1
|
Amin MT, Acharjee M, Sarwar Jyoti MM, Rezanujjaman M, Hassan MM, Hossain MF, Ahamed S, Kodani S, Tokumoto T. Discovery of specific activity of 2-hydroxypentanoic acid acting on the mPR alpha (Paqr7) from the marine algae Padina. Biochem Biophys Res Commun 2025; 751:151433. [PMID: 39922053 DOI: 10.1016/j.bbrc.2025.151433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Membrane progesterone receptors (mPRs) are members of the progestin and adipoQ (PAQR) receptor family that are stimulated by endogenous steroids to initiate rapid intracellular signaling through a nongenomic pathway. Previously, water-soluble compounds with mPRα binding activity from the marine algae Padina arborescens were fractionated by HPLC. Nuclear magnetic resonance spectroscopy revealed that the major component of the HPLC fraction was 2-hydroxypentanoic acid (2-HPA). In this study, the physiological activity of 2-HPA and its analogues was investigated using in vitro goldfish and in vivo zebrafish oocyte maturation and ovulation assays. Only 2-HPA showed inhibitory activity on oocyte maturation and ovulation of fish oocytes. The inhibitory activity of 2-HPA was compared between S- and R-type 2-HPA. The results showed that both types had the same level of activity. Furthermore, the interaction of 2-HPA with mPRα was analyzed by binding assay. 2-HPAs showed a substantial competitive binding affinity for the human membrane progesterone receptor α (hmPRα) in the graphene quantum dots (GQDs)-hmPRα binding assay. In contrast, synthetic structural analogues of 2-HPA showed no competitive binding activity. These results indicate that 2-HPA is a novel mPRα antagonist, and its chemical structure is highly restricted to show its activity.
Collapse
Affiliation(s)
- Mohammad Tohidul Amin
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Maisum Sarwar Jyoti
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Rezanujjaman
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Mohammad Maksudul Hassan
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Saokat Ahamed
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Shinya Kodani
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Fu M, Zhengran L, Yingli L, Tong W, Liyang C, Xi G, Xiongyi Y, Mingzhe C, Guoguo Y. The contribution of adiponectin to diabetic retinopathy progression: Association with the AGEs-RAGE pathway. Heliyon 2024; 10:e36111. [PMID: 39296166 PMCID: PMC11409038 DOI: 10.1016/j.heliyon.2024.e36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes. Given that adiponectin plays a key role in DR progression, this study aims to elucidate the molecular mechanisms of sDR progression related to adiponectin. First, we extracted the microarray dataset GSE60436 from the Gene Expression Omnibus (GEO) database to identify hub genes associated with DR. Pathway enrichment analysis revealed a focus on inflammation, oxidative stress, and metabolic disease pathways. Gene Set Enrichment Analysis (GSEA) identified nine significant pathways related to DR. Immune infiltration analysis indicated increased infiltration of fibroblasts and endothelial cells in DR patients. Second, at the gene level, single-cell RNA sequencing (scRNA-seq) results showed a decrease in ADIPOQ gene expression as the disease progressed in our mouse models. At the protein level, ELISA results from sera of 31 patients and 11 control subjects demonstrated significantly lower adiponectin expression in the proliferative diabetic retinopathy (PDR) group compared to controls. Our findings reveal that adiponectin is involved in the advanced glycation end products (AGEs) and receptor of advanced glycation end products (RAGE) axis, as evidenced by hub gene analysis, scRNA-seq, and ELISA. In conclusion, adiponectin acts as a central molecule in the AGEs-RAGE axis, regulated by ADIPOQ, to influence DR progression.
Collapse
Affiliation(s)
- Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Zhengran
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Li Yingli
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wu Tong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- The First Clinical School, Southern Medical University, Guangzhou, China
| | - Cai Liyang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guo Xi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yang Xiongyi
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Cao Mingzhe
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yi Guoguo
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Kazemian A, Tavares Pereira M, Aslan S, Payan-Carreira R, Reichler IM, Agaoglu RA, Kowalewski MP. Membrane-bound progesterone receptors in the canine uterus and placenta; possible targets in the maintenance of pregnancy. Theriogenology 2023; 210:68-83. [PMID: 37480804 DOI: 10.1016/j.theriogenology.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
To date, the biological functions of P4 within the canine placenta have been attributed to maternal stroma-derived decidual cells as the only placental cells expressing the nuclear P4 receptor (PGR). However, P4 can also exert its effects via membrane-bound receptors. To test the hypothesis that membrane-bound P4 receptors are involved in regulating placental function in the dog, the expression of mPRα, -β, -γ, PGRMC1 and -2 was investigated in the uterine and placental compartments derived from different stages of pregnancy and from prepartum luteolysis. Further, to assess the PGR signaling-mediated effects upon membrane P4 receptors in canine decidual cells, in vitro decidualized dog uterine stromal (DUS) cells were treated with type II antigestagens (aglepristone or mifepristone). The expression of all membrane P4 receptors was detectable in reproductive tissues and in DUS cells. The main findings indicate their distinguishable placental spatio-temporal distribution; PGRMC2 was predominantly found in decidual cells, PGRMC1 was strong in maternal endothelial compartments, and syncytiotrophoblast showed abundant levels of mPRα and mPRβ. In vitro decidualization was associated with increased expression of PGRMC1 and -2, while their protein levels were diminished by antigestagen treatment. The involvement of membrane-bound P4 signaling in the regulation of canine placental function is implied, with P4 effects being directly exerted through maternal and fetal cellular compartments. The indirect effects of PGR might involve the modulation of membrane-bound receptors availability in decidual cells, implying a self-regulatory loop of P4 in regulating the availability of its own receptors in the canine placenta.
Collapse
Affiliation(s)
- Ali Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, Cyprus.
| | - Rita Payan-Carreira
- School of Science and Technology, Department of Veterinary Medicine, University of Évora, Évora, Portugal.
| | - Iris M Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| | - Reha A Agaoglu
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Hornung RS, Kinchington PR, Umorin M, Kramer PR. PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus. Mol Pain 2023; 19:17448069231202598. [PMID: 37699860 PMCID: PMC10515525 DOI: 10.1177/17448069231202598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.
Collapse
Affiliation(s)
- Rebecca S Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| |
Collapse
|
5
|
Castelnovo LF, Thomas P. Progesterone exerts a neuroprotective action in a Parkinson's disease human cell model through membrane progesterone receptor α (mPRα/PAQR7). Front Endocrinol (Lausanne) 2023; 14:1125962. [PMID: 36967764 PMCID: PMC10036350 DOI: 10.3389/fendo.2023.1125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and current treatment options are unsatisfactory on the long term. Several studies suggest a potential neuroprotective action by female hormones, especially estrogens. The potential role of progestogens, however, is less defined, and no studies have investigated the potential involvement of membrane progesterone receptors (mPRs). In the present study, the putative neuroprotective role for mPRs was investigated in SH-SY5Y cells, using two established pharmacological treatments for cellular PD models, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+). Our results show that both the physiologic agonist progesterone and the specific mPR agonist Org OD 02-0 were effective in reducing SH-SY5Y cell death induced by 6-OHDA and MPP+, whereas the nuclear PR agonist promegestone (R5020) and the GABAA receptor agonist muscimol were ineffective. Experiments performed with gene silencing technology and selective pharmacological agonists showed that mPRα is the isoform responsible for the neuroprotective effects we observed. Further experiments showed that the PI3K-AKT and MAP kinase signaling pathways are involved in the mPRα-mediated progestogen neuroprotective action in SH-SY5Y cells. These findings suggest that mPRα could play a neuroprotective role in PD pathology and may be a promising target for the development of therapeutic strategies for PD prevention or management.
Collapse
Affiliation(s)
| | - Peter Thomas
- *Correspondence: Luca F. Castelnovo, ; Peter Thomas,
| |
Collapse
|
6
|
Zamora-Sánchez CJ, Camacho-Arroyo I. Allopregnanolone: Metabolism, Mechanisms of Action, and Its Role in Cancer. Int J Mol Sci 2022; 24:ijms24010560. [PMID: 36614002 PMCID: PMC9820109 DOI: 10.3390/ijms24010560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.
Collapse
|
7
|
Thomas P, Pang Y, Camilletti MA, Castelnovo LF. Functions of Membrane Progesterone Receptors (mPRs, PAQRs) in Nonreproductive Tissues. Endocrinology 2022; 163:6679267. [PMID: 36041040 DOI: 10.1210/endocr/bqac147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Gender differences in a wide variety of physiological parameters have implicated the ovarian hormones, estrogens and progesterone, in the regulation of numerous nonreproductive tissue functions. Rapid, nongenomic (nonclassical) progesterone actions mediated by membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor family, have been extensively investigated in reproductive and nonreproductive tissues since their discovery in fish ovaries 20 years ago. The 5 mPR subtypes (α, β, γ, δ, ε) are widely distributed in vertebrate tissues and are often expressed in the same cells as the nuclear progesterone receptor (PR) and progesterone receptor membrane component 1, thereby complicating investigations of mPR-specific functions. Nevertheless, mPR-mediated progesterone actions have been identified in a wide range of reproductive and nonreproductive tissues and distinguished from nuclear PR-mediated ones by knockdown of these receptors with siRNA in combination with a pharmacological approach using mPR- and PR-specific agonists. There are several recent reviews on the roles of the mPRs in vertebrate reproduction and cancer, but there have been no comprehensive assessments of mPR functions in nonreproductive tissues. Therefore, this article briefly reviews mPR functions in a broad range of nonreproductive tissues. The evidence that mPRs mediate progesterone and progestogen effects on neuroprotection, lordosis behavior, respiratory control of apnea, olfactory responses to pheromones, peripheral nerve regeneration, regulation of prolactin secretion in prolactinoma, immune functions, and protective functions in vascular endothelial and smooth muscle cells is critically reviewed. The ubiquitous expression of mPRs in vertebrate tissues suggests mPRs regulate many additional nonreproductive functions that remain to be identified.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | | | - Luca F Castelnovo
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
8
|
Membrane Progesterone Receptor α (mPRα/PAQR7) Promotes Survival and Neurite Outgrowth of Human Neuronal Cells by a Direct Action and Through Schwann Cell-like Stem Cells. J Mol Neurosci 2022; 72:2067-2080. [PMID: 35974286 DOI: 10.1007/s12031-022-02057-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
We recently showed that membrane progesterone receptor α (mPRα/PAQR7) promotes pro-regenerative effects in Schwann cell-like adipose stem cells (SCL-ASC), an alternative model to Schwann cells for the promotion of peripheral nerve regeneration. In this study, we investigated how mPRα activation with the mPR-specific agonist Org OD 02-0 in SCL-ASC affected regenerative parameters in two neuronal cell lines, IMR-32 and SH-SY-5Y. In a series of conditioned medium experiments, we found that mPR activation of SCL-ASC led to increased neurite outgrowth, protection from cell death and increased expression of peripheral nerve regeneration markers (CREB3, ATF3, GAP43) in neuronal cell lines. These effects were stronger than the ones observed with the conditioned medium from untreated SCL-ASC. The addition of Org OD 02-0 to the untreated cell medium mimicked the effects of mPR activation of SCL-ASC on cell death, but not on neurite outgrowth. Therefore, the effect of Org OD 02-0 on neurite outgrowth is SCL-ASC-dependent, while its effect on cell survivability is likely due to the direct activation of mPRs on neuronal cells. SCL-ASC transfection with mPRα siRNA showed that this isoform is responsible for the beneficial effect on neurite outgrowth. Further experiments showed that SCL-ASC-dependent outcomes likely involved the release of BDNF and IGF-2 from these cells. The beneficial mPRα effect on neurite outgrowth was confirmed in co-culture conditions. These findings strengthen the hypothesis that mPRα could play a pro-regenerative role in SCL-ASC and be a therapeutic target for the promotion of peripheral nerve regeneration.
Collapse
|
9
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
10
|
Thomas P. Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics. Cells 2022; 11:cells11111785. [PMID: 35681480 PMCID: PMC9179843 DOI: 10.3390/cells11111785] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation of numerous reproductive and non-reproductive functions in vertebrates, several critical aspects of their structure and signaling functions have been unresolved until recently and remain the subject of considerable debate. This paper briefly reviews recent developments in our understanding of the structure and functional characteristics of mPRs. The proposed membrane topology of mPRα, the structure of its ligand-binding site, and the binding affinities of steroids were predicted from homology modeling based on the structures of other PAQRs, adiponectin receptors, and confirmed by mutational analysis and ligand-binding assays. Extensive data demonstrating that mPR-dependent progestogen regulation of intracellular signaling through mPRs is mediated by activation of G proteins are reviewed. Close association of mPRα with progesterone membrane receptor component 1 (PGRMC1), its role as an adaptor protein to mediate cell-surface expression of mPRα and mPRα-dependent progestogen signaling has been demonstrated in several vertebrate models. In addition, evidence is presented that mPRs can regulate the activity of other hormone receptors.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
11
|
Kelder J, Pang Y, Dong J, Schaftenaar G, Thomas P. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRα (PAQR7): Shared ligand binding with AdipoR1 and its structural basis. J Steroid Biochem Mol Biol 2022; 219:106082. [PMID: 35189329 DOI: 10.1016/j.jsbmb.2022.106082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
The 7-transmembrane architecture of adiponectin receptors (AdipoRs), determined from their X-ray crystal structures, was used for homology modeling of another progesterone and adipoQ receptor (PAQR) family member, membrane progesterone receptor alpha (mPRα). The mPRα model identified excess positively charged residues on the cytosolic side, suggesting it has the same membrane orientation as AdipoRs with an intracellular N-terminus. The homology model showed identical amino acid residues to those forming the zinc binding pocket in AdipoRs, which strongly implies that zinc is also present in mPRα. The homology model showed a critical H-bond interaction between the glutamine (Q) residue at 206 in the binding pocket and the 20-carbonyl of progesterone. Mutational analysis showed no progesterone binding to the arginine (R) 206 mutant and modeling predicted this was due to the strong positive charge of arginine stabilizing the presence of an oleic acid (C18:1) molecule in the binding pocket, as observed in the X-rays of AdipoRs. High Zn2+ concentrations are predicted to form a salt with the carboxylate group of the oleic acid, thereby eliminating its binding to the free fatty acid (FFA) binding pocket, and allowing progesterone to bind. This is supported by experiments showing 100 µM Zn2+ addition restored [3H]-progesterone binding of the Q206R mutant to levels in WT mPRα and increased [3H]-progesterone binding to mPRγ and AdipoR1 which have arginine residues in this region. The model predicts hydrophobic interactions of progesterone with amino acid residues surrounding the binding pocket, including valine 146 in TM3, which when mutated into a polar serine resulted in a complete loss of [3H]-progesterone binding. The mPRα model showed there is no hydrogen bond donor in the vicinity of the 3-keto group of progesterone and ligand structure-activity studies with 3-deoxy steroids revealed that, unlike the nuclear progesterone receptor, the 3-carbonyl oxygen is not essential for binding to mPRα. Interestingly, the small synthetic AdipoR agonist, AdipoRon, displayed binding affinity for mPRα and mimicked progesterone signaling, whereas D-e-MAPP, a ceramidase inhibitor, blocked progesterone signaling. Thus, critical residues around the binding pocket and steroid structures that bind mPRα, as well as similarities with AdipoRs, can be predicted from the homology model.
Collapse
Affiliation(s)
- Jan Kelder
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Yefei Pang
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jing Dong
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Gijs Schaftenaar
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter Thomas
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
12
|
Wan QQ, Jiao K, Ma YX, Gao B, Mu Z, Wang YR, Wang YH, Duan L, Xu KH, Gu JT, Yan JF, Li J, Shen MJ, Tay FR, Niu LN. Smart, Biomimetic Periosteum Created from the Cerium(III, IV) Oxide-Mineralized Eggshell Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14103-14119. [PMID: 35306805 DOI: 10.1021/acsami.2c02079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.
Collapse
Affiliation(s)
- Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bo Gao
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan-Hao Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research & Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lian Duan
- Southwest University, Chongqing 400715, China
| | - Ke-Hui Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian-Fei Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Hena 453003, China
| |
Collapse
|
13
|
Goncharov AI, Levina IS, Shliapina VL, Morozov IA, Rubtsov PM, Zavarzin IV, Smirnova OV, Shchelkunova TA. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1446-1460. [PMID: 34906046 DOI: 10.1134/s0006297921110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
14
|
Castelnovo LF, Thomas P. Membrane progesterone receptor α (mPRα/PAQR7) promotes migration, proliferation and BDNF release in human Schwann cell-like differentiated adipose stem cells. Mol Cell Endocrinol 2021; 531:111298. [PMID: 33930460 DOI: 10.1016/j.mce.2021.111298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022]
Abstract
Membrane progesterone receptors (mPRs) were recently found to be present and active in Schwann cells, where they have a potentially pro-regenerative activity. In this study, we investigated the role of mPRs in human adipose stem cells (ASC) differentiated into Schwann cell-like cells (SCL-ASC), which represent a promising alternative to Schwann cells for peripheral nerve regeneration. Our findings show that mPRs are present both in undifferentiated and differentiated ASC, and that the differentiation protocol upregulates mPR expression. Activation of mPRα promoted cell migration and differentiation in SCL-ASC, alongside with changes in cell morphology and mPRα localization. Moreover, it increased the expression and release of BDNF, a neurotrophin with pro-regenerative activity. Further analysis showed that Src and PI3K-Akt signaling pathways are involved in mPRα activity in SCL-ASC. These findings suggest that mPRα could play a pro-regenerative role in SCL-ASC and may be a promising target for the promotion of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Luca F Castelnovo
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas (TX), 78373, United States.
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas (TX), 78373, United States
| |
Collapse
|
15
|
Wang Y, Luo T, Zheng L, Huang J, Zheng Y, Li J. PAQR7: An intermediary mediating nongenomic progesterone action in female reproductive tissue. Reprod Biol 2021; 21:100529. [PMID: 34217103 DOI: 10.1016/j.repbio.2021.100529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Progestin and adipoQ receptor 7 (PAQR7) as an indispensable member of membrane progestin receptors in the Progestin and adipoQ receptor (PAQR) family that mediates nongenomic progesterone actions, initiated rapidly at the cell surface. Previous research demonstrated the distribution of PAQR7, which was mainly expressed in reproductive tissues, including ovary and testis. In the male reproductive system, PAQR7 is involved in progestin-induced sperm hypermotility. However, reports studying PAQR7 in female reproductive tissue mainly concentrate on oocyte maturation in fish, its expression in the ovary and gestational tissue, and regulation of uterine functions in mammals. Despite recent advances, many aspects of progestin signaling through PAQR7 are still unclear, especially in female reproductive tissue. Therefore, we reveal the structure and characteristics of PAQR7 and conclude the putative progestin-induced action mediated by PAQR7 in female reproductive tissue, such as the development of ovarian follicles, apoptosis of granulosa cells, oocyte maturation, and development of certain diseases, among others, to review the function of PAQR7 in the female reproductive system in detail.
Collapse
Affiliation(s)
- Yijie Wang
- Queen Mary University of London Nanchang joint programme, Nanchang University, Nanchang 330006, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tao Luo
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Institute of Life Science, Nanchang University, Nanchang 330006, China
| | - Liping Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Basic Medical School, Nanchang University, Nanchang 330006, China
| | - Jian Huang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China
| | - Yuehui Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Basic Medical School, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
16
|
Mancino DN, Leicaj ML, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF, Garay LI. Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. J Steroid Biochem Mol Biol 2021; 207:105820. [PMID: 33465418 DOI: 10.1016/j.jsbmb.2021.105820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3β-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRβ, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.
Collapse
Affiliation(s)
- Dalila Nj Mancino
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - María Luz Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
17
|
Pang Y, Thomas P. Involvement of sarco/endoplasmic reticulum Ca 2+-ATPase (SERCA) in mPRα (PAQR7)-mediated progesterone induction of vascular smooth muscle relaxation. Am J Physiol Endocrinol Metab 2021; 320:E453-E466. [PMID: 33427050 DOI: 10.1152/ajpendo.00359.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progesterone acts directly on vascular smooth muscle cells (VSMCs) through activation of membrane progesterone receptor α (mPRα)-dependent signaling to rapidly decrease cytosolic Ca2+ concentrations and induce muscle relaxation. However, it is not known whether this progesterone action involves uptake of Ca2+ by the sarco/endoplasmic reticulum (SR) and increased sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity. The present results show that treatment of cultured human VSMCs with progesterone and the selective mPR agonist Org OD-02-0 (OD 02-0) but not with the nuclear PR agonist R5020 increased SERCA protein expression, which was blocked by knockdown of mPRα with siRNA. Moreover, treatments with progesterone and OD 02-0, but not with R5020, increased phospholamban (PLB) phosphorylation, which would result in disinhibition of SERCA function. Progesterone and OD 02-0 significantly increased Ca2+ levels in the SR and caused VSMC relaxation. These effects were blocked by pretreatment with cyclopiazonic acid (CPA), a SERCA inhibitor, and by knockdown of SERCA2 with siRNA, suggesting that SERCA2 plays a critical role in progesterone induction of VSMC relaxation. Treatment with inhibitors of inhibitory G proteins (Gi, NF023), MAP kinase (AZD 6244), Akt/Pi3k (wortmannin), and a Rho activator (calpeptin) blocked the progesterone- and OD 02-0-induced increase in Ca2+ levels in the SR and SERCA expressions. These results suggest that the rapid effects of progesterone on cytosolic Ca2+ levels and relaxation of VSMCs through mPRα involve regulation of the functions of SERCA2 and PLB through Gi, MAP kinase, and Akt signaling pathways and downregulation of RhoA activity.NEW & NOTEWORTHY The rapid effects of progesterone on cytosolic Ca2+ levels and relaxation of VSMCs through mPRα involve regulation of the functions of SERCA2 and PLB through Gi, MAP kinase, and Akt signaling pathways and downregulation of RhoA activity.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas
| |
Collapse
|
18
|
Levina IS, Kuznetsov YV, Shchelkunova TA, Zavarzin IV. Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo. J Steroid Biochem Mol Biol 2021; 207:105827. [PMID: 33497793 DOI: 10.1016/j.jsbmb.2021.105827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Progesterone modulates many processes in the body, acting through nuclear receptors (nPR) in various organs and tissues. However, a number of effects are mediated by membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ (PAQR) receptor family. These receptors are found in most tissues and immune cells. They are expressed in various cancer cells and appear to play an important role in the development of tumors. The role of mPRs in the development of insulin resistance and metabolic syndrome has also attracted attention. Since progesterone efficiently binds to both nPRs and mPRs, investigation of the functions of the mPRs both at the level of the whole body and at the cell level requires ligands that selectively interact with mPRs, but not with nPRs, with an affinity comparable with that of the natural hormone. The development of such ligands faces difficulties primarily due to the lack of data on the three-dimensional structure of the ligand-binding site of mPR. This review is the first attempt to summarize available data on the structures of compounds interacting with mPRs and analyze them in terms of the differences in binding to membrane and nuclear receptors. Based on the identified main structural fragments of molecules, which affect the efficiency of binding to mPRs and are responsible for the selectivity of interactions, we propose directions of modification of the steroid scaffold to create new selective mPRs ligands.
Collapse
Affiliation(s)
- Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| | - Tatiana A Shchelkunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| |
Collapse
|
19
|
Redei EE, Ciolino JD, Wert SL, Yang A, Kim S, Clark C, Zumpf KB, Wisner KL. Pilot validation of blood-based biomarkers during pregnancy and postpartum in women with prior or current depression. Transl Psychiatry 2021; 11:68. [PMID: 33479202 PMCID: PMC7820442 DOI: 10.1038/s41398-020-01188-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is more common in women than in men, and evidence of gender-related subtypes of depression is emerging. Previously identified blood-based transcriptomic biomarkers distinguished male and female subjects with MDD from those without the disorder. In the present pilot study, we investigated the performance of these biomarkers in pregnant and postpartum women with prior major depressive episodes, some of whom had current symptomatology. The symptom scores of 13 pregnant and 15 postpartum women were identified by the Inventory of Depressive Symptoms (IDS-SR-30) at the time of blood sampling. Blood levels of the 20 transcriptomic biomarkers and that of estrogen receptor 2 (ESR2), membrane progesterone receptor alpha and beta (mPRα, mPRβ) were measured. In pregnant women, transcript levels of ADCY3, ASAH1, ATP11C, CDR2, ESR2, FAM46A, mPRβ, NAGA, RAPH1, TLR7, and ZNF291/SCAPER showed significant association with IDS-SR-30 scores, of which ADCY3, FAM46A, RAPH1, and TLR7 were identified in previous studies for their diagnostic potential for major depression. ASAH1 and ATP11C were previously also identified as potential markers of treatment efficacy. In postpartum women, transcript levels of CAT, CD59, and RAPH1 demonstrated a trend of association with IDS-SR-30 scores. Transcript levels of ADCY3, ATP11C, FAM46A, RAPH1, and ZNF291/SCAPER correlated with ESR2 and mPRβ expressions in pregnant women, whereas these associations only existed for mPRβ in postpartum women. These results suggest that a blood biomarker panel can identify depression symptomatology in pregnant women and that expression of these biomarker genes are affected by estrogen and/or progesterone binding differently during pregnancy and postpartum.
Collapse
Affiliation(s)
- E. E. Redei
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.16753.360000 0001 2299 3507The Asher Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - J. D. Ciolino
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - S. L. Wert
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - A. Yang
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - S. Kim
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - C. Clark
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.16753.360000 0001 2299 3507The Asher Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - K. B. Zumpf
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - K. L. Wisner
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.16753.360000 0001 2299 3507The Asher Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
20
|
Castelnovo LF, Thomas P, Magnaghi V. Membrane progesterone receptors (mPRs/PAQRs) in Schwann cells represent a promising target for the promotion of neuroregeneration. Neural Regen Res 2021; 16:281-282. [PMID: 32859775 PMCID: PMC7896211 DOI: 10.4103/1673-5374.290885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Luca F Castelnovo
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Cliver RN, Ayers B, Brady A, Firestein BL, Vazquez M. Cerebrospinal fluid replacement solutions promote neuroglia migratory behaviors and spinal explant outgrowth in microfluidic culture. J Tissue Eng Regen Med 2020; 15:176-188. [PMID: 33274811 DOI: 10.1002/term.3164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Disorders of the nervous system (NS) impact millions of adults, worldwide, as a consequence of traumatic injury, genetic illness, or chronic health conditions. Contemporary studies have begun to incorporate neuroglia into emerging NS therapies to harness the regenerative potential of glial-mediated synapses in the brain and spinal cord. However, the role of cerebrospinal fluid (CSF) that surrounds neuroglia and interfaces with their associated synapses remains only partially explored. The flow of CSF within subarachnoid spaces (SAS) circulates essential polypeptides, metabolites, and growth factors that directly impact neural response and recovery via signaling with healthy glia. Despite the availability of artificial CSF solutions used in neurosurgery and NS treatments, tissue engineering projects continue to use cell culture media, such as Neurobasal (NB) and Dulbecco's Modified Eagle Medium (DMEM), for development and characterization of many transplantable cells, matrixes, and integrated cellular systems. The current study examined in vitro behaviors of glial Schwann cells (ShC) and spinal cord explants (SCE) within a CSF replacement solution, Elliott's B Solution (EBS), used widely in the treatment of NS disorders. Our tests used EBS to create defined chemical microenvironments of extracellular factors within a glial line (gLL) microfluidic device, previously described by our group. The gLL is comparable in scale to the in vivo SAS that envelopes endogenous CSF and enables molecular transport via mechanisms of convective diffusion. Our results illustrate that EBS solutions facilitate ShC survival, morphology, and proliferation similar to those measured in traditional DMEM, and additionally support glial chemotactic behaviors in response to brain-derived growth factor (BDNF). Our data indicates that ShC undergo significant chemotaxis toward high and low concentration gradients of BDNF with statistical differences between gradients formed within diluents of EBS and DMEM solutions. Moreover, SCE cultured with EBS solutions facilitated measurement of neurite explant extension commensurate with reported in vivo measurements. This data highlights the translational significance and advantages of incorporating CSF replacement fluids to interrogate cellular behaviors and advance regenerative NS therapies.
Collapse
Affiliation(s)
- Richard N Cliver
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Brian Ayers
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Alyssa Brady
- Department of Physics, Salisbury University, Salisbury, Maryland, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
22
|
Physiopathological Role of Neuroactive Steroids in the Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21239000. [PMID: 33256238 PMCID: PMC7731236 DOI: 10.3390/ijms21239000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.
Collapse
|
23
|
Colciago A, Bonalume V, Melfi V, Magnaghi V. Genomic and Non-genomic Action of Neurosteroids in the Peripheral Nervous System. Front Neurosci 2020; 14:796. [PMID: 32848567 PMCID: PMC7403499 DOI: 10.3389/fnins.2020.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023] Open
Abstract
Since the former evidence of biologic actions of neurosteroids in the central nervous system, also the peripheral nervous system (PNS) was reported as a structure affected by these substances. Indeed, neurosteroids are synthesized and active in the PNS, exerting many important actions on the different cell types of this system. PNS is a target for neurosteroids, in their native form or as metabolites. In particular, old and recent evidence indicates that the progesterone metabolite allopregnanolone possesses important functions in the PNS, thus contributing to its physiologic processes. In this review, we will survey the more recent findings on the genomic and non-genomic actions of neurosteroids in nerves, ganglia, and cells forming the PNS, focusing on the mechanisms regulating the peripheral neuron-glial crosstalk. Then, we will refer to the physiopathological significance of the neurosteroid signaling disturbances in the PNS, in to identify new molecular targets for promising pharmacotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
An agonist for membrane progestin receptor (mPR) induces oocyte maturation and ovulation in zebrafish in vivo. Biochem Biophys Res Commun 2020; 529:347-352. [PMID: 32703434 DOI: 10.1016/j.bbrc.2020.05.208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
The maturation and ovulation of fish oocytes are well-characterized biological processes induced by progestins via coordination of nongenomic actions and genomic actions. Previously, we established a procedure that enables the induction of oocyte maturation and ovulation in live zebrafish by simple administration of the natural teleost maturation-inducing hormone 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17,20β-DHP) into the surrounding water. By this in vivo assay, the potencies of chemicals in inducing or preventing oocyte maturation and ovulation can be evaluated. The potencies of compounds in inducing ovulation of zebrafish oocytes also can be evaluated in vivo with improved in vitro assays. Here, we attempted to evaluate the effect of Org OD 02-0 (Org OD 02), a selective agonist for membrane progestin receptor (mPR), on fish oocyte maturation and ovulation with in vitro and in vivo assays. As reported previously, Org OD 02 triggered oocyte maturation in vitro. The same Org OD 02 triggered oocyte maturation within several hours in vivo. Surprisingly, Org OD 02 even induced ovulation both in in vivo and in vitro. Eggs from Org OD 02-induced ovulation could be fertilized by artificial insemination. The juveniles developed normally. These results indicated that Org OD 02 triggered physiological ovulation in live zebrafish. In summary, we have demonstrated the effect of Org OD 02 on fish oocyte maturation and ovulation in vitro and in vivo. The results suggested that Org OD 02 acted as an agonist not only of mPR but also of nuclear progesterone receptor (nPR).
Collapse
|
25
|
Thomas P, Pang Y. Anti-apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front Endocrinol (Lausanne) 2020; 11:417. [PMID: 32670200 PMCID: PMC7331777 DOI: 10.3389/fendo.2020.00417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The neurosteroids progesterone and allopregnanolone regulate numerous neuroprotective functions in neural tissues including inhibition of epileptic seizures and cell death. Many of progesterone's actions are mediated through the nuclear progesterone receptor (PR), while allopregnanolone is widely considered to be devoid of hormonal activity and instead acts through modulation of GABA-A receptor activity. However, allopregnanolone can also exert hormonal actions in neuronal cells through binding and activating membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor (PAQR) family. The distribution and functions of the five mPR subtypes (α, β, γ, δ, ε) in neural tissues are briefly reviewed. mPRδ has the highest binding affinity for allopregnanolone and is highly expressed throughout the human brain. Low concentrations (20 nM) of allopregnanolone act through mPRδ to stimulate G protein (Gs)-dependent signaling pathways resulting in reduced cell death and apoptosis in mPRδ-transfected cells. The 3-methylated synthetic analog of allopregnanolone, ganaxolone, is currently undergoing clinical trials as a promising GABA-A receptor-selective antiepileptic drug (AED). New data show that low concentrations (20 nM) of ganaxolone also activate mPRδ signaling and exert anti-apoptotic actions through this receptor. Preliminary evidence suggests that ganaxolone can also exert neuroprotective effects by activating inhibitory G protein (Gi)-dependent signaling through mPRα and/or mPRβ in neuronal cells. The results indicate that mPRs are likely intermediaries in multiple actions of natural and synthetic neurosteroids in the brain. Potential off-target effects of ganaxolone through activation of mPRs in patients receiving long-term treatment for epilepsy and other disorders should be considered and warrant further investigation.
Collapse
|