1
|
Shang L, Wei H, Deng J, Stewart MJ, LeSaint JE, Kyomuhangi A, Park S, Maul EC, Zhan CG, Zheng F. In vitro and in vivo stability of a highly efficient long-acting cocaine hydrolase. Sci Rep 2024; 14:10952. [PMID: 38740850 PMCID: PMC11091111 DOI: 10.1038/s41598-024-61646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
It is recognized as a promising therapeutic strategy for cocaine use disorder to develop an efficient enzyme which can rapidly convert cocaine to physiologically inactive metabolites. We have designed and discovered a series of highly efficient cocaine hydrolases, including CocH5-Fc(M6) which is the currently known as the most efficient cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest biological half-life in rats. In the present study, we characterized the time courses of protein appearance, pH, structural integrity, and catalytic activity against cocaine in vitro and in vivo of a CocH5-Fc(M6) bulk drug substance produced in a bioreactor for its in vitro and in vivo stability after long-time storage under various temperatures (- 80, - 20, 4, 25, or 37 °C). Specifically, all the tested properties of the CocH5-Fc(M6) protein did not significantly change after the protein was stored at any of four temperatures including - 80, - 20, 4, and 25 °C for ~ 18 months. In comparison, at 37 °C, the protein was less stable, with a half-life of ~ 82 days for cocaine hydrolysis activity. Additionally, the in vivo studies further confirmed the linear elimination PK profile of CocH5-Fc(M6) with an elimination half-life of ~ 9 days. All the in vitro and in vivo data on the efficacy and stability of CocH5-Fc(M6) have consistently demonstrated that CocH5-Fc(M6) has the desired in vitro and in vivo stability as a promising therapeutic candidate for treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Linyue Shang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Huimei Wei
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Madeline J Stewart
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Johnathan E LeSaint
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Annet Kyomuhangi
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Shawn Park
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Elise C Maul
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Hossain MK, Davidson M, Kypreos E, Feehan J, Muir JA, Nurgali K, Apostolopoulos V. Immunotherapies for the Treatment of Drug Addiction. Vaccines (Basel) 2022; 10:vaccines10111778. [PMID: 36366287 PMCID: PMC9697687 DOI: 10.3390/vaccines10111778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Substance use disorders (SUD) are a serious public health concern globally. Existing treatment platforms suffer from a lack of effectiveness. The development of immunotherapies against these substances of abuse for both prophylactic and therapeutic use has gained tremendous importance as an alternative and/or supplementary to existing therapies. Significant development has been made in this area over the last few decades. Herein, we highlight the vaccine and other biologics development strategies, preclinical, clinical updates along with challenges and future directions. Articles were searched in PubMed, ClinicalTrial.gov, and google electronic databases relevant to development, preclinical, clinical trials of nicotine, cocaine, methamphetamine, and opioid vaccines. Various new emerging vaccine development strategies for SUD were also identified through this search and discussed. A good number of vaccine candidates demonstrated promising results in preclinical and clinical phases and support the concept of developing a vaccine for SUD. However, there have been no ultimate success as yet, and there remain some challenges with a massive push to take more candidates to clinical trials for further evaluation to break the bottleneck.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Erica Kypreos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Joshua Alexander Muir
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
3
|
Nicolucci C, Pais ML, Santos AC, Ribeiro FM, Encarnação PMCC, Silva ALM, Castro IF, Correia PMM, Veloso JFCA, Reis J, Lopes MZ, Botelho MF, Pereira FC, Priolli DG. Single Low Dose of Cocaine-Structural Brain Injury Without Metabolic and Behavioral Changes. Front Neurosci 2021; 14:589897. [PMID: 33584173 PMCID: PMC7874143 DOI: 10.3389/fnins.2020.589897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic cocaine use has been shown to lead to neurotoxicity in rodents and humans, being associated with high morbidity and mortality rates. However, recreational use, which may lead to addictive behavior, is often neglected. This occurs, in part, due to the belief that exposure to low doses of cocaine comes with no brain damage risk. Cocaine addicts have shown glucose metabolism changes related to dopamine brain activity and reduced volume of striatal gray matter. This work aims to evaluate the morphological brain changes underlying metabolic and locomotor behavioral outcome, in response to a single low dose of cocaine in a pre-clinical study. In this context, a Balb-c mouse model has been chosen, and animals were injected with a single dose of cocaine (0.5 mg/kg). Control animals were injected with saline. A behavioral test, positron emission tomography (PET) imaging, and anatomopathological studies were conducted with this low dose of cocaine, to study functional, metabolic, and morphological brain changes, respectively. Animals exposed to this cocaine dose showed similar open field activity and brain metabolic activity as compared with controls. However, histological analysis showed alterations in the prefrontal cortex and hippocampus of mice exposed to cocaine. For the first time, it has been demonstrated that a single low dose of cocaine, which can cause no locomotor behavioral and brain metabolic changes, can induce structural damage. These brain changes must always be considered regardless of the dosage used. It is essential to alert the population even against the consumption of low doses of cocaine.
Collapse
Affiliation(s)
- Camilla Nicolucci
- Multidisciplinary Research Laboratory, São Francisco University Post-graduation Stricto Sensu Programme, Bragança Paulista, Brazil
| | - Mariana Lapo Pais
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - A C Santos
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Fabiana M Ribeiro
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal
| | - Pedro M C C Encarnação
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal
| | - Ana L M Silva
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal.,Radiation Imaging Technologies Lda, Ílhavo, Portugal
| | - I F Castro
- Radiation Imaging Technologies Lda, Ílhavo, Portugal
| | - Pedro M M Correia
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal.,Radiation Imaging Technologies Lda, Ílhavo, Portugal
| | - João F C A Veloso
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal
| | - Julie Reis
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Marina Z Lopes
- Multidisciplinary Research Laboratory, São Francisco University Scientific Initiation Programme, Bragança Paulista, Brazil
| | - Maria F Botelho
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal
| | - Denise G Priolli
- Multidisciplinary Research Laboratory, São Francisco University Post-graduation Stricto Sensu Programme, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Chen VP, Gao Y, Geng L, Steele M, Jenks N, Peng KW, Brimijoin S. Systemic Safety of a Recombinant AAV8 Vector for Human Cocaine Hydrolase Gene Therapy: A Good Laboratory Practice Preclinical Study in Mice. Hum Gene Ther 2020; 31:70-79. [PMID: 31650869 PMCID: PMC6985763 DOI: 10.1089/hum.2019.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cocaine addiction continues to impose major burdens on affected individuals and broader society but is highly resistant to medical treatment or psychotherapy. This study was undertaken with the goal of Food and Drug Administration (FDA) permission for a first-in-human clinical trial of a gene therapy for treatment-seeking cocaine users to become and remain abstinent. The approach was based on intravenous administration of AAV8-hCocH, an adeno-associated viral vector encoding a modified plasma enzyme that metabolizes cocaine into harmless by-products. To assess systemic safety, we conducted "Good Laboratory Practice" (GLP) studies in cocaine-experienced and cocaine-naive mice at doses of 5E12 and 5E13 vector genomes/kg. Results showed total lack of viral vector-related adverse effects in all tests performed. Instead, mice given one injection of AAV8-hCocH and regular daily injections of cocaine had far less tissue pathology than cocaine-injected mice with no vector treatment. Biodistribution analysis showed the vector located almost exclusively in the liver. These results indicate that a liver-directed AAV8-hCocH gene transfer at reasonable dosage is safe, well tolerated, and effective. Thus, gene transfer therapy emerges as a radically new approach to treat compulsive cocaine abuse. In fact, based on these positive findings, the FDA recently accepted our latest request for investigational new drug application (IND 18579).
Collapse
Affiliation(s)
- Vicky Ping Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mike Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nathan Jenks
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Schori C, Trachsel C, Grossmann J, Zygoula I, Barthelmes D, Grimm C. The Proteomic Landscape in the Vitreous of Patients With Age-Related and Diabetic Retinal Disease. Invest Ophthalmol Vis Sci 2018; 59:AMD31-AMD40. [PMID: 30025106 DOI: 10.1167/iovs.18-24122] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In contrast to neovascular AMD (nAMD), no treatment option exists for dry AMD. Hence, the identification of specific biomarkers is required to facilitate diagnosis and therapy of dry AMD. Methods The proteome of 34 vitreous humor samples (dry AMD: n = 6; nAMD: n = 10; proliferative diabetic retinopathy [PDR]: n = 9; epiretinal membrane [ERM]: n = 9) was analyzed by liquid chromatography coupled mass spectrometry. Then, label-free relative quantification of dry AMD, nAMD, and PDR relative to ERM, which was defined as the reference group, was performed. Application of a bioinformatics pipeline further analyzed the vitreous proteome by cluster and gene set enrichment analysis. A selection of differentially regulated proteins was validated by ELISA. Results A total of 677 proteins were identified in the vitreous of the four patient groups and quantified relatively to ERM. Different clusters of regulated proteins for each patient group were identified and showed characteristic enrichment of specific pathways including "oxidative stress" for dry AMD, "focal adhesion" for nAMD, and "complement and coagulation cascade" for PDR patients. We identified cholinesterase (CHLE) to be specifically upregulated in dry AMD and ribonuclease (pancreatic; RNAS1) together with serine carboxypeptidase (probable; CPVL) to be upregulated in both forms of AMD. Conclusions The described pathways specific for the different patient groups and the identification of characteristic differentially regulated proteins provide a first step toward the definition of biomarkers for dry AMD. The presented data will facilitate the investigation of mechanistic connections of proteins to the respective disease.
Collapse
Affiliation(s)
- Christian Schori
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ioanna Zygoula
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Barthelmes
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland.,Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology 2017; 376:30-43. [DOI: 10.1016/j.tox.2016.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 01/01/2023]
|
8
|
Chen VP, Gao Y, Geng L, Stout MB, Jensen MD, Brimijoin S. Butyrylcholinesterase Deficiency Promotes Adipose Tissue Growth and Hepatic Lipid Accumulation in Male Mice on High-Fat Diet. Endocrinology 2016; 157:3086-95. [PMID: 27300766 PMCID: PMC4967128 DOI: 10.1210/en.2016-1166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite numerous reports of relationships between weight gain and butyrylcholinesterase (BChE), this enzyme's role in the genesis of obesity remains unclear, but recent research points to strong links with ghrelin, the "hunger hormone." The availability of BChE knockout (KO) mice provides an opportunity to clarify the causal relationship between BChE and obesity onset. We now find that young KO mice have abnormally high plasma ghrelin levels that slowly decline during long-term high-fat feeding and ultimately drop below those in wild-type mice. On such a diet, the KO mice gained notably more weight, more white fat, and more hepatic fat than wild-type animals. In addition to a greater burden of hepatic triglycerides, the livers of these KO mice show distinctly higher levels of inflammatory markers. Finally, their energy expenditure proved to be lower than in wild-type mice despite similar activity levels and increased caloric intake. A gene transfer of mouse BChE with adeno-associated virus vector restored nearly all aspects of the normal phenotype. Our results indicate that BChE strongly affects fat metabolism, has an important impact on fat accumulation, and may be a promising tool for combating obesity.
Collapse
Affiliation(s)
- Vicky Ping Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, and Minnesota Nutrition and Obesity Center, Rochester, Minnesota 55905
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, and Minnesota Nutrition and Obesity Center, Rochester, Minnesota 55905
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, and Minnesota Nutrition and Obesity Center, Rochester, Minnesota 55905
| | - Michael B Stout
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, and Minnesota Nutrition and Obesity Center, Rochester, Minnesota 55905
| | - Michael D Jensen
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, and Minnesota Nutrition and Obesity Center, Rochester, Minnesota 55905
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, and Minnesota Nutrition and Obesity Center, Rochester, Minnesota 55905
| |
Collapse
|
9
|
Pravetoni M. Biologics to treat substance use disorders: Current status and new directions. Hum Vaccin Immunother 2016; 12:3005-3019. [PMID: 27441896 DOI: 10.1080/21645515.2016.1212785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biologics (vaccines, monoclonal antibodies (mAb), and genetically modified enzymes) offer a promising class of therapeutics to treat substance use disorders (SUD) involving abuse of opioids and stimulants such as nicotine, cocaine, and methamphetamine. In contrast to small molecule medications targeting brain receptors, biologics for SUD are larger molecules that do not cross the blood-brain barrier (BBB), but target the drug itself, preventing its distribution to the brain and blunting its effects on the central nervous system (CNS). Active and passive immunization approaches rely on antibodies (Ab) that bind drugs of abuse in serum and block their distribution to the brain, preventing the rewarding effects of drugs and addiction-related behaviors. Alternatives to vaccines and anti-drug mAb are genetically engineered human or bacterial enzymes that metabolize drugs of abuse, lowering the concentration of free active drug. Pre-clinical and clinical data support development of effective biologics for SUD.
Collapse
Affiliation(s)
- Marco Pravetoni
- a Minneapolis Medical Research Foundation, and University of Minnesota Medical School, Departments of Medicine and Pharmacology , Center for Immunology , Minneapolis , MN , USA
| |
Collapse
|
10
|
Chen X, Zheng X, Zhou Z, Zhan CG, Zheng F. Effects of a cocaine hydrolase engineered from human butyrylcholinesterase on metabolic profile of cocaine in rats. Chem Biol Interact 2016; 259:104-109. [PMID: 27154495 DOI: 10.1016/j.cbi.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/17/2022]
Abstract
Accelerating cocaine metabolism through enzymatic hydrolysis at cocaine benzoyl ester is recognized as a promising therapeutic approach for cocaine abuse treatment. Our more recently designed A199S/F227A/S287G/A328W/Y332G mutant of human BChE, denoted as cocaine hydrolase-3 (CocH3), has a considerably improved catalytic efficiency against cocaine and has been proven active in blocking cocaine-induced toxicity and physiological effects. In the present study, we have further characterized the effects of CocH3 on the detailed metabolic profile of cocaine in rats administrated intravenously (IV) with 5 mg/kg cocaine, demonstrating that IV administration of 0.15 mg/kg CocH3 dramatically changed the metabolic profile of cocaine. Without CocH3 administration, the dominant cocaine-metabolizing pathway in rats was cocaine methyl ester hydrolysis to benzoylecgonine (BZE). With the CocH3 administration, the dominant cocaine-metabolizing pathway in rats became cocaine benzoyl ester hydrolysis to ecgonine methyl ester (EME), and the other two metabolic pathways (i.e. cocaine methyl ester hydrolysis to BZE and cocaine oxidation to norcocaine) became insignificant. The CocH3-catalyzed cocaine benzoyl ester hydrolysis to EME was so efficient such that the measured maximum blood cocaine concentration (∼38 ng/ml) was significantly lower than the threshold blood cocaine concentration (∼72 ng/ml) required to produce any measurable physiological effects.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States.
| |
Collapse
|
11
|
Murthy V, Reyes S, Geng L, Gao Y, Brimijoin S. Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice. J Pharmacol Exp Ther 2016; 356:720-5. [PMID: 26669428 PMCID: PMC4767396 DOI: 10.1124/jpet.115.228825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains unknown. Here, telemetric recording of electrocardiograms from awake, unrestrained mice receiving a course of moderately large cocaine doses (30 mg/kg, twice daily for 3 weeks) revealed protection against a 2-fold prolongation of the QT interval conferred by pretreatment with cocaine hydrolase vector. By itself, this prophylactic treatment did not affect QT interval duration or cardiac structure, demonstrating that viral delivery of cocaine hydrolase has no intrinsic cardiac toxicity and, on the contrary, actively protects against cocaine-induced QT prolongation.
Collapse
Affiliation(s)
- Vishakantha Murthy
- Department of Molecular Pharmacology and Experimental Therapeutics, Robert and Arlene Kogod Center on Aging (V.M., L.G., Y.G., S.B.), and Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (S.R.), Mayo Clinic, Rochester, Minnesota
| | - Santiago Reyes
- Department of Molecular Pharmacology and Experimental Therapeutics, Robert and Arlene Kogod Center on Aging (V.M., L.G., Y.G., S.B.), and Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (S.R.), Mayo Clinic, Rochester, Minnesota
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Robert and Arlene Kogod Center on Aging (V.M., L.G., Y.G., S.B.), and Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (S.R.), Mayo Clinic, Rochester, Minnesota
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Robert and Arlene Kogod Center on Aging (V.M., L.G., Y.G., S.B.), and Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (S.R.), Mayo Clinic, Rochester, Minnesota
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Robert and Arlene Kogod Center on Aging (V.M., L.G., Y.G., S.B.), and Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (S.R.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Yao Y, Liu J, Zheng F, Zhan CG. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine. Theor Chem Acc 2016; 135. [PMID: 28250715 DOI: 10.1007/s00214-015-1788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (-)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (-)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data.
Collapse
Affiliation(s)
- Yuan Yao
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; The Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P.R. China
| | - Junjun Liu
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| |
Collapse
|
13
|
Murthy V, Geng L, Gao Y, Zhang B, Miller JD, Reyes S, Brimijoin S. Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase. Cell Mol Neurobiol 2015; 35:819-26. [PMID: 25814464 PMCID: PMC4617233 DOI: 10.1007/s10571-015-0175-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal.
Collapse
Affiliation(s)
- Vishakantha Murthy
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Ongoing mouse studies of a proposed therapy for cocaine abuse based on viral gene transfer of butyrylcholinesterase (BChE) mutated for accelerated cocaine hydrolysis have yielded surprising effects on aggression. Further investigation has linked these effects to a reduction in circulating ghrelin, driven by BChE at levels ∼ 100-fold above normal. Tests with human BChE showed ready ghrelin hydrolysis at physiologic concentrations, and multiple low-mass molecular dynamics simulations revealed that ghrelin's first five residues fit sterically and electrostatically into BChE's active site. Consistent with in vitro results, male BALB/c mice with high plasma BChE after gene transfer exhibited sharply reduced plasma ghrelin. Unexpectedly, such animals fought less, both spontaneously and in a resident/intruder provocation model. One mutant BChE was found to be deficient in ghrelin hydrolysis. BALB/c mice transduced with this variant retained normal plasma ghrelin levels and did not differ from untreated controls in the aggression model. In contrast, C57BL/6 mice with BChE gene deletion exhibited increased ghrelin and fought more readily than wild-type animals. Collectively, these findings indicate that BChE-catalyzed ghrelin hydrolysis influences mouse aggression and social stress, with potential implications for humans.
Collapse
|
15
|
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2014; 148:34-46. [PMID: 25448037 DOI: 10.1016/j.pharmthera.2014.11.011] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Phase I clinical trials have shown that pure human butyrylcholinesterase (BChE) is safe when administered to humans. A potential therapeutic use of BChE is for prevention of nerve agent toxicity. A recombinant mutant of BChE that rapidly inactivates cocaine is being developed as a treatment to help recovering cocaine addicts avoid relapse into drug taking. These clinical applications rely on knowledge of the structure, stability, and properties of BChE, information that is reviewed here. Gene therapy with a vector that sustains expression for a year from a single injection is a promising method for delivering therapeutic quantities of BChE.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Department of Humana Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel,
| |
Collapse
|
17
|
Murthy V, Gao Y, Geng L, LeBrasseur NK, White TA, Parks RJ, Brimijoin S. Physiologic and metabolic safety of butyrylcholinesterase gene therapy in mice. Vaccine 2014; 32:4155-62. [PMID: 24892251 DOI: 10.1016/j.vaccine.2014.05.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 01/22/2023]
Abstract
In continuing efforts to develop gene transfer of human butyrylcholinesterase (BChE) as therapy for cocaine addiction, we conducted wide-ranging studies of physiological and metabolic safety. For that purpose, mice were given injections of adeno-associated virus (AAV) vector or helper-dependent adenoviral (hdAD) vector encoding human or mouse BChE mutated for optimal cocaine hydrolysis. Age-matched controls received saline or AAV-luciferase control vector. At times when transduced BChE was abundant, physiologic and metabolic parameters in conscious animals were evaluated by non-invasive Echo-MRI and an automated "Comprehensive Laboratory Animal Monitoring System" (CLAMS). Despite high vector doses (up to 10(13) particles per mouse) and high levels of transgene protein in the plasma (∼1500-fold above baseline), the CLAMS apparatus revealed no adverse physiologic or metabolic effects. Likewise, body composition determined by Echo-MRI, and glucose tolerance remained normal. A CLAMS study of vector-treated mice given 40 mg/kg cocaine showed none of the physiologic and metabolic fluctuations exhibited in controls. We conclude that neither the tested vectors nor great excesses of circulating BChE affect general physiology directly, while they protect mice from disturbance by cocaine. Hence, viral gene transfer of BChE appears benign and worth exploring as a therapy for cocaine abuse and possibly other disorders as well.
Collapse
Affiliation(s)
- Vishakantha Murthy
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin J Parks
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Long-term reduction of cocaine self-administration in rats treated with adenoviral vector-delivered cocaine hydrolase: evidence for enzymatic activity. Neuropsychopharmacology 2014; 39:1538-46. [PMID: 24407266 PMCID: PMC3988560 DOI: 10.1038/npp.2014.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/29/2013] [Accepted: 12/31/2013] [Indexed: 11/08/2022]
Abstract
A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decrease ongoing intravenous cocaine (0.4 mg/kg) self-administration. The hdAD-CocH vector was injected into self-administering rats, and after accumulation of plasma CocH, there was a dramatic reduction in cocaine infusions earned under a fixed ratio 1 schedule of reinforcement that lasted for the length of the study (>2 months). Pretreatment with the selective BChE and CocH inhibitor iso-OMPA (1.5 mg/kg) restored cocaine intake; therefore, the decline in self-administration was likely due to rapid CocH-mediated cocaine metabolism. Direct measurements of cocaine levels in plasma and brain samples taken after the conclusion of behavioral studies provided strong support for this conclusion. Further, rats injected with hdAD-CocH did not experience a deficit in operant responding for drug reinforcement and self-administered methamphetamine (0.05 mg/kg) at control levels. Overall, these outcomes suggest that viral gene transfer can yield plasma CocH levels that effectively diminish long-term cocaine intake and may have potential treatment implications for cocaine-dependent individuals seeking to become and remain abstinent.
Collapse
|