1
|
Mayer C, Riera-Ponsati L, Kauppinen S, Klitgaard H, Erler JT, Hansen SN. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol 2024; 15:1437939. [PMID: 39119604 PMCID: PMC11306042 DOI: 10.3389/fphar.2024.1437939] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Neurodegenerative diseases constitute a global health issue and a major economic burden. They significantly impair both cognitive and motor functions, and their prevalence is expected to rise due to ageing societies and continuous population growth. Conventional therapies provide symptomatic relief, nevertheless, disease-modifying treatments that reduce or halt neuron death and malfunction are still largely unavailable. Amongst the common hallmarks of neurodegenerative diseases are protein aggregation, oxidative stress, neuroinflammation and mitochondrial dysfunction. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) constitutes a central regulator of cellular defense mechanisms, including the regulation of antioxidant, anti-inflammatory and mitochondrial pathways, making it a highly attractive therapeutic target for disease modification in neurodegenerative disorders. Here, we describe the role of NRF2 in the common hallmarks of neurodegeneration, review the current pharmacological interventions and their challenges in activating the NRF2 pathway, and present alternative therapeutic approaches for disease modification.
Collapse
Affiliation(s)
| | - Lluís Riera-Ponsati
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- NEUmiRNA Therapeutics, Copenhagen, Denmark
- Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | | | | | |
Collapse
|
2
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Buonvicino D, Pratesi S, Ranieri G, Pistolesi A, Guasti D, Chiarugi A. The mitochondriogenic but not the immunosuppressant effects of mTOR inhibitors prompt neuroprotection and delay disease evolution in a mouse model of progressive multiple sclerosis. Neurobiol Dis 2024; 191:106387. [PMID: 38142841 DOI: 10.1016/j.nbd.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/04/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Purportedly, the progression of multiple sclerosis (MS) occurs when neurodegenerative processes due to derangement of axonal bioenergetics take over the autoimmune response. However, a clear picture of the causative interrelationship between autoimmunity and axonal mitochondrial dysfunction in progressive MS (PMS) pathogenesis waits to be provided. METHODS In the present study, by adopting the NOD mouse model of PMS, we compared the pharmacological effects of the immunosuppressants dexamethasone and fingolimod with those of mTOR inhibitors rapamycin and everolimus that, in addition to immunosuppression, also regulate mitochondrial functioning. Female Non-Obese Diabetic (NOD) mice were immunized with MOG35-55 and treated with drugs to evaluate functional, immune and mitochondrial parameters during disease evolution. RESULTS We found that dexamethasone and fingolimod did not affect the pattern of progression as well as survival. Conversely, mTOR inhibitors rapamycin and everolimus delayed disease progression and robustly extended survival of immunized mice. The same effects were obtained when treatment was delayed by 30 days after immunization. Remarkably, dexamethasone and fingolimod prompted the same degree of immunosuppression of rapamycin within both spleen and spinal cord of mice. However, only rapamycin prompted mitochondriogenesis by increasing mitochondrial content, and expression of several mitochondrial respiratory complex subunits, thereby preventing mtDNA reduction in the spinal cords of immunized mice. These pharmacodynamic effects were not reproduced in healthy NOD mice, suggesting a disease context-dependent pharmacodynamic effect. DISCUSSION Data corroborate the key role of mitochondriogenesis to treatment of MS progression, and for the first time disclose the translational potential of mTOR inhibitors in PMS therapy.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Tzanetakos D, Kyrozis A, Karavasilis E, Velonakis G, Tzartos JS, Toulas P, Sotirli SA, Evdokimidis I, Tsivgoulis G, Potagas C, Kilidireas C, Andreadou E. Early metabolic alterations in the normal‑appearing grey and white matter of patients with clinically isolated syndrome suggestive of multiple sclerosis: A proton MR spectroscopic study. Exp Ther Med 2023; 26:349. [PMID: 37324507 PMCID: PMC10265702 DOI: 10.3892/etm.2023.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is an advanced method of examining metabolic profiles. The present study aimed to assess in vivo metabolite levels in areas of normal-appearing grey (thalamus) and white matter (centrum semiovale) using 1H-MRS in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis and compare them to healthy controls (HCs). Data from 35 patients with CIS (CIS group), of which 23 were untreated (CIS-untreated group) and 12 were treated (CIS-treated group) with disease-modifying-therapies (DMTs) at the time of 1H-MRS, and from 28 age- and sex-matched HCs were collected using a 3.0 T MRI and single-voxel 1H-MRS (point resolved spectroscopy sequence; repetition time, 2,000 msec; time to echo, 35 msec). Concentrations and ratios of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline (tCho), myoinositol, glutamate (Glu), glutamine (Gln), Glu + Gln (Glx) and glutathione (Glth) were estimated in the thalamic-voxel (th) and centrum semiovale-voxel (cs). For the CIS group, the median duration from the first clinical attack to 1H-MRS was 102 days (interquartile range, 89.5.-131.5). Compared with HCs, significantly lower Glx(cs) (P=0.014) and ratios of tCho/tCr(th) (P=0.026), Glu/tCr(cs) (P=0.040), Glx/tCr(cs) (P=0.004), Glx/tNAA(th) (P=0.043) and Glx/tNAA(cs) (P=0.015) were observed in the CIS group. No differences in tNAA levels were observed between the CIS and the HC groups; however, tNAA(cs) was higher in the CIS-treated than in the CIS-untreated group (P=0.028). Compared with those in HC group, decreased Glu(cs) (P=0.019) and Glx(cs) levels (P=0.014) and lower ratios for tCho/tCr(th) (P=0.015), Gln/tCr(th) (P=0.004), Glu/tCr(cs) (P=0.021), Glx/tCr(th) (P=0.041), Glx/tCr(cs) (P=0.003), Glx/tNAA(th) (P=0.030) and Glx/tNAA(cs) (P=0.015) were found in the CIS-untreated group. The present findings showed alterations in the normal-appearing grey and white matter of patients with CIS; moreover, the present results suggested an early indirect treatment effect of DMTs on the brain metabolic profile of these patients.
Collapse
Affiliation(s)
- Dimitrios Tzanetakos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Andreas Kyrozis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Efstratios Karavasilis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 68100 Alexandroupoli, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - John S. Tzartos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stefania Alexia Sotirli
- MS Center and Other Neurodegenerative diseases, Metropolitan General Hospital, 15562 Holargos, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Constantin Potagas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Costantinos Kilidireas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Elisabeth Andreadou
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
6
|
Sekiya FS, Silva CPND, Oba-Shinjo SM, Santos-Bezerra DP, Ravagnani FG, Pasqualucci CA, Gil S, Gualano B, Baptista MDS, Correa-Giannella ML, Marie SKN. Identification of two patterns of mitochondrial DNA-copy number variation in postcentral gyrus during aging, influenced by body mass index and type 2 diabetes. Exp Gerontol 2022; 168:111932. [PMID: 35995312 DOI: 10.1016/j.exger.2022.111932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
AIMS Mitochondrial (mt) DNA replication is strongly associated with oxidative stress, a condition triggered by aging and hyperglycemia, both of which contribute to mitophagy disruption and inflammation. This observational exploratory study evaluated mtDNA-copy number (mtDNA-CN) and expression of genes involved in mitochondriogenesis (PPARGC1A, TFAM, TFB1M, TFB2M), mitophagy (PINK1, PRKN), and inflammatory pathways triggered by hyperglycemia (TXNIP, NLRP3, NFKB1), in the postcentral gyrus of adults and older individuals with and without type 2 diabetes mellitus (T2D). MAIN METHODS Quantitative real-time PCR was employed to evaluate mtDNA-CN and gene expression; tissue autofluorescence, a marker of aging and of cells with damaged organelles, was also quantified. KEY FINDINGS No correlation was found between age and mtDNA-CN, but a direct correlation was observed for cases with mtDNA-CN >1000 (r = 0.41). The mtDNA-CN >1000 group had greater tissue autofluorescence and higher body mass index compared to the mtDNA-CN <1000 group (BMI; 25.7 vs 22.0 kg/m2, respectively). mtDNA-CN correlated with tissue autofluorescence in the overall sample (r = 0.55) and in the T2D group (r = 0.64). PINK and PRKN expressions were inversely correlated with age. Mitochondriogenesis genes and TXNIP expressions were higher in the T2D group, and correlations among the mitochondriogenesis genes were also stronger in this group, relative to the subgroup with mtDNA-CN >1000.
Collapse
Affiliation(s)
- Felipe Seiti Sekiya
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse Pereira Nunes da Silva
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniele Pereira Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Carlos Augusto Pasqualucci
- Departamento de Patologia, Grupo Brasileiro de Estudo de Envelhecimento Cerebral, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil; Food Research Center, University of São Paulo, Sao Paulo, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
7
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
8
|
Zhao Y, Peng C, Zhang J, Lai R, Zhang X, Guo Z. Mitochondrial Displacement Loop Region SNPs Modify Sjögren’s Syndrome Development by Regulating Cytokines Expression in Female Patients. Front Genet 2022; 13:847521. [PMID: 35360865 PMCID: PMC8963357 DOI: 10.3389/fgene.2022.847521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial dysfunction could induce innate immune response with cytokines releasing to initiate Sjögren’s syndrome (SS) onset. Single nucleotide polymorphisms (SNPs) in the mitochondrial displacement loop (D-loop) and mitochondrial DNA (mtDNA) copy number of female SS patients were evaluated for their association with SS in female patients. At the nucleotide site of 152, 16304, 16311 and 16362 in the D-loop, the frequencies for the minor alleles of 152C (p = 0.040, odds ratio [OR] = 0.504), 16304C (p = 0.045, OR = 0.406), 16311C (p = 0.045, OR = 0.406) and 16362C (p = 0.028, OR = 0.519) were significantly higher in the SS patients than those in the female controls, which indicated that 152,C, 16304C, 16311C, and 16362C allele in the D-loop of mtDNA were associated with the risk of SS. Meanwhile, the excessive SNPs were accumulated in D-loop region of SS patients (8.955 ± 2.028 versus 7.898 ± 1.987, p < 0.001, 95% confidence interval [CI]: 0.477–1.637) and mtDNA copy number increased in SS patients (1.509 ± 0.836 versus 1.221 ± 0.506, p = 0.006, 95% CI: 0.086–0.490) by a case-control analysis. The subsequent analysis showed that SS risk-related allele 16311C was associated with higher IL-2 levels (p = 0.010) at significantly statistical level whereas 152C associated with lower IL-10 levels (p = 0.058) at a borderline statistical levels. Our findings suggest that mitochondrial D-loop SNPs are predictors for SS risk, it might modify the SS development by regulating cytokine expression.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenxing Peng
- Department of Immunology and Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruixue Lai
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zhanjun Guo,
| |
Collapse
|
9
|
Wang P, Castellani CA, Yao J, Huan T, Bielak LF, Zhao W, Haessler J, Joehanes R, Sun X, Guo X, Longchamps RJ, Manson JE, Grove ML, Bressler J, Taylor KD, Lappalainen T, Kasela S, Van Den Berg DJ, Hou L, Reiner A, Liu Y, Boerwinkle E, Smith JA, Peyser PA, Fornage M, Rich SS, Rotter JI, Kooperberg C, Arking DE, Levy D, Liu C, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium. Epigenome-wide association study of mitochondrial genome copy number. Hum Mol Genet 2021; 31:309-319. [PMID: 34415308 PMCID: PMC8742999 DOI: 10.1093/hmg/ddab240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
We conducted cohort- and race-specific epigenome-wide association analyses of mitochondrial deoxyribonucleic acid (mtDNA) copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five cohorts (n = 6182, mean age = 57-67 years, 65% women). In the meta-analysis of all the participants, we discovered 21 mtDNA CN-associated DNA methylation sites (CpG) (P < 1 × 10-7), with a 0.7-3.0 standard deviation increase (3 CpGs) or decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD). Five genes [PR/SET domain 16, nuclear receptor subfamily 1 group H member 3 (NR1H3), DNA repair protein, DNA polymerase kappa and decaprenyl-diphosphate synthase subunit 2], which harbor nine significant CpGs, are known to be involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively associated with mtDNA CN (effect size = -1.71, P = 4 × 10-8) and was positively associated with the NR1H3 expression level (effect size = 0.43, P = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between mtDNA CN, the NR1H3 transcription factor and energy expenditure. In summary, the study results suggest that mtDNA CN variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.
Collapse
Affiliation(s)
- Penglong Wang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey Haessler
- Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kent D Taylor
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10034, USA
| | - Silva Kasela
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10034, USA
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Lifang Hou
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander Reiner
- Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC 27704, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Charles Kooperberg
- Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute (NHLBI), Framingham, MA 01702, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute (NHLBI), Framingham, MA 01702, USA
| | | |
Collapse
|
10
|
West K, Sivakolundu D, Maruthy G, Zuppichini M, Liu P, Thomas B, Spence J, Lu H, Okuda D, Rypma B. Baseline cerebral metabolism predicts fatigue and cognition in Multiple Sclerosis patients. NEUROIMAGE-CLINICAL 2020; 27:102281. [PMID: 32544855 PMCID: PMC7298673 DOI: 10.1016/j.nicl.2020.102281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cerebral metabolic rate of oxygen (CMRO2), a measure of global oxygen metabolism, reflects resting cellular activity. The mechanisms underlying fatigue and cognitive dysfunction in multiple sclerosis (MS) remain unknown. If fatigue indeed reflects ongoing autoimmune activity and cortical reorganization, and cognitive decline is the result of gray matter atrophy and white matter degeneration, we postulate that changes in CMRO2 should reflect disease activity and predict these symptoms. OBJECTIVE We sought to utilize T2-Relaxation-Under-Spin-Tagging (TRUST) and phase-contrast (PC) MRI to measure global CMRO2 to understand its relationships to white matter microstructure, fatigue and cognitive dysfunction. METHODS We measured venous oxygenation (TRUST) and cerebral blood flow (PC-MRI) in superior sagittal sinus to calculate global CMRO2 and diffusion tensor imaging (DTI) to evaluate white matter microstructure in healthy controls (HC) and MS patients. Participants underwent neuropsychological examinations including Modified Fatigue Impact Scale (MFIS) and Symbol-Digit-Modalities Test (SDMT). RESULTS We observed lower CMRO2 in MS patients compared to HC. After controlling for demographic and disease characteristics (i.e., age, education, disability, lesion volume), CMRO2 predicted increased fatigue (MFIS) and reduced cognitive performance (SDMT) in MS patients. Finally, MS patients with higher CMRO2 have reduced FA in normal-appearing white-matter. CONCLUSION Altogether, these results suggest that increased CMRO2 reflects ongoing demyelination and autoimmune activity which plays an important role in both fatigue and cognitive dysfunction.
Collapse
Affiliation(s)
- Kl West
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Dk Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Gb Maruthy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Md Zuppichini
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - P Liu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bp Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Js Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - H Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Dt Okuda
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - B Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis. Neuromolecular Med 2020; 22:304-313. [PMID: 31902116 DOI: 10.1007/s12017-019-08588-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing-remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.
Collapse
|
12
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
13
|
Tobore TO. On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Buonvicino D, Ranieri G, Pratesi S, Guasti D, Chiarugi A. Neuroimmunological characterization of a mouse model of primary progressive experimental autoimmune encephalomyelitis and effects of immunosuppressive or neuroprotective strategies on disease evolution. Exp Neurol 2019; 322:113065. [PMID: 31536728 DOI: 10.1016/j.expneurol.2019.113065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
Progressive multiple sclerosis (PMS) is a devastating disorder sustained by neuroimmune interactions still wait to be identified. Recently, immune-independent, neural bioenergetic derangements have been hypothesized as causative of neurodegeneration in PMS patients. To gather information on the immune and neurodegenerative components during PMS, in the present study we investigated the molecular and cellular events occurring in a Non-obese diabetic (NOD) mouse model of experimental autoimmune encephalomyelitis (EAE). In these mice, we also evaluated the effects of clinically-relevant immunosuppressive (dexamethasone) or bioenergetic drugs (bezafibrate and biotin) on functional, immune and neuropathological parameters. We found that immunized NOD mice progressively accumulated disability and severe neurodegeneration in the spinal cord. Unexpectedly, although CD4 and CD8 lymphocytes but not B or NK cells infiltrate the spinal cord linearly with time, their suppression by different dexamethasone treatment schedules did not affect disease progression. Also, the spreading of the autoimmune response towards additional immunogenic myelin antigen occurred neither in the periphery nor in the CNS of EAE mice. Conversely, we found that altered mitochondrial morphology, reduced contents of mtDNA and decreased transcript levels for respiratory complex subunits occurred at early disease stages and preceded axonal degeneration within spinal cord columns. However, the mitochondria boosting drugs, bezafibrate and biotin, were unable to reduce disability progression. Data suggest that EAE NOD mice recapitulate some features of PMS. Also, by showing that bezafibrate or biotin do not affect progression in NOD mice, our study suggests that this model can be harnessed to anticipate experimental information of relevance to innovative treatments of PMS.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Bargiela D, Chinnery PF. Mitochondria in neuroinflammation – Multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci Lett 2019; 710:132932. [DOI: 10.1016/j.neulet.2017.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023]
|
16
|
Lowes H, Pyle A, Duddy M, Hudson G. Cell-free mitochondrial DNA in progressive multiple sclerosis. Mitochondrion 2019; 46:307-312. [PMID: 30098422 PMCID: PMC6509276 DOI: 10.1016/j.mito.2018.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Recent studies have linked cell-free mitochondrial DNA (ccf-mtDNA) to neurodegeneration in both Alzheimer's and Parkinson's disease, raising the possibility that the same phenomenon could be seen in other diseases which manifest a neurodegenerative component. Here, we assessed the role of circulating cell-free mitochondrial DNA (ccf-mtDNA) in end-stage progressive multiple sclerosis (PMS), where neurodegeneration is evident, contrasting both ventricular cerebral spinal fluid ccf-mtDNA abundance and integrity between PMS cases and controls, and correlating ccf-mtDNA levels to known protein markers of neurodegeneration and PMS. Our data indicate that reduced ccf-mtDNA is a component of PMS, concluding that it may indeed be a hallmark of broader neurodegeneration.
Collapse
Affiliation(s)
- Hannah Lowes
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Duddy
- Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Gavin Hudson
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
17
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Patel KR, Karaa A, Mateen FJ. Relapsing remitting multiple sclerosis in progressive external ophthalmoplegia: A report of two cases. Mult Scler 2018; 25:879-882. [DOI: 10.1177/1352458518800794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence from genetic and pathologic studies suggests that mitochondrial dysfunction occurs in multiple sclerosis (MS). Furthermore, cases of MS have been reported in patients with mitochondrial disease. The phenotypic range of mitochondrial illness associating with MS is not yet well defined. In this report, we highlight two cases of patients with confirmed genetic mutations responsible for progressive external ophthalmoplegia who independently meet McDonald criteria for MS. Better characterization of the range of mitochondrial disease associated with MS may improve our understanding of MS disease pathophysiology.
Collapse
Affiliation(s)
- Kevin R Patel
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Amel Karaa
- Department of Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA/ Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Gureev AP, Shaforostova EA, Starkov AA, Popov VN. β-Guanidinopropionic Acid Stimulates Brain Mitochondria Biogenesis and Alters Cognitive Behavior in Nondiseased Mid-Age Mice. J Exp Neurosci 2018; 12:1179069518766524. [PMID: 29636631 PMCID: PMC5888816 DOI: 10.1177/1179069518766524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 01/29/2023] Open
Abstract
β-guanidinopropionic acid (β-GPA) has been used as a nutritional supplement for increasing physical strength and endurance with positive and predictable results. In muscles, it works as a nonadaptive stimulator of mitochondria biogenesis; it also increases lipid metabolism. There are data indicating that β-GPA can be also neuroprotective, but its mechanisms of action in the brain are less understood. We studied the effects of β-GPA on animal behavior and mitochondrial biogenesis in the cortex and midbrain of mid-age healthy mice. We found that even short-term 3-week-long β-GPA treatment increased the mitochondrial DNA (mtDNA) copy number in the cortex and ventral midbrain, as well as the expression of several key antioxidant and metabolic enzymes—indicators of mitochondria proliferation and the activation of Nrf2/ARE signaling cascade. At the same time, β-GPA downregulated the expression of the β-oxidation genes. Administration of β-GPA in mice for 3 weeks improved the animals’ physical strength and endurance health, ie, increased their physical strength and endurance and alleviated anxiety. Thus, β-GPA might be considered an adaptogene affecting both the muscle and brain metabolism in mammals.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
20
|
Santos D, Santos MJ, Alves-Ferreira M, Coelho T, Sequeiros J, Alonso I, Oliveira P, Sousa A, Lemos C, Grazina M. mtDNA copy number associated with age of onset in familial amyloid polyneuropathy. J Neurol Neurosurg Psychiatry 2018; 89:300-304. [PMID: 29018163 DOI: 10.1136/jnnp-2017-316657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transthyretin-related familial amyloid polyneuropathy (TTR-FAP Val30Met) shows a wide variation in age-at-onset (AO) between generations and genders, as in Portuguese families, where women display a later onset and a larger anticipation (>10 years). Mitochondrial DNA (mtDNA) copy number was assessed to clarify whether it has a modifier effect on AO variability in Portuguese patients. METHODS The mtDNA copy number of 262 samples (175 Val30Met TTR carriers and 87 controls (proven Val30Val)) was quantified by quantitative real-time PCR. Statistical analysis was performed using IBM SPSS V.23 software. RESULTS This study shows that Val30Met TTR carriers have a significantly higher (p<0.001) mean mtDNA copy number than controls. Furthermore, the highest mtDNA copy number mean was observed in early-onset patients (AO <40 years). Importantly, early-onset offspring showed a significant increase (p=0.002) in the mtDNA copy number, when compared with their late AO parents. CONCLUSIONS The present findings suggest, for the first time, that mtDNA copy number may be associated with earlier events and may therefore be further explored as a potential biomarker for follow-up of TTR-FAP Val30Met carriers.
Collapse
Affiliation(s)
- Diana Santos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria João Santos
- Centre for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics (LGB), Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Alves-Ferreira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade (UCA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Jorge Sequeiros
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Saúde Pública (ISPUP), Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Manuela Grazina
- Centre for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics (LGB), Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| |
Collapse
|
21
|
Jędrak P, Krygier M, Tońska K, Drozd M, Kaliszewska M, Bartnik E, Sołtan W, Sitek EJ, Stanisławska-Sachadyn A, Limon J, Sławek J, Węgrzyn G, Barańska S. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metab Brain Dis 2017; 32:1237-1247. [PMID: 28508341 PMCID: PMC5504138 DOI: 10.1007/s11011-017-0026-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by mutations in the huntingtin gene. Involvement of mitochondrial dysfunctions in, and especially influence of the level of mitochondrial DNA (mtDNA) on, development of this disease is unclear. Here, samples of blood from 84 HD patients and 79 controls, and dermal fibroblasts from 10 HD patients and 9 controls were analysed for mtDNA levels. Although the type of mitochondrial haplogroup had no influence on the mtDNA level, and there was no correlation between mtDNA level in leukocytes in HD patients and various parameters of HD severity, some considerable differences between HD patients and controls were identified. The average mtDNA/nDNA relative copy number was significantly higher in leukocytes, but lower in fibroblasts, of symptomatic HD patients relative to the control group. Moreover, HD women displayed higher mtDNA levels in leukocytes than HD men. Because this is the largest population analysed to date, these results might contribute to explanation of discrepancies between previously published studies concerning levels of mtDNA in cells of HD patients. We suggest that the size of the investigated population and type of cells from which DNA is isolated could significantly affect results of mtDNA copy number estimation in HD. Hence, these parameters should be taken into consideration in studies on mtDNA in HD, and perhaps also in other diseases where mitochondrial dysfunction occurs.
Collapse
Affiliation(s)
- Paulina Jędrak
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Krygier
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Drozd
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Kaliszewska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Witold Sołtan
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
| | - Emilia J Sitek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jarosław Sławek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
22
|
Association of mitochondrial DNA in peripheral blood with depression, anxiety and stress- and adjustment disorders in primary health care patients. Eur Neuropsychopharmacol 2017. [PMID: 28647451 DOI: 10.1016/j.euroneuro.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction may result in a variety of diseases. The objectives here were to examine possible differences in mtDNA copy number between healthy controls and patients with depression, anxiety or stress- and adjustment disorders; the association between mtDNA copy number and disease severity at baseline; and the association between mtDNA copy number and response after an 8-week treatment (mindfulness, cognitive based therapy). A total of 179 patients in primary health care (age 20-64 years) with depression, anxiety and stress- and adjustment disorders, and 320 healthy controls (aged 19-70 years) were included in the study. Relative mtDNA copy number was measured using quantitative real-time PCR on peripheral blood samples. We found that the mean mtDNA copy number was significantly higher in patients compared to controls (84.9 vs 75.9, p<0.0001) at baseline. The difference in mtDNA copy number between patients and controls remained significant after controlling for age and sex (ß=8.13, p<0.0001; linear regression analysis). The mtDNA copy number was significantly associated with Patient Health Questionnaire (PHQ-9) scores (β=0.57, p=0.02) at baseline. After treatment, the change in mtDNA copy number was significantly associated with the treatment response, i.e., change in Hospital Anxiety and Depression Scale (HADS-D) and PHQ-9 scores (ß=1.00, p=0.03 and ß=0.65, p=0.04, respectively), after controlling for baseline scores, age, sex, BMI, smoking status, alcohol drinking and medication. Our findings show that mtDNA copy number is associated with symptoms of depression, anxiety and stress- and adjustment disorders and treatment response in these disorders.
Collapse
|
23
|
Kim JY, Choi J, Park I, Huh J, Son JW, Kim K, Park KS, Cha SK, Sohn J, Jung DH, Koh SB. A prospective study of leucocyte mitochondrial DNA content and deletion in association with the metabolic syndrome. DIABETES & METABOLISM 2017; 43:280-283. [DOI: 10.1016/j.diabet.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/25/2016] [Indexed: 01/07/2023]
|
24
|
Leurs CE, Podlesniy P, Trullas R, Balk L, Steenwijk MD, Malekzadeh A, Piehl F, Uitdehaag BM, Killestein J, van Horssen J, Teunissen CE. Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Mult Scler 2017; 24:472-480. [PMID: 28294696 PMCID: PMC5987988 DOI: 10.1177/1352458517699874] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is increasingly recognized as an important feature of multiple sclerosis (MS) pathology and may be relevant for clinical disease progression. However, it is unknown whether mitochondrial DNA (mtDNA) levels in the cerebrospinal fluid (CSF) associate with disease progression and therapeutic response. OBJECTIVES To evaluate whether CSF concentrations of mtDNA in MS patients can serve as a marker of ongoing neuropathology and may be helpful to differentiate between MS disease subtypes. To explore the effect of disease-modifying therapies on mtDNA levels in the CSF. METHODS CSF mtDNA was measured using a digital polymerase chain reaction (PCR) CSF mtDNA in two independent MS cohorts. The cohorts included 92 relapsing-remitting multiple sclerosis (RRMS) patients, 40 progressive multiple sclerosis (PMS) patients (27 secondary progressive and 13 primary progressive), 50 various neurologic disease controls, and 5 healthy controls. RESULTS Patients with PMS showed a significant increase in CSF mtDNA compared to non-inflammatory neurologic disease controls. Patients with higher T2 lesion volumes and lower normalized brain volumes showed increased concentration of mtDNA. Patients treated with fingolimod had significantly lower mtDNA copy levels at follow-up compared to baseline. CONCLUSION Our results showed a non-specific elevation of concentration of mtDNA in PMS patients. mtDNA concentrations respond to fingolimod and may be used to monitor biological effect of this treatment.
Collapse
Affiliation(s)
- Cyra E Leurs
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Petar Podlesniy
- Institute of Biomedical Research of Barcelona, CSIC-IDIBAPS, CIBERNED, Barcelona, Spain
| | - Ramon Trullas
- Institute of Biomedical Research of Barcelona, CSIC-IDIBAPS, CIBERNED, Barcelona, Spain
| | - Lisanne Balk
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Departments of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Malekzadeh
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bernard Mj Uitdehaag
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
26
|
Souren NYP, Gerdes LA, Kümpfel T, Lutsik P, Klopstock T, Hohlfeld R, Walter J. Mitochondrial DNA Variation and Heteroplasmy in Monozygotic Twins Clinically Discordant for Multiple Sclerosis. Hum Mutat 2016; 37:765-75. [PMID: 27119776 DOI: 10.1002/humu.23003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/10/2016] [Indexed: 12/22/2022]
Abstract
We examined the debated link between mitochondrial DNA (mtDNA) variation and multiple sclerosis (MS) using 49 monozygotic (MZ) twin pairs clinically discordant for MS, which enables to associate de novo mtDNA variants, skewed heteroplasmy, and mtDNA copy number with MS manifestation. Ultra-deep sequencing of blood-derived mtDNA revealed 25 heteroplasmic variants with potentially pathogenic features in 18 pairs. All variants were pair-specific and had low and/or similar heteroplasmy levels in both cotwins. In one pair, a confirmed pathogenic variant (m.11778G>A, heteroplasmy ∼50%) associated with Leber hereditary optic neuropathy was detected. Detailed diagnostic investigation revealed subclinical MS signs in the prior nondiseased cotwin. Moreover, neither mtDNA deletions nor copy-number variations were involved. Furthermore, the majority of heteroplasmic variants were shared among MZ twins and exhibited more similar heteroplasmy levels in the same tissue of MZ twins as compared with different tissues of the same individual. Heteroplasmy levels were also more similar within MZ twins compared with nonidentical siblings. Our analysis excludes mtDNA variation as a major driver of the discordant clinical manifestation of MS in MZ twins, and provides valuable insights into the occurrence and distribution of heteroplasmic variants within MZ twins and nonidentical siblings, and across different tissues.
Collapse
Affiliation(s)
- Nicole Y P Souren
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Lisa A Gerdes
- Institute of Clinical Neuroimmunology, Medical Campus Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Medical Campus Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pavlo Lutsik
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Medical Campus Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
27
|
|
28
|
Role of dimethyl fumarate in oxidative stress of multiple sclerosis: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:15-20. [DOI: 10.1016/j.jchromb.2016.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/19/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023]
|
29
|
Effects of ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: A randomized clinical and pilot study. Complement Ther Med 2016; 24:40-6. [DOI: 10.1016/j.ctim.2015.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 08/14/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
|
30
|
Petracca M, Fleysher L, Oesingmann N, Inglese M. Sodium MRI of multiple sclerosis. NMR IN BIOMEDICINE 2016; 29:153-61. [PMID: 25851455 PMCID: PMC5771413 DOI: 10.1002/nbm.3289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is the most common cause of non-traumatic disability in young adults. The mechanisms underlying neurodegeneration and disease progression are poorly understood, in part as a result of the lack of non-invasive methods to measure and monitor neurodegeneration in vivo. Sodium MRI is a topic of increasing interest in MS research as it allows the metabolic characterization of brain tissue in vivo, and integration with the structural information provided by (1)H MRI, helping in the exploration of pathogenetic mechanisms and possibly offering insights into disease progression and monitoring of treatment outcomes. We present an up-to-date review of the sodium MRI application in MS organized into four main sections: (i) biological and pathogenetic role of sodium; (ii) brief overview of sodium imaging techniques; (iii) results of sodium MRI application in clinical studies; and (iv) future perspectives.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, USA
- Department of Neuroscience, Federico II University, Naples, Italy
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine, Mount Sinai, New York, USA
| | | | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, USA
- Department of Radiology, Icahn School of Medicine, Mount Sinai, New York, USA
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, USA
| |
Collapse
|
31
|
Bersani FS, Morley C, Lindqvist D, Epel ES, Picard M, Yehuda R, Flory J, Bierer LM, Makotkine I, Abu-Amara D, Coy M, Reus VI, Lin J, Blackburn EH, Marmar C, Wolkowitz OM, Mellon SH. Mitochondrial DNA copy number is reduced in male combat veterans with PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:10-7. [PMID: 26120081 DOI: 10.1016/j.pnpbp.2015.06.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Mitochondrial abnormalities may be involved in PTSD, although few studies have examined this. Mitochondrial DNA copy number (mtDNAcn) in blood cells is an emerging systemic index of mitochondrial biogenesis and function. The present study assessed mtDNAcn in male combat-exposed veterans with PTSD compared to those without PTSD as well as its correlation with clinical scales. METHODS mtDNAcn was assessed with a TaqMan multiplex assay in granulocytes of 43 male combat veterans with (n=43) or without (n=44) PTSD. Twenty of the PTSD subjects had co-morbid major depressive disorder (MDD). The Clinician Administered PTSD Scale (CAPS), the Positive and Negative Affect Schedule (PANAS), the Early Trauma Inventory (ETI) and the Beck Depression Inventory II (BDI-II) were used for the clinical assessments. All analyses were corrected for age and BMI. RESULTS mtDNAcn was significantly lower in subjects with PTSD (p<0.05). Within the PTSD group, those with moderate PTSD symptom severity had relatively higher mtDNAcn than those with mild or severe symptoms (p<0.01). Within the PTSD group, mtDNAcn was positively correlated with PANAS positive subscale ratings (p<0.01) but was not significantly correlated with PANAS negative subscale, ETI or BDI-II ratings. DISCUSSION This study provides the first evidence of: (i) a significant decrease of mtDNAcn in combat PTSD, (ii) a possible "inverted-U" shaped relationship between PTSD symptom severity and mtDNAcn within PTSD subjects, and (iii) a direct correlation of mtDNAcn with positive affectivity within PTSD subjects. Altered mtDNAcn in PTSD may reflect impaired energy metabolism, which might represent a novel aspect of its pathophysiology.
Collapse
Affiliation(s)
- Francesco Saverio Bersani
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Claire Morley
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Elissa S Epel
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Center for Health and Community, University of California San Francisco, San Francisco, CA, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Yehuda
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Janine Flory
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Linda M Bierer
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Iouri Makotkine
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Duna Abu-Amara
- Department of Psychiatry, Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, USA
| | - Michelle Coy
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Victor I Reus
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Charles Marmar
- Department of Psychiatry, Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, USA
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA.
| | - Synthia H Mellon
- Department of OB/GYN and Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 2015; 13:68. [PMID: 25889215 PMCID: PMC4382850 DOI: 10.1186/s12916-015-0310-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia, depression, autism, and chronic fatigue syndrome. DISCUSSION While the majority of patients with multiple sclerosis appear to have widespread mitochondrial dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson's disease, autism, depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However, investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with elevated levels of pro-inflammatory cytokines. SUMMARY This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these disorders.
Collapse
|
33
|
Xu Y, Lu S. Transforming growth factor-β1-induced epithelial to mesenchymal transition increases mitochondrial content in the A549 non-small cell lung cancer cell line. Mol Med Rep 2014; 11:417-21. [PMID: 25323156 DOI: 10.3892/mmr.2014.2678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 07/30/2014] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genome DNA copy number is critical for the functional maintenance of the mitochondria and energy acquisition for cell metabolism. Epithelial to mesenchymal transition (EMT) is an important process during embryonic development and has also been hypothesized to exhibit a significant role in cancer cell invasion and metastasis. In the present study, EMT was induced in the A549 non-small cell lung cancer (NSCLC) cell line, using transforming growth factor-β1 (TGF-β1) and changes in mitochondrial content, mitochondrial DNA (mtDNA) copy number and protein cytochrome c (Cyt c) were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. mtDNA copy number and Cyt c protein levels were observed to increase following the induction of EMT in NSCLC cells. Results of the current study indicate that energy metabolism is adapted to facilitate EMT in NSCLC cells.
Collapse
Affiliation(s)
- Yunhua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| |
Collapse
|
34
|
López S, Buil A, Souto JC, Casademont J, Martinez-Perez A, Almasy L, Soria JM. A genome-wide association study in the genetic analysis of idiopathic thrombophilia project suggests sex-specific regulation of mitochondrial DNA levels. Mitochondrion 2014; 18:34-40. [PMID: 25240745 DOI: 10.1016/j.mito.2014.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/24/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
Identifying genes that regulate mitochondrial DNA (mtDNA) levels is of interest due to an increasing number of diseases in humans that are associated with altered mtDNA levels. We searched for nuclear polymorphisms that influence mtDNA levels using a family-based genome-wide association (GWAS) method. Also, our aim was to determine if sex influences the genetic control of mtDNA levels. Two intron-polymorphisms, in the genes PARK2 and MRPL37, showed a tendency toward an association with mtDNA levels only in females and only in males, respectively. Both genes have a role in mitochondrial biogenesis and are potential candidates for the sex-specific control of mtDNA levels.
Collapse
Affiliation(s)
- Sonia López
- Unit of Genomic of Complex Diseases, Research Institute of Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Alfonso Buil
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Juan Carlos Souto
- Haemostasis and Thrombosis Unit, Department of Haematology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Casademont
- Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angel Martinez-Perez
- Unit of Genomic of Complex Diseases, Research Institute of Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - José Manuel Soria
- Unit of Genomic of Complex Diseases, Research Institute of Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
35
|
Ridge PG, Maxwell TJ, Foutz SJ, Bailey MH, Corcoran CD, Tschanz JT, Norton MC, Munger RG, O'Brien E, Kerber RA, Cawthon RM, Kauwe JSK. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging. BMC Bioinformatics 2014; 15 Suppl 7:S6. [PMID: 25077862 PMCID: PMC4110732 DOI: 10.1186/1471-2105-15-s7-s6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The mitochondria are essential organelles and are the location of cellular respiration, which is responsible for the majority of ATP production. Each cell contains multiple mitochondria, and each mitochondrion contains multiple copies of its own circular genome. The ratio of mitochondrial genomes to nuclear genomes is referred to as mitochondrial copy number. Decreases in mitochondrial copy number are known to occur in many tissues as people age, and in certain diseases. The regulation of mitochondrial copy number by nuclear genes has been studied extensively. While mitochondrial variation has been associated with longevity and some of the diseases known to have reduced mitochondrial copy number, the role that the mitochondrial genome itself has in regulating mitochondrial copy number remains poorly understood. Results We analyzed the complete mitochondrial genomes from 1007 individuals randomly selected from the Cache County Study on Memory Health and Aging utilizing the inferred evolutionary history of the mitochondrial haplotypes present in our dataset to identify sequence variation and mitochondrial haplotypes associated with changes in mitochondrial copy number. Three variants belonging to mitochondrial haplogroups U5A1 and T2 were significantly associated with higher mitochondrial copy number in our dataset. Conclusions We identified three variants associated with higher mitochondrial copy number and suggest several hypotheses for how these variants influence mitochondrial copy number by interacting with known regulators of mitochondrial copy number. Our results are the first to report sequence variation in the mitochondrial genome that causes changes in mitochondrial copy number. The identification of these variants that increase mtDNA copy number has important implications in understanding the pathological processes that underlie these phenotypes.
Collapse
|
36
|
He Y, Tang J, Li Z, Li H, Liao Y, Tang Y, Tan L, Chen J, Xia K, Chen X. Leukocyte mitochondrial DNA copy number in blood is not associated with major depressive disorder in young adults. PLoS One 2014; 9:e96869. [PMID: 24809340 PMCID: PMC4014566 DOI: 10.1371/journal.pone.0096869] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/12/2014] [Indexed: 01/02/2023] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide, and has significant genetic predisposition. Mitochondria may have a role in MDD and so mitochondrial DNA (mtDNA) has been suggested as a possible biomarker for this disease. We aimed to test whether the mtDNA copy number of peripheral blood leukocytes is related to MDD in young adults. Methods A case-control study was conducted with 210 MDD patients and 217 healthy controls (HC). The mtDNA copy number was measured by quantitative polymerase chain reaction (qPCR) method. Depression severity was assessed by the Hamilton-17 Depression Rating Scale (HDRS-17). Results We found no significant differences in mtDNA copy number between MDD patients and HC, though the power analysis showed that our sample size has enough power to detect the difference. There were also no significant correlations between mtDNA copy number and the clinical characteristics (such as age, age of onset, episodes, Hamilton Depression Rating Scale (HDRS) score and Global Assessment of Function Scale (GAF) score) in MDD patients. Conclusion Our study suggests that leukocyte mtDNA copy number is unlikely to contribute to MDD, but it doesn’t mean that we can exclude the possibility of involvement of mitochondria in the disease. Further studies are required to elucidate whether mtDNA can be a biomarker of MDD.
Collapse
Affiliation(s)
- Ying He
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinsong Tang
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Li
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanhui Liao
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanqing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Liwen Tan
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Institute of Mental Health, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China; Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China; The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Gironi M, Borgiani B, Mariani E, Cursano C, Mendozzi L, Cavarretta R, Saresella M, Clerici M, Comi G, Rovaris M, Furlan R. Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol Res 2014; 2014:961863. [PMID: 24741637 PMCID: PMC3984797 DOI: 10.1155/2014/961863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/13/2014] [Accepted: 01/27/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Oxidative stress is well documented in multiple sclerosis (MS) lesions, but its correspondence at peripheral level is still controversial. Objective. To evaluate peripheral oxidative stress markers in MS patients. METHODS We studied total blood levels of Coenzyme Q10 (CoQ10), oxidized and reduced forms of glutathione, malondialdehyde, reactive oxygen species (ROS), anti-oxidized-low-density lipoproteins (anti-oxLDL) antibodies, and antioxidant power (PAO) in 87 patients with different MS clinical phenotypes and in 77 controls. RESULTS CoQ10 was lower whereas anti-oxLDL antibodies titer was higher in MS patients than in controls. The benign variant of MS displayed both higher CoQ10 and higher anti-oxLDL than other MS clinical variants. Female patients had lower CoQ10 and PAO and higher ROS than male patients. Differences were greater in younger patients with shorter disease duration. Surprisingly, there was no difference for these markers between treated and untreated patients. CONCLUSION We found lower antioxidant agents and higher anti-oxLDL antibodies in MS, and the highest antibody titers occurred in the benign form. We suggest that natural anti-oxLDL antibodies can be protective against MS, saving blood brain barrier integrity. Our findings also suggest that milder MS is associated with a distinct oxidative stress pattern, which may provide a useful biomarker of disease prognosis.
Collapse
Affiliation(s)
- Maira Gironi
- INSPE, Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy ; CAM, Centro Polidiagnostico, Viale Elvezia Angolo Via Martiri delle Foibe 1, Monza, Italy
| | - Bruno Borgiani
- INSPE, Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy ; CAM, Centro Polidiagnostico, Viale Elvezia Angolo Via Martiri delle Foibe 1, Monza, Italy
| | - Enrica Mariani
- CAM, Centro Polidiagnostico, Viale Elvezia Angolo Via Martiri delle Foibe 1, Monza, Italy
| | - Cristina Cursano
- CAM, Centro Polidiagnostico, Viale Elvezia Angolo Via Martiri delle Foibe 1, Monza, Italy
| | - Laura Mendozzi
- Fondazione IRCCS, S. Maria Nascente, Don Gnocchi, Via Alfonso Capecelatro 66, 20148 Milano, Italy
| | - Rossella Cavarretta
- Fondazione IRCCS, S. Maria Nascente, Don Gnocchi, Via Alfonso Capecelatro 66, 20148 Milano, Italy
| | - Marina Saresella
- Fondazione IRCCS, S. Maria Nascente, Don Gnocchi, Via Alfonso Capecelatro 66, 20148 Milano, Italy
| | - Mario Clerici
- Fondazione IRCCS, S. Maria Nascente, Don Gnocchi, Via Alfonso Capecelatro 66, 20148 Milano, Italy
| | - Giancarlo Comi
- INSPE, Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Marco Rovaris
- Fondazione IRCCS, S. Maria Nascente, Don Gnocchi, Via Alfonso Capecelatro 66, 20148 Milano, Italy
| | - Roberto Furlan
- INSPE, Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
38
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|
39
|
Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AMS. Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1607-20. [PMID: 22945739 PMCID: PMC3776104 DOI: 10.1007/s11357-012-9465-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle's bioenergetics capability such as the brain's frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.8-kb mtDNA deletion in the frontal cortex from young (6-month-old) and aged (26-month-old), ad libitum-fed (AL) and calorie-restricted (CR), rats. We found a 70 % increase in TFAM amount, a 25 % loss in mtDNA content, and a 35 % increase in the 4.8-kb deletion content in the aged AL animals with respect to the young rats. TFAM-specific binding to six mtDNA regions was analyzed by mtDNA immunoprecipitation and semiquantitative polymerase chain reaction (PCR), showing a marked age-related decrease. Quantitative real-time PCR at two subregions involved in mtDNA replication demonstrated, in aged AL rats, a remarkable decrease (60-70 %) of TFAM-bound mtDNA. The decreased TFAM binding is a novel finding that may explain the mtDNA loss in spite of the compensatory TFAM increased amount. In aged CR rats, TFAM amount increased and mtDNA content decreased with respect to young rats' values, but the extent of the changes was smaller than in aged AL rats. Attenuation of the age-related effects due to the diet in the CR animals was further evidenced by the unchanged content of the 4.8-kb deletion with respect to that of young animals and by the partial prevention of the age-related decrease in TFAM binding to mtDNA.
Collapse
Affiliation(s)
- Anna Picca
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Flavio Fracasso
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Vito Pesce
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Palmiro Cantatore
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Anna-Maria Joseph
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Christiaan Leeuwenburgh
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Maria Nicola Gadaleta
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angela Maria Serena Lezza
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
40
|
Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2012; 13:481-92. [PMID: 23085537 DOI: 10.1016/j.mito.2012.10.011] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is central to numerous diseases of oxidative stress. Changes in mitochondrial DNA (MtDNA) content, often measured as mitochondrial genome to nuclear genome ratio (Mt/N) using real time quantitative PCR, have been reported in a broad range of human diseases, such as diabetes and its complications, obesity, cancer, HIV complications, and ageing. We propose the hypothesis that MtDNA content in body fluids and tissues could be a biomarker of mitochondrial dysfunction and review the evidence supporting this theory. Increased reactive oxygen species resulting from an external trigger such as hyperglycaemia or increased fat in conditions of oxidative stress could lead to enhanced mitochondrial biogenesis, and increased Mt/N. Altered MtDNA levels may contribute to enhanced oxidative stress and inflammation and could play a pathogenic role in mitochondrial dysfunction and disease. Changes in Mt/N are detectable in circulating cells such as peripheral blood mononuclear cells and these could be used as surrogate to predict global changes in tissues and organs. We review a large number of studies reporting changes in MtDNA levels in body fluids such as circulating blood cells, cell free serum, saliva, sperm, and cerebrospinal fluid as well as in tumour and normal tissue samples. However, the data are often conflicting as the current methodology used to measure Mt/N can give false results because of one or more of the following reasons (1) use of mitochondrial primers which co-amplify nuclear pseudogenes (2) use of nuclear genes which are variable and/or duplicated in numerous locations (3) a dilution bias caused by the differing genome sizes of the mitochondrial and nuclear genome and (4) template preparation protocols which affect the yields of nuclear and mitochondrial genomes. Development of robust and reproducible methodology is needed to test the hypothesis that MtDNA content in body fluids is biomarker of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Afshan N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's college London, London, UK.
| | | |
Collapse
|
41
|
Rice CM, Sun M, Kemp K, Gray E, Wilkins A, Scolding NJ. Mitochondrial sirtuins - a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci 2012; 35:1887-93. [DOI: 10.1111/j.1460-9568.2012.08150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, Rhodes KJ. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 2012; 341:274-84. [PMID: 22267202 DOI: 10.1124/jpet.111.190132] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is central to the pathology of several neurodegenerative diseases, including multiple sclerosis, and therapeutics designed to enhance antioxidant potential could have clinical value. The objective of this study was to characterize the potential direct neuroprotective effects of dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) on cellular resistance to oxidative damage in primary cultures of central nervous system (CNS) cells and further explore the dependence and function of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway in this process. Treatment of animals or primary cultures of CNS cells with DMF or MMF resulted in increased nuclear levels of active Nrf2, with subsequent up-regulation of canonical antioxidant target genes. DMF-dependent up-regulation of antioxidant genes in vivo was lost in mice lacking Nrf2 [Nrf2(-/-)]. DMF or MMF treatment increased cellular redox potential, glutathione, ATP levels, and mitochondrial membrane potential in a concentration-dependent manner. Treating astrocytes or neurons with DMF or MMF also significantly improved cell viability after toxic oxidative challenge in a concentration-dependent manner. This effect on viability was lost in cells that had eliminated or reduced Nrf2. These data suggest that DMF and MMF are cytoprotective for neurons and astrocytes against oxidative stress-induced cellular injury and loss, potentially via up-regulation of an Nrf2-dependent antioxidant response. These data also suggest DMF and MMF may function through improving mitochondrial function. The clinical utility of DMF in multiple sclerosis is being explored through phase III trials with BG-12, which is an oral therapeutic containing DMF as the active ingredient.
Collapse
|
43
|
Paling D, Golay X, Wheeler-Kingshott C, Kapoor R, Miller D. Energy failure in multiple sclerosis and its investigation using MR techniques. J Neurol 2011; 258:2113-27. [DOI: 10.1007/s00415-011-6117-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
|
44
|
Fuke S, Kubota-Sakashita M, Kasahara T, Shigeyoshi Y, Kato T. Regional variation in mitochondrial DNA copy number in mouse brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:270-4. [PMID: 21145305 DOI: 10.1016/j.bbabio.2010.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 11/17/2022]
Abstract
Mitochondria have their own DNA (mitochondrial DNA [mtDNA]). Although mtDNA copy number is dependent on tissues and its decrease is associated with various neuromuscular diseases, detailed distribution of mtDNA copies in the brain remains uncertain. Using real-time quantitative PCR assay, we examined regional variation in mtDNA copy number in 39 brain regions of male mice. A significant regional difference in mtDNA copy number was observed (P<4.8×10(-35)). High levels of mtDNA copies were found in the ventral tegmental area and substantia nigra, two major nuclei containing dopaminergic neurons. In contrast, cerebellar vermis and lobes had significantly lower copy numbers than other regions. Hippocampal dentate gyrus also had a relatively low mtDNA copy number. This study is the first quantitative analysis of regional variation in mtDNA copy number in mouse brain. Our findings are important for the physiological and pathophysiological studies of mtDNA in the brain.
Collapse
Affiliation(s)
- Satoshi Fuke
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
45
|
Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 2010; 51:5470-9. [PMID: 20505194 PMCID: PMC3061495 DOI: 10.1167/iovs.10-5429] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/20/2010] [Accepted: 05/09/2010] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Increasing evidence suggests a central role for mitochondrial (mt) dysfunction in age-related macular degeneration (AMD). Previous proteomic data from the retinal pigment epithelium (RPE) revealed significant changes to mt proteins, suggesting potential functional defects and damage to mitochondrial DNA (mtDNA) with AMD progression. The present study tests the hypothesis that mtDNA damage increases with aging and AMD. METHODS Genomic DNA was isolated from the macular region of human donor RPE graded for stages of AMD (Minnesota Grading System [MGS] 1-4). Region-specific mtDNA damage with normal aging was evaluated in 45 control subjects (ages 34-88 years, MGS 1) and AMD-associated damage in diseased subjects (n = 46), compared with that in age-matched control subjects (n = 26). Lesions per 10 kb per genome in the mtDNA and nuclear DNA were measured with long-extension polymerase chain reaction (LX PCR). The level of deleted mtDNA in each donor was measured with quantitative real-time PCR (qPCR). RESULTS With aging, an increase in mtDNA damage was observed only in the common deletion region of the mt genome. In contrast, with AMD, mtDNA lesions increased significantly in all regions of the mt genome beyond levels found in age-matched control subjects. mtDNA accumulated more lesions than did two nuclear genes, with total damage of the mt genome estimated to be eight times higher. CONCLUSIONS Collectively, the data indicate that mtDNA is preferentially damaged with AMD progression. These results suggest a potential link between mt dysfunction due to increased mtDNA lesions and AMD.
Collapse
Affiliation(s)
- Pabalu P. Karunadharma
- From the Department of Ophthalmology and
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota; and
| | | | | | - Deborah A. Ferrington
- From the Department of Ophthalmology and
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota; and
| |
Collapse
|
46
|
Sättler MB, Bähr M. Future neuroprotective strategies. Exp Neurol 2010; 225:40-7. [DOI: 10.1016/j.expneurol.2009.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/27/2022]
|
47
|
Lazzarino G, Amorini AM, Eikelenboom MJ, Killestein J, Belli A, Di Pietro V, Tavazzi B, Barkhof F, Polman CH, Uitdehaag BMJ, Petzold A. Cerebrospinal fluid ATP metabolites in multiple sclerosis. Mult Scler 2010; 16:549-54. [PMID: 20194579 DOI: 10.1177/1352458510364196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased axonal energy demand and mitochondrial failure have been suggested as possible causes for axonal degeneration and disability in multiple sclerosis. Our objective was to test whether ATP depletion precedes clinical, imaging and biomarker evidence for axonal degeneration in multiple sclerosis. The method consisted of a longitudinal study which included 21 patients with multiple sclerosis. High performance liquid chromatography was used to quantify biomarkers of the ATP metabolism (oxypurines and purines) from the cerebrospinal fluid at baseline. The Expanded Disability Status Scale, MRI brain imaging measures for brain atrophy (ventricular and parenchymal fractions), and cerebrospinal fluid biomarkers for axonal damage (phosphorylated and hyperphosphorylated neurofilaments) were quantified at baseline and 3-year follow-up. Central ATP depletion (sum of ATP metabolites >19.7 micromol/litre) was followed by more severe progression of disability if compared to normal ATP metabolites (median 1.5 versus 0, p< 0.05). Baseline ATP metabolite levels correlated with change of Expanded Disability Status Scale in the pooled cohort (r= 0.66, p= 0.001) and subgroups (relapsing-remitting patients: r= 0.79, p< 0.05 and secondary progressive/primary progressive patients: r= 0.69, p< 0.01). There was no relationship between central ATP metabolites and either biomarker or MRI evidence for axonal degeneration. The data suggests that an increased energy demand in multiple sclerosis may cause a quantifiable degree of central ATP depletion. We speculate that the observed clinical disability may be related to depolarisation associated conduction block.
Collapse
Affiliation(s)
- G Lazzarino
- Department of Chemical Sciences, Laboratory of Biochemistry, University of Catania, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mao P, Reddy PH. Is multiple sclerosis a mitochondrial disease? BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:66-79. [PMID: 19607913 PMCID: PMC2790545 DOI: 10.1016/j.bbadis.2009.07.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a relatively common and etiologically unknown disease with no cure. It is the leading cause of neurological disability in young adults, affecting over two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability. Recently, MS has become increasingly viewed as a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system leads to permanent neurological and clinical disability. In this article, we discuss the latest developments on MS research, including etiology, pathology, genetic association, EAE animal models, mechanisms of neuronal injury and axonal transport, and therapeutics. In this article, we also focus on the mechanisms of mitochondrial dysfunction that are involved in MS, including mitochondrial DNA defects, and mitochondrial structural/functional changes.
Collapse
Affiliation(s)
- Peizhong Mao
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, West Campus, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - P. Hemachandra Reddy
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, West Campus, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
49
|
Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM. Mitochondrial changes within axons in multiple sclerosis. Brain 2009; 132:1161-74. [PMID: 19293237 PMCID: PMC3605917 DOI: 10.1093/brain/awp046] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Multiple sclerosis is the most common cause of non-traumatic neurological impairment in young adults. An energy deficient state has been implicated in the degeneration of axons, the pathological correlate of disease progression, in multiple sclerosis. Mitochondria are the most efficient producers of energy and play an important role in calcium homeostasis. We analysed the density and function of mitochondria using immunohistochemistry and histochemistry, respectively, in chronic active and inactive lesions in progressive multiple sclerosis. As shown before in acute pattern III and Balo's lesions, the mitochondrial respiratory chain complex IV activity is reduced despite the presence of mitochondria in demyelinated axons with amyloid precursor protein accumulation, which are predominantly located at the active edge of chronic active lesions. Furthermore, the strong non-phosphorylated neurofilament (SMI32) reactivity was associated with a significant reduction in complex IV activity and mitochondria within demyelinated axons. The complex IV defect associated with axonal injury may be mediated by soluble products of innate immunity, as suggested by an inverse correlation between complex IV activity and macrophage/microglial density in chronic lesions. However, in inactive areas of chronic multiple sclerosis lesions the mitochondrial respiratory chain complex IV activity and mitochondrial mass, judged by porin immunoreactivity, are increased within approximately half of large (>2.5 microm diameter) chronically demyelinated axons compared with large myelinated axons in the brain and spinal cord. The axon-specific mitochondrial docking protein (syntaphilin) and phosphorylated neurofilament-H were increased in chronic lesions. The lack of complex IV activity in a proportion of Na(+)/K(+) ATPase alpha-1 positive demyelinated axons supports axonal dysfunction as a contributor to neurological impairment and disease progression. Furthermore, in vitro studies show that inhibition of complex IV augments glutamate-mediated axonal injury (amyloid precursor protein and SMI32 reactivity). Our findings have important implications for both axonal degeneration and dysfunction during the progressive stage of multiple sclerosis.
Collapse
Affiliation(s)
- Don J Mahad
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 2009; 36:125-31. [PMID: 19302968 PMCID: PMC4706993 DOI: 10.1016/s1673-8527(08)60099-5] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 12/15/2022]
Abstract
Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has advanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.
Collapse
Affiliation(s)
- Laura L Clay Montier
- Department of Cellular and Structural Biology, The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|