiles of their expression parallel RGC death. This data will aid in the future development of novel therapeutics to promote neuronal survival and regeneration in the adult CNS.
Collapse
Affiliation(s)
- Mark Magharious
- Graduate Department of Rehabilitation Science, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Alpha-Crystallin Promotes Rat Axonal Regeneration Through Regulation of RhoA/Rock/Cofilin/MLC Signaling Pathways. J Mol Neurosci 2011; 46:138-44. [DOI: 10.1007/s12031-011-9537-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
|
40
|
Functional rescue of experimental ischemic optic neuropathy with αB-crystallin. Eye (Lond) 2011; 25:809-17. [PMID: 21475310 DOI: 10.1038/eye.2011.42] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Anterior ischemic optic neuropathy (AION) is an important cause of acute vision loss in adults, and there is no effective treatment. We studied early changes following experimental AION and tested the benefit of a potential treatment. MATERIALS AND METHODS We induced experimental AION in adult mice and tested the effects of short-term (daily for 3 days) and long-term (every other day for 3 weeks) αB-crystallin (αBC) treatment using histological and serial intracranial flash visual evoked potential recordings. RESULTS One day after experimental AION, there was swelling at the optic nerve (ON) head and increased expression of αBC, a small heat shock protein important in ischemia and inflammation. This upregulation coincided with microglial and astrocytic activation. Our hypothesis was that αBC may be part of the endogenous protective mechanism against injury, thus we tested the effects of αBC on experimental AION. Daily intraveneous or intravitreal αBC injections did not improve visual evoked potential amplitude or latency at days 1-2. However, αBC treatment decreased swelling and dampened the microglial and astrocytic activation on day 3. Longer treatment with intravenous αBC led to acceleration of visual evoked potential latency over 3 weeks, without improving amplitude. This latency acceleration did not correlate with increased retinal ganglion cell survival but did correlate with complete rescue of the ON oligodendrocytes, which are important for myelination. CONCLUSIONS We identified αBC as an early marker following experimental AION. Treatment with αBC enhanced this endogenous, post-ischemic response by decreasing microglial activation and promoting ON oligodendrocyte survival.
Collapse
|
41
|
Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy. PLoS One 2011; 6:e16271. [PMID: 21249158 PMCID: PMC3020973 DOI: 10.1371/journal.pone.0016271] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/09/2010] [Indexed: 01/14/2023] Open
Abstract
Background As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies. Methodology/Principal Findings A multi-modal proteomic approach of antibody (Luminex)-, electrophoresis (DIGE)-, and LC-MS (iTRAQ)-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5) while other proteins (Cp, Cryba3, Lgals3, Stat3) were only partially normalized and Fgf2 and Crybb2 expression remained elevated. Conclusions/Significance These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies.
Collapse
|
42
|
New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 2010; 92:98-103. [PMID: 21115004 DOI: 10.1016/j.exer.2010.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/08/2010] [Accepted: 11/17/2010] [Indexed: 12/31/2022]
Abstract
The crystallin proteins were initially identified as structural proteins of the ocular lens and have been recently demonstrated to be expressed in normal retina. They are dramatically upregulated by a large range of retinal diseases including diabetic retinopathy, age-related macular degeneration, uveitis, trauma and ischemia. The crystallin family of proteins is composed of alpha-, beta- and gamma-crystallin. Alpha-crystallins, which are small heat shock proteins, have received substantial attention recently. This review summarizes the current knowledge of alpha-crystallins in retinal diseases, their roles in retinal neuron cell survival and retinal inflammation, and the regulation of their expression and activity. Their potential role in the development of new treatments for neurodegenerative diseases is also discussed.
Collapse
|
43
|
Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE. Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci 2009; 10:90. [PMID: 19643015 PMCID: PMC2727955 DOI: 10.1186/1471-2202-10-90] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 07/30/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) death is the final consequence of many blinding diseases, where there is considerable variation in the time course and severity of RGC loss. Indeed, this process appears to be influenced by a wide variety of genetic and environmental factors. In this study we explored the genetic basis for differences in ganglion cell death in two inbred strains of mice. RESULTS We found that RGCs are more susceptible to death following optic nerve crush in C57BL/6J mice (54% survival) than in DBA/2J mice (62% survival). Using the Illumina Mouse-6 microarray, we identified 1,580 genes with significant change in expression following optic nerve crush in these two strains of mice. Our analysis of the changes occurring after optic nerve crush demonstrated that the greatest amount of change (44% of the variance) was due to the injury itself. This included changes associated with ganglion cell death, reactive gliosis, and abortive regeneration. The second pattern of gene changes (23% of the variance) was primarily related to differences in gene expressions observed between the C57BL/6J and DBA/2J mouse strains. The remaining changes in gene expression represent interactions between the effects of optic nerve crush and the genetic background of the mouse. We extracted one genetic network from this dataset that appears to be related to tissue remodeling. One of the most intriguing sets of changes included members of the crystallin family of genes, which may represent a signature of pathways modulating the susceptibility of cells to death. CONCLUSION Differential responses to optic nerve crush between two widely used strains of mice were used to define molecular networks associated with ganglion cell death and reactive gliosis. These results form the basis for our continuing interest in the modifiers of retinal injury.
Collapse
Affiliation(s)
- Justin P Templeton
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Mohamed Nassr
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Felix Vazquez-Chona
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | | | - William E Orr
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Robert W Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis TN, 38163, USA
| | - Eldon E Geisert
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis TN, 38163, USA
| |
Collapse
|
44
|
Martin B, Brenneman R, Golden E, Walent T, Becker KG, Prabhu VV, Wood W, Ladenheim B, Cadet JL, Maudsley S. Growth factor signals in neural cells: coherent patterns of interaction control multiple levels of molecular and phenotypic responses. J Biol Chem 2008; 284:2493-511. [PMID: 19038969 DOI: 10.1074/jbc.m804545200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Individual neurons express receptors for several different growth factors that influence the survival, growth, neurotransmitter phenotype, and other properties of the cell. Although there has been considerable progress in elucidating the molecular signal transduction pathways and physiological responses of neurons and other cells to individual growth factors, little is known about if and how signals from different growth factors are integrated within a neuron. In this study, we determined the interactive effects of nerve growth factor, insulin-like growth factor 1, and epidermal growth factor on the activation status of downstream kinase cascades and transcription factors, cell survival, and neurotransmitter production in neural cells that express receptors for all three growth factors. We document considerable differences in the quality and quantity of intracellular signaling and eventual phenotypic responses that are dependent on whether cells are exposed to a single or multiple growth factors. Dual stimulations that generated the greatest antagonistic or synergistic actions, compared with a theoretically neutral summation of their two activities, yielded the largest eventual change of neuronal phenotype indicated by the ability of the cell to produce norepinephrine or resist oxidative stress. Combined activation of insulin-like growth factor 1 and epidermal growth factor receptors was particularly notable for antagonistic interactions at some levels of signal transduction and norepinephrine production, but potentiation at other levels of signaling and cytoprotection. Our findings suggest that in true physiological settings where multiple growth factors are present, activation of one receptor type may result in molecular and phenotypic responses that are different from that observed in typical experimental paradigms in which cells are exposed to only a single growth factor at a time.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, Research Resources Branch, NIA, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|