1
|
Ran W, Chen X, Grant J, Sharma S, Mohammed KA, Kumar A, Abbas M. Critical Review on the Effect and Mechanism of Realgar Nanoparticles on Lymphoma: State of the Art on In-Vitro Biomedical Studies. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:581-591. [PMID: 38982696 DOI: 10.2174/0118722105284287240621053904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 07/11/2024]
Abstract
Lymphoma is a malignant tumor caused by abnormal proliferation of lymphocytes in the lymphatic system. Conventional treatments for lymphoma often have limitations, and new therapeutic strategies need to be explored. Realgar is an ancient Chinese medicine that has been used for centuries to treat a variety of ailments due to its therapeutic potential for various diseases, including cancer. However, it is a time-consuming waste and has a low absorption rate in the gastrointestinal tract, so it has the disadvantages of oral dose, potential toxicity, and low bioavailability. Recently, the development of nanotechnology has promoted the nanization of realgar particles, which have better physicochemical properties and higher bioavailability. The antitumor activity of Realgar nanoparticles against lymphoma has been demonstrated in preclinical studies. Realgar nanoparticles exhibit cytotoxic effects by inducing apoptosis and inhibiting the growth and proliferation of lymphoma cells. Moreover, these nanoparticles exert immunomodulatory effects by enhancing the activity of immune cells and promoting the cytotoxicity of T lymphocytes against lymphoma cells. Additionally, realgar nanoparticles have been shown to inhibit tumor angiogenesis, thereby restricting the blood supply and nutrient availability to lymphoma cells as exhibited in this patent comprehensive review. Despite promising preclinical data, further research on the role and mechanism of realgar nanoparticles in the treatment of lymphoma remains to be studied. Moreover, the translation of these findings into clinical practice requires rigorous evaluation through well-designed clinical trials. Realgar nanoparticles hold great potential as a novel therapeutic approach for lymphoma, and their development may contribute to the advancement of precision medicine in the field of oncology.
Collapse
Affiliation(s)
- Wenxia Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Xiuqin Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Joshua Grant
- School of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Shubham Sharma
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura-140401, Punjab, India
- Department of Mechanical Engineering, Lebanese American University, Kraytem 1102-2801, Beirut, Lebanon
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Kahtan A Mohammed
- Faculty of Pharmacy, Jabir Ibn Hayyan medical university, Najaf, Iraq
- Department of Medical Physics, Hilla University College, Babylon, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
2
|
Covarrubias AA, Reyna-Jeldes M, Pedroso-Santana S, Marín S, Madero-Mendoza C, Demergasso C, Coddou C. Arsenic Nanoparticles Trigger Apoptosis via Anoikis Induction in OECM-1 Cells. Int J Mol Sci 2024; 25:6723. [PMID: 38928430 PMCID: PMC11204275 DOI: 10.3390/ijms25126723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on these cells using 1-100 µM of AsNPs, finding a concentration-dependent reduction in cell viability that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3 were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest a prospective mechanism of action for AsNPs that involves a potential interaction with extracellular matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an anchorage-dependent type of apoptosis.
Collapse
Affiliation(s)
- Alejandra A. Covarrubias
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (M.R.-J.)
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
- Facultad de Ciencias Agropecuarias, Universidad del Alba, La Serena 1700000, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (M.R.-J.)
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
- Laboratory of Cancer Biology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Seidy Pedroso-Santana
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta 1200000, Chile
| | - Sabrina Marín
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta 1200000, Chile
| | - Carolina Madero-Mendoza
- Carrera de Medicina, Facultad de Medicina y Odontología, Universidad de Antofagasta, Antofagasta 1200000, Chile;
| | - Cecilia Demergasso
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta 1200000, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (M.R.-J.)
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile; (S.P.-S.); (S.M.); (C.D.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8331150, Chile
| |
Collapse
|
3
|
Wang C, He G, Zhao H, Lu Y, Jiang P, Li W. Enhancing Deep-Seated Melanoma Therapy through Wearable Self-Powered Microneedle Patch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311246. [PMID: 38123765 DOI: 10.1002/adma.202311246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Effective treatment of deep-seated tumors relies on enhanced drug penetration in transdermal drug delivery systems. While microneedles (MNs) and iontophoresis techniques have shown improved transdermal drug delivery efficiency, challenges such as skin elasticity, high electrical resistance of the stratum corneum, and external power supply requirements hinder their efficacy in treating deep-seated tumors. In this study, a wearable, self-powered MN patch that integrates a flexible triboelectric nanogenerator (F-TENG) is presented, aimed at advancing deep-seated tumor therapy. MNs are composed of water-soluble materials mixed with negatively charged pH-responsive nanoparticles (NPs) loaded with therapeutic drugs. The F-TENG harnesses personal mechanical movements generate electrical energy. Leveraging the advantages of both MNs and F-TENG, therapeutic NPs can penetrate deep skin locations upon MN patch insertion, releasing drugs rapidly in acidic tumor tissues. Owing to these features, a single administration of the integrated MN-patch in a mouse model with deep-seated melanoma exhibits superior therapeutic efficacy in inhibiting deep-located tumor compared to using the MN-patch alone, indicating promising potential for treating tumors at deep sites.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangqin He
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, 430071, China
| | - Huanhuan Zhao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yun Lu
- Department of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peng Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals 2023; 36:283-301. [PMID: 35190937 PMCID: PMC8860286 DOI: 10.1007/s10534-022-00371-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.
Collapse
Affiliation(s)
- Ngozi P Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
5
|
Toderascu LI, Sima LE, Orobeti S, Florian PE, Icriverzi M, Maraloiu VA, Comanescu C, Iacob N, Kuncser V, Antohe I, Popescu-Pelin G, Stanciu G, Ionita P, Mihailescu CN, Socol G. Synthesis and Anti-Melanoma Activity of L-Cysteine-Coated Iron Oxide Nanoparticles Loaded with Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:621. [PMID: 36838989 PMCID: PMC9966685 DOI: 10.3390/nano13040621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In this study, we report on the synthesis of L-Cysteine (L-Cys)-coated magnetic iron oxide nanoparticles (NPs) loaded with doxorubicin (Dox). The Fe3O4-L-Cys-Dox NPs were extensively characterized for their compositional and morpho-structural features using EDS, SAED, XRD, FTIR and TEM. XPS, Mӧssbauer spectroscopy and SQUID measurements were also performed to determine the electronic and magnetic properties of the Fe3O4-L-Cys-Dox nanoparticles. Moreover, by means of a FO-SPR sensor, we evidenced and confirmed the binding of Dox to L-Cys. Biological tests on mouse (B16F10) and human (A375) metastatic melanoma cells evidenced the internalization of magnetic nanoparticles delivering Dox. Half maximum inhibitory concentration IC50 values of Fe3O4-L-Cys-Dox were determined for both cell lines: 4.26 µg/mL for A375 and 2.74 µg/mL for B16F10, as compared to 60.74 and 98.75 µg/mL, respectively, for unloaded controls. Incubation of cells with Fe3O4-L-Cys-Dox modulated MAPK signaling pathway activity 3 h post-treatment and produced cell cycle arrest and increased apoptosis by 48 h. We show that within the first 2 h of incubation in physiological (pH = 7.4) media, ~10-15 µM Dox/h was released from a 200 µg/mL Fe3O4-L-Cys-Dox solution, as compared to double upon incubation in citrate solution (pH = 3), which resembles acidic environment conditions. Our results highlight the potential of Fe3O4-L-Cys-Dox NPs as efficient drug delivery vehicles in melanoma therapy.
Collapse
Affiliation(s)
- Luiza Izabela Toderascu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Livia Elena Sima
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Stefana Orobeti
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | | | - Madalina Icriverzi
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | | | - Cezar Comanescu
- National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Nicusor Iacob
- National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania
| | - Victor Kuncser
- National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania
| | - Iulia Antohe
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - Gianina Popescu-Pelin
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - George Stanciu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - Petre Ionita
- Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Cristian N. Mihailescu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| | - Gabriel Socol
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
6
|
Guo R, Gong X, Li K, Qiu Z, Yang L, Wan Y, Yao X, Long C, Xu J, Li K, Liu J, Liu J. Xanthine oxidase, a therapeutic target of realgar for non-small cell lung cancer. Heliyon 2023; 9:e12666. [PMID: 36685422 PMCID: PMC9849977 DOI: 10.1016/j.heliyon.2022.e12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background The effects of realgar against non-small cell lung cancer (NSCLC) have been massively studied, but the direct therapeutic targets of realgar remain unclear. This study aimed to identify the molecular targets of realgar against NSCLC and explore their therapeutic mechanisms based on a network pharmacology approach and experimental validations. Methods The BATMAN-TCM and Digsee databases were used to predict realgar targets and NSCLC-related genes, respectively. A protein-protein interaction network was constructed for each gene set, and the overlapping genes were identified as potential targets of realgar against NSCLC. The correlation between potential targets and NSCLC was analyzed using The Cancer Genome Atlas and International Cancer Genome Consortium databases, and the key target was validated by in-silico and in-vitro experiments. Results Twenty-three overlapping genes, including xanthine oxidase (XO), were identified as potential targets of realgar against NSCLC. XO was selected as the key target for validation, as it was found to be upregulated in NSCLC tumor tissue, which correlated with poor overall survival. A possible interaction between realgar and XO was revealed by molecular docking which was further validated experimentally. Realgar treatment suppressed the activity of XO in NSCLC cells, as demonstrated by the unchanged XO protein levels. Finally, the mechanism of action of XO as a target against NSCLC through the cell-cell junction organization pathway was investigated. Conclusions Overall, this study proposes a potential molecular mechanism illustrating that XO is a target of realgar against NSCLC and highlights the usefulness of XO as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Rui Guo
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Xiaoyu Gong
- Pharmacy Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Kongzhao Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Zhengqi Qiu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Lina Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Yanbin Wan
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Xinhuang Yao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Jiqing Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Kang Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China
| | - Jingyan Liu
- Emergency Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China,Corresponding author. Emergency Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China,Corresponding author. Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, PR China.
| |
Collapse
|
7
|
Cholujova D, Koklesova L, Lukacova Bujnakova Z, Dutkova E, Valuskova Z, Beblava P, Matisova A, Sedlak J, Jakubikova J. In vitro and ex vivo anti-myeloma effects of nanocomposite As 4S 4/ZnS/Fe 3O 4. Sci Rep 2022; 12:17961. [PMID: 36289430 PMCID: PMC9606304 DOI: 10.1038/s41598-022-22672-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles in medicine can integrate actively targeted imaging agents and drug delivery vehicles, and combining multiple types of therapeutics in a single particle has numerous advantages, especially in multiple myeloma. MM is an incurable hematological disorder characterized by clonal proliferation of plasma cells in the bone marrow. In this study, we evaluated the anti-myeloma activity of 3 nanocomposites (3NPs): As4S4/ZnS/Fe3O4 (1:4:1), As4S4/ZnS/Fe3O4 with folic acid (FA), and As4S4/ZnS/Fe3O4 with FA and albumin with reduced survival MM cell lines and primary MM samples by each of 3NP. Cytotoxic effects of 3NPs were associated with caspase- and mitochondria-dependent apoptosis induction and reduced c-Myc expression. Modulation of cell cycle regulators, such as p-ATM/ATM and p-ATR/ATR, and increases in p-Chk2, cyclin B1, and histones were accompanied by G2/M arrest triggered by 3NPs. In addition, 3NPs activated several myeloma-related signaling, including JNK1/2/3, ERK1/2 and mTOR. To overcome BM microenvironment-mediated drug resistance, nanocomposites retained its anti-MM activity in the presence of stroma. 3NPs significantly decreased the stem cell-like side population in MM cells, even in the context of stroma. We observed strong synergistic effects of 3NPs combined with lenalidomide, pomalidomide, or melphalan, suggesting the potential of these combinations for future clinical studies.
Collapse
Affiliation(s)
- Danka Cholujova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.419303.c0000 0001 2180 9405Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84511 Slovakia
| | - Lenka Koklesova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.7634.60000000109409708Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Slovakia
| | - Zdenka Lukacova Bujnakova
- grid.419303.c0000 0001 2180 9405Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, Košice, 04001 Slovakia
| | - Erika Dutkova
- grid.419303.c0000 0001 2180 9405Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, Košice, 04001 Slovakia
| | - Zuzana Valuskova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Patricia Beblava
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Anna Matisova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Jan Sedlak
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Jana Jakubikova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.419303.c0000 0001 2180 9405Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84511 Slovakia
| |
Collapse
|
8
|
Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity. Molecules 2022; 27:molecules27196306. [PMID: 36234841 PMCID: PMC9571849 DOI: 10.3390/molecules27196306] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Silver nanoparticles (AgNPs) have recently gained interest in the medical field because of their biological features. The present study aimed at screening Rhizophora apiculata secondary metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characterization of R. apiculata silver nanoparticles. In addition, an assessment of in vitro cytotoxic, antioxidant, anti-inflammatory and wound healing activity of R. apiculata and its synthesized AgNPs was carried out. The powdered plant material (leaves) was subjected to Soxhlet extraction to obtain R. apiculata aqueous extract. The R. apiculata extract was used as a reducing agent in synthesizing AgNPs from silver nitrate. The synthesized AgNPs were characterized by UV-Vis, SEM-EDX, XRD, FTIR, particle size analyzer and zeta potential. Further aqueous leaf extract of R. apiculata and AgNPs was subjected for in vitro antioxidant, anti-inflammatory, wound healing and cytotoxic activity against A375 (Skin cancer), A549 (Lung cancer), and KB-3-1 (Oral cancer) cell lines. All experiments were repeated three times (n = 3), and the results were given as the mean ± SEM. The flavonoids and total phenolics content in R. apiculata extract were 44.18 ± 0.086 mg/g of quercetin and 53.24 ± 0.028 mg/g of gallic acid, respectively. SEM analysis revealed R. apiculata AgNPs with diameters ranging from 35 to 100 nm. XRD confirmed that the synthesized silver nanoparticles were crystalline in nature. The cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line. Antioxidant, anti-inflammatory, and cytotoxicity tests revealed that AgNPs had significantly more activity than the plant extract. The AgNPs inhibited protein denaturation by a mean percentage of 71.65%, which was equivalent to the standard anti-inflammatory medication diclofenac (94.24%). The AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively. R. apiculata AgNPs demonstrated stronger cell migration and percentage of wound closure (82.79%) compared to the plant extract (75.23%). The overall results revealed that R. apiculata AgNPs exhibited potential antioxidant, anti-inflammatory, wound healing, and cytotoxic properties. In future, R. apiculata should be further explored to unmask its therapeutic potential and the mechanistic pathways of AgNPs should be studied in detail in in vivo animal models.
Collapse
|
9
|
Xi J, Fang JH, Xiong XM, Gui C, Wang YX, Zhang XQ. Acid Water-ground Nano-realgar Is Superior to Crude Realgar in Promoting Apoptosis of MCF-7 Breast Cancer Cells. Curr Med Sci 2022; 42:720-732. [DOI: 10.1007/s11596-022-2605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
10
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
11
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
12
|
Han T, Zhang H, Xu W, Li C, Wang M, Bai Y, Yang L, Zhang S, Jia Z, Xu X, Zhao C, Wei F, Li X. Study on the Mechanism of Reducing Hepatotoxicity of Water-Grinding Realgar by Metabolomics, Morphology, and Chemical Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8538287. [PMID: 34950217 PMCID: PMC8692000 DOI: 10.1155/2021/8538287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Realgar was usually selected as a substitute for arsenic trioxide to treat acute promyelocytic leukemia due to its higher effect without high cardiotoxicity. In traditional Chinese medicine (TCM), realgar is usually processed by the water-grinding method clinically, but the mechanism of realgar processing detoxification is still unclear. However, it is necessary to take safety and efficacy into account while evaluating a drug. METHODS Sixty male Wistar rats were divided into control group, realgar products-treated groups, and corresponding subgroups. Biochemistry analysis and histopathological examination were performed in the study, and plasma samples were collected from all the rats for metabolomics analysis. RESULTS No significant toxicity was observed in rats treated with 0.64 g/kg/day grinding realgar (G-r) and water-grinding realgar (WG-r). When the dose increased to 1.92 g/kg/day, the liver weight coefficients of the rats treated with G-r (HG-r: 3.65 ± 0.26%) and WG-r (HWG-r: 3.67 ± 0.14%) increased significantly and severe hepatic injury occurred in comparison to the control group (Group C: 3.00 ± 0.21%). After one week's withdrawal, the liver injury caused by the high dose of WG-r significantly recovered, while the liver damage caused by G-r was more difficult to recover. In metabolomics analysis, 14 metabolites were identified as the potential biomarkers in realgar-treated rats. These metabolites indicated that there were perturbations of the primary bile acid biosynthesis, arachidonic acid metabolism, linoleic acid metabolism, and glycerophospholipid metabolism in the realgar-treated groups. CONCLUSIONS These results illustrate that, as a TCM processing method, water grinding had the effect of reducing toxicity, and the metabolomics method may be a valuable tool for studying the toxicity induced by TCM and the mechanism of TCM processing.
Collapse
Affiliation(s)
- Ting Han
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Zhang
- Merck Sharp & Dohme Ltd., Beijing, China
| | - Wenjuan Xu
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunshuai Li
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuying Bai
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Yang
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyan Zhang
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhe Jia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinfang Xu
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chongjun Zhao
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiangri Li
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Tambunlertchai S, Geary SM, Salem AK. Skin Penetration Enhancement Strategies Used in the Development of Melanoma Topical Treatments. AAPS JOURNAL 2021; 23:19. [PMID: 33404992 DOI: 10.1208/s12248-020-00544-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer for which there is currently no reliable therapy and is considered one of the leading health issues in the USA. At present, surgery is the most effective and acceptable treatment; however, surgical excision can be impractical in certain circumstances. Topical skin delivery of drugs using topical formulations is a potential alternative approach which can have many advantages aside from being a non-invasive delivery route. Nevertheless, the presence of the stratum corneum (SC) limits the penetration of drugs through the skin, lowering their treatment efficacy and raising concerns among physicians and patients as to their effectiveness. Currently, research groups are trying to circumvent the SC barrier by using skin penetration enhancement (SPE) strategies. The SPE strategies investigated include chemical skin penetration enhancers (CPEs), physical skin penetration enhancers (PPEs), nanocarrier systems, and a combination of SPE strategies (cream). Of these, PPEs and cream are the most advanced approaches in terms of preclinical and clinical studies, respectively.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
14
|
Temperature-sensitive gel-loaded composite nanomedicines for the treatment of cervical cancer by vaginal delivery. Int J Pharm 2020; 586:119616. [PMID: 32650113 DOI: 10.1016/j.ijpharm.2020.119616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
In this study, toad venom (TV) and realgar were loaded into a poloxamer 188/407 (F127/F188)-based temperature-sensitive in situ gel (TISG) and encapsulated in solid lipid nanoparticles (TV-SLN) or ground nano-realgar (NR) to improve drug release and reduce local irritation after vaginal administration. The combination of TV-SLN and NR (TV-SLN/NR) greatly enhanced the inhibition of tumor cell proliferation and was most effective at a dose ratio of 2:3 (w/w). After TV-SLN/NR treatment, S and G0/G1 phase arrest were observed in HeLa and SKOV-3 cells and the inhibitory effects on proliferation were stronger than those in the conventional powder group. The gelation temperature of TV-SLN and NR-loaded TISG (TV-SLN/NR-TISG) using the selected formulation was 33 ± 0.91 °C. The cumulative release of the drug increased as the dissolution of gel progressed, showing a linear relationship (r > 0.99). TV-SLN/NR-TISG enabled the sustained release of cargo by adhesion to the vaginal mucosa and showed excellent biocompatibility during continuous administration for 7 days. We specifically demonstrated the effectiveness of the TISG for the vaginal delivery of TV-SLN and NR, supporting its important clinical implications for the treatment of cervical cancer.
Collapse
|
15
|
Wu JY, Cai JX, Li YJ, Hu XB, Liu XY, Wang JM, Tang TT, Xiang DX. 3,5,4'-Trimethoxy-trans-stilbene loaded microemulsion for cutaneous melanoma therapy by transdermal drug delivery. Drug Deliv Transl Res 2020; 11:169-181. [PMID: 32297167 DOI: 10.1007/s13346-020-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For therapy of skin cancer, transdermal administration has been a potential way to enhance chemotherapy. However, the drug delivery efficacy remained unsatisfactory because of the physiological barriers from the skin to the tumor, which hindered the effect of 3,5,4'-trimethoxy-trans-stilbene (BTM), a drug that has toxicity to cancer. Herein, we prepared an oil-in-water (O/W) microemulsion to load BTM (BTM-ME) for transdermal therapy of melanoma. BTM-ME was characterized by size, zeta potential, and polymer disperse index (PDI). B16F10 melanoma cell line was used for cell experiments and animal models. And cell uptake, viability assay, and flow cytometry were to test the cell internalization and the ability of BTM-ME to induce cancer cell apoptosis. Skin penetration testing was to detect its penetration efficiency to the skin. And tumor-bearing mice were used to prove the improvement of anti-cancer efficacy of BTM-ME with the combination of Taxol. BTM was successfully loaded in O/W microemulsion, with a drug loading capacity of 24.82 mg/mL. BTM-ME can penetrate the skin and increase the retention of BTM in the epidermis. And the combination of Taxol and BTM-ME effectively suppressed tumor growth and has lower toxicity to normal organs. BTM-ME provides adjuvant therapy to cutaneous melanoma and the combination of Taxol and BTM-ME has the clinical potential for skin cancer therapy. Graphical abstract.
Collapse
Affiliation(s)
- Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jia-Xin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xin-Yi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jie-Min Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Tian-Tian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Fatal acute arsenic poisoning by external use of realgar: Case report and 30 years literature retrospective study in China. Forensic Sci Int 2019; 300:e24-e30. [PMID: 31023496 DOI: 10.1016/j.forsciint.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022]
Abstract
Realgar (arsenic sulfide) is widely used in combination with other herbs as Chinese patent medicine to treat a variety of diseases in China. As a mineral arsenic, its mild toxicity was also well known. Longtime over-dose usage or wrongly oral intake of realgar can cause chronic arsenic poisoning and/or death, but acute fatal arsenic poisoning resulted from short-term dermal use of realgar-containing medicine was very rare. Here, we present the case of a 35-year-old Chinese man, who was diagnosed with severe psoriasis and died of fatal acute arsenic poisoning after he applied a local folk prescription ointment containing mainly the realgar to the affected skin for about 4 days. The autopsy showed multiple punctate hemorrhages over the limbs, pleural effusion, edematous lungs with consolidation, mild myocardial hypertrophy and normal-looking kidneys. The histopathological examination of renal tissue showed severe degeneration, necrosis and desquamation of renal tubular epithelial cells, presence of protein cast and a widened edematous interstitium with interstitial fibrosis. The presence of arsenic in large amount in the ointment (about 6%), in blood (1.76 μg/mL), and in skin (4.71 μg/g), were confirmed analytically. We also provide the clinical records of the deceased and briefly reviewed 7 similar cases in literature (6 in Chinese and 1 in English) in the past 30 years in China.
Collapse
|
17
|
Xu R, Song P, Wang J, Wu Z, Yan L, Zhao W, Liu Y, Ma W, Latta M, Li H, Chen P. Bioleaching of realgar nanoparticles using the extremophilic bacterium Acidithiobacillus ferrooxidans DLC-5. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Ye Y, Wang J, Sun W, Bomba HN, Gu Z. Topical and Transdermal Nanomedicines for Cancer Therapy. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Saber MM, Mirtajani SB, Karimzadeh K. Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Song P, Hai Y, Wang X, Zhao L, Chen B, Cui P, Xie Q, Yu L, Li Y, Wu Z, Li H. Realgar transforming solution suppresses angiogenesis and tumor growth by inhibiting VEGF receptor 2 signaling in vein endothelial cells. Arch Pharm Res 2018. [PMID: 29542005 DOI: 10.1007/s12272-018-1014-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Realgar (As4S4), as an arsenic sulfide mineral drug, has a good therapeutic reputation for anticancer in Traditional Chinese Medicine, and has recently been reported to inhibit angiogenesis in tumor growth. However, considering the poor solubility and low bioavailability of realgar, large dose of realgar and long period of treatment are necessary for achieving the effective blood medicine concentration. In present study, we resolved the crucial problem of poor solubility of realgar by using intrinsic biotransformation in microorganism, and investigated underlying mechanisms of realgar transforming solution (RTS) for antiangiogenesis. Our results demonstrated that RTS had a strong activity to inhibit HUVECs proliferation, migration, invasion, and tube formation. Moreover, RTS inhibited VEGF/bFGF-induced phosphorylation of VEGFR2 and the downstream protein kinases including ERK, FAK, and Src. In vivo zebrafish and chicken chorioallantoic membrane model experiments showed that RTS remarkably blocked angiogenesis. Finally, compared with the control, administration of 2.50 mg/kg RTS reached more than 50% inhibition against H22 tumor allografts in KM mice, but caused few toxic effects in the host. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. In summary, our findings suggest that RTS inhibits angiogenesis and may be a potential drug candidate in anticancer therapy.
Collapse
Affiliation(s)
- Peng Song
- School of Life Sciences, Institute of Microbiology, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, China.,Key Laboratory of Prevention and Treatment for Chronic Disease by Traditional Chinese Medicine of Gansu Province, Jiayuguan West Road No. 732, Lanzhou, 730000, China
| | - Yang Hai
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Baoqiang Chen
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Peng Cui
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Qinjian Xie
- School of Life Sciences, Institute of Microbiology, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, China
| | - Lan Yu
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Yang Li
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China
| | - Hongyu Li
- School of Life Sciences, Institute of Microbiology, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, China. .,School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy. Ther Deliv 2017; 7:521-44. [PMID: 27444493 DOI: 10.4155/tde-2016-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Parvifloron D is a natural diterpene with a broad and not selective cytotoxicity toward human tumor cells. In order to develop a targeted antimelanoma drug delivery platform for Parvifloron D, hybrid nanoparticles were prepared with biopolymers and functionalized with α-melanocyte stimulating hormone. Results/methodology: Nanoparticles were produced according to a solvent displacement method and the physicochemical properties were assessed. It was shown that Parvifloron D is cytotoxic and can induce, both as free and as encapsulated drug, cell death in melanoma cells (human A375 and mouse B16V5). Parvifloron D-loaded nanoparticles showed a high encapsulation efficiency (87%) and a sustained release profile. In vitro experiments showed the nanoparticles' uptake and cell internalization. CONCLUSION Hybrid nanoparticles appear to be a promising platform for long-term drug release, presenting the desired structure and a robust performance for targeted anticancer therapy.
Collapse
|
22
|
Cholujova D, Bujnakova Z, Dutkova E, Hideshima T, Groen RW, Mitsiades CS, Richardson PG, Dorfman DM, Balaz P, Anderson KC, Jakubikova J. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 2017; 179:756-771. [PMID: 29048129 DOI: 10.1111/bjh.14974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM), a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow, remains incurable despite the use of novel and conventional therapies. In this study, we demonstrated MM cell cytotoxicity triggered by realgar (REA; As4 S4 ) nanoparticles (NREA) versus Arsenic trioxide (ATO) against MM cell lines and patient cells. Both NREA and ATO showed in vivo anti-MM activity, resulting in significantly decreased tumour burden. The anti-MM activity of NREA and ATO is associated with apoptosis, evidenced by DNA fragmentation, depletion of mitochondrial membrane potential, cleavage of caspases and anti-apoptotic proteins. NREA induced G2 /M cell cycle arrest and modulation of cyclin B1, p53 (TP53), p21 (CDKN1A), Puma (BBC3) and Wee-1 (WEE1). Moreover, NREA induced modulation of key regulatory molecules in MM pathogenesis including JNK activation, c-Myc (MYC), BRD4, and histones. Importantly, NREA, but not ATO, significantly depleted the proportion and clonogenicity of the MM stem-like side population, even in the context of the bone marrow stromal cells. Finally, our study showed that both NREA and ATO triggered synergistic anti-MM activity when combined with lenalidomide or melphalan. Taken together, the anti-MM activity of NREA was more potent compared to ATO, providing the preclinical framework for clinical trials to improve patient outcome in MM.
Collapse
Affiliation(s)
- Danka Cholujova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovakia
| | | | | | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard W Groen
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David M Dorfman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Balaz
- Institute of Geotechnics SAS, Košice, Slovakia
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jana Jakubikova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovakia.,Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Chen P, Xu R, Yan L, Wu Z, Wei Y, Zhao W, Wang X, Xie Q, Li H. Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent. Biol Res 2017; 50:17. [PMID: 28532516 PMCID: PMC5441017 DOI: 10.1186/s40659-017-0122-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/12/2017] [Indexed: 02/05/2023] Open
Abstract
Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetra-sulfide (As4S4). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020 People’s Republic of China
| | - Ruixiang Xu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020 People’s Republic of China
| | - Lei Yan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 People’s Republic of China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020 People’s Republic of China
| | - Yan Wei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000 People’s Republic of China
| | - Wenbin Zhao
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020 People’s Republic of China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020 People’s Republic of China
| | - Qinjian Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000 People’s Republic of China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020 People’s Republic of China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
24
|
Labala S, Jose A, Chawla SR, Khan MS, Bhatnagar S, Kulkarni OP, Venuganti VVK. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int J Pharm 2017; 525:407-417. [PMID: 28373100 DOI: 10.1016/j.ijpharm.2017.03.087] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Co-delivery of chemotherapeutic agents improve anti-tumor efficacy and reduce cancer resistance. Here, we report development of layer-by-layer assembled gold nanoparticles (LbL-AuNP) containing anti-STAT3 siRNA and imatinib mesylate (IM) to treat melanoma. The combination treatment with STAT3 siRNA and IM in B16F10 melanoma cells showed greater suppression of STAT3 protein, decreased cell viability and increased apoptotic events compared with LbL-AuNP containing either STAT3 siRNA or IM. In vivo efficacy studies in melanoma tumor bearing mice showed that non-invasive topical iontophoretic administration (0.5mA/cm2) of LbL-AuNP was comparable with intratumoral administration. Co-delivery of STAT3 siRNA and IM using LbL-AuNP showed significant (p<0.05) reduction in percentage tumor volume, tumor weight and suppressed STAT3 protein expression compared with either STAT3 siRNA or IM loaded LbL-AuNP. Taken together, LbL-AuNP can be developed as nanocarrier system for co-delivery of siRNA and small molecule drugs for topical iontophoretic delivery.
Collapse
Affiliation(s)
- Suman Labala
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Anup Jose
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Sumeet Rajesh Chawla
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Mohammed Shareef Khan
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Shubhmita Bhatnagar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India.
| |
Collapse
|
25
|
Zabielska-Koczywąs K, Dolka I, Król M, Żbikowski A, Lewandowski W, Mieczkowski J, Wójcik M, Lechowski R. Doxorubicin Conjugated to Glutathione Stabilized Gold Nanoparticles (Au-GSH-Dox) as an Effective Therapeutic Agent for Feline Injection-Site Sarcomas-Chick Embryo Chorioallantoic Membrane Study. Molecules 2017; 22:molecules22020253. [PMID: 28208720 PMCID: PMC6155676 DOI: 10.3390/molecules22020253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 02/01/2023] Open
Abstract
Feline injection-site sarcomas are malignant skin tumours with a high local recurrence rate, ranging from 14% to 28%. The treatment of feline injection-site sarcomas includes radical surgery, radiotherapy and/or chemotherapy. In our previous study it has been demonstrated that doxorubicin conjugated to glutathione-stabilized gold nanoparticles (Au-GSH-Dox) has higher cytotoxic effects than free doxorubicin for feline fibrosarcoma cell lines with high glycoprotein P activity (FFS1, FFS3). The aim of the present study was to assess the effectiveness of intratumoural injection of Au-GSH-Dox on the growth of tumours from the FFS1 and FFS3 cell lines on chick embryo chorioallantoic membrane. This model has been utilized both in human and veterinary medicine for preclinical oncological studies. The influence of intratumoural injections of Au-GSH-Dox, glutathione-stabilized gold nanoparticles and doxorubicin alone on the Ki-67 proliferation marker was also checked. We demonstrated that the volume ratio of tumours from the FFS1 and FFS3 cell lines was significantly (p < 0.01) decreased after a single intratumoural injection of Au-GSH-Dox, which confirms the positive results of in vitro studies and indicates that Au-GSH-Dox may be a potent new therapeutic agent for feline injection-site sarcomas.
Collapse
Affiliation(s)
| | - Izabella Dolka
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776 Warsaw, Poland.
| | - Magdalena Król
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776 Warsaw, Poland.
| | - Artur Żbikowski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776 Warsaw, Poland.
| | - Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Józef Mieczkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Michał Wójcik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Roman Lechowski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776 Warsaw, Poland.
| |
Collapse
|
26
|
Bharadwaj R, Das PJ, Pal P, Mazumder B. Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev Ind Pharm 2016; 42:1482-94. [DOI: 10.3109/03639045.2016.1151028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Qin YU, Wang H, Liu ZY, Liu J, Wu JZ. Realgar quantum dots induce apoptosis and necrosis in HepG2 cells through endoplasmic reticulum stress. Biomed Rep 2015; 3:657-662. [PMID: 26405541 DOI: 10.3892/br.2015.489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/16/2015] [Indexed: 11/05/2022] Open
Abstract
Realgar (As4S4) has been used in traditional Chinese medicines for treatment of malignancies. However, the poor water solubility of realgar limits its clinical application. To overcome this problem, realgar quantum dots (RQDs; 5.48±1.09 nm) were prepared by a photoluminescence method. The mean particle size was characterized by high-resolution transmission electron microscopy and scanning electron microscopy. Our recent studies revealed that the RQDs were effective against tumor growth in tumor-bearing mice without producing apparent toxicity. The present study investigated their anticancer effects and mechanisms in human hepatocellular carcinoma (HepG2) cells. The HepG2 cells and human normal liver (L02) cells were used to determine the cytotoxicity of RQDs. The portion of apoptotic and dead cells were measured by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Apoptosis-related proteins and genes were examined by western blot analysis and reverse transcription-quantitative polymerase chain reaction, and the mitochondrial membrane potential was assayed by confocal microscope with JC-1 as a probe. RQDs exhibited cytotoxicity in a concentration-dependent manner and HepG2 cells were more sensitive compared with normal L02 cells. At 15 µg/ml, 20% of the cells were apoptotic, while 60% of the cells were necrotic at 30 µg/ml. The anti-apoptosis protein Bcl-2 was dose-dependently decreased, while pro-apoptotic protein Bax was increased. There was a loss of mitochondrial membrane potential and expression of the stress genes C/EBP-homologous protein 10 and glucose-regulated protein 78 was increased by RQDs. RQDs were effective in the inhibition of HepG2 cell proliferation and this effect was due to induction of apoptosis and necrosis through endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Y U Qin
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Huan Wang
- The Research Center for Medicine and Biology, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Zheng-Yun Liu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jie Liu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jin-Zhu Wu
- Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
28
|
Danciu C, Oprean C, Coricovac DE, Andreea C, Cimpean A, Radeke H, Soica C, Dehelean C. Behaviour of four different B16 murine melanoma cell sublines: C57BL/6J skin. Int J Exp Pathol 2015; 96:73-80. [PMID: 25664478 DOI: 10.1111/iep.12114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022] Open
Abstract
Transplantable murine melanomas are well-established models for the study of experimental cancer therapies. The aim of this study was to explore the behaviour of four different B16 murine melanoma cell sublines after inoculation into C57BL/6J mice; and, more specifically to analyse skin changes, with respect to two specific parameters: clinical (tumour volume, melanin amount, erythema) and histological (H & E, S100, VEGF expression). Both non-invasive and invasive analysis showed that B164A5 is the most aggressive melanoma cell line for C57BL/6J's skin, followed by B16F10 and then by diminished aggressive growth pattern by the B16GMCSF and B16FLT3 cell lines.
Collapse
Affiliation(s)
- Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Camelia Oprean
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Dorina E Coricovac
- Department of Toxicology, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Cioca Andreea
- Department of Pathology, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Heinfried Radeke
- Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety, Clinic of J. W. Goethe University, Frankfurt, Germany
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology, University of Medicine and Pharmacy 'Victor Babes', Timisoara, Romania
| |
Collapse
|
29
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
30
|
Shi F, Feng N, Omari-Siaw E. Realgar nanoparticle-based microcapsules: preparation and in-vitro/in-vivo characterizations. J Pharm Pharmacol 2014; 67:35-42. [DOI: 10.1111/jphp.12314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The aim of this study was to prepare microcapsules for the oral delivery of realgar nanoparticles (RN) that are also capable of improving its stability.
Methods
RN and RN-based microcapsules (RNM) were prepared using ball milling and solvent evaporation techniques, respectively. Properties such as particle size, ζ-potential (ZP), morphology and X-ray diffractometer (XRD) were investigated. In addition, drug release, bioavailability and antitumour studies were also performed.
Key findings
The nanoparticles appeared round or elliptical in shape with a mean size of 85.4 ± 3.5 nm and a ZP of −34.3 ± 1.7 mV. The obtained RNM appeared spherical and not aggregated with a relatively narrow size distribution. XRD analysis revealed that ball milling technique did not change the crystallinity of the realgar powder. RN and RNM exhibited considerable higher release of As2S2, bioavailability and antitumour efficacies compared with crude realgar. Furthermore, RNM could protect RN directly exposed to the air and light, and therefore increased the stability of the RN.
Conclusions
The developed RNM demonstrated a greater potential as a delivery system for realgar.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | |
Collapse
|
31
|
Rancan F, Blume-Peytavi U, Vogt A. Utilization of biodegradable polymeric materials as delivery agents in dermatology. Clin Cosmet Investig Dermatol 2014; 7:23-34. [PMID: 24470766 PMCID: PMC3891488 DOI: 10.2147/ccid.s39559] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable polymeric materials are ideal carrier systems for biomedical applications. Features like controlled and sustained delivery, improved drug pharmacokinetics, reduced side effects and safe degradation make the use of these materials very attractive in a lot of medical fields, with dermatology included. A number of studies have shown that particle-based formulations can improve the skin penetration of topically applied drugs. However, for a successful translation of these promising results into a clinical application, a more rational approach is needed to take into account the different properties of diseased skin and the fate of these polymeric materials after topical application. In fact, each pathological skin condition poses different challenges and the way diseased skin interacts with polymeric carriers might be markedly different to that of healthy skin. In most inflammatory skin conditions, the skin's barrier is impaired and the local immune system is activated. A better understanding of such mechanisms has the potential to improve the efficacy of carrier-based dermatotherapy. Such knowledge would allow the informed choice of the type of polymeric carrier depending on the skin condition to be treated, the type of drug to be loaded, and the desired release kinetics. Furthermore, a better control of polymer degradation and release properties in accordance with the skin environment would improve the safety and the selectivity of drug release. This review aims at summarizing the current knowledge on how polymeric delivery systems interact with healthy and diseased skin, giving an overview of the challenges that different pathological skin conditions pose to the development of safer and more specific dermatotherapies.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
32
|
Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol Lett 2013; 223:124-38. [PMID: 24070738 DOI: 10.1016/j.toxlet.2013.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
The aim of the present study was the evaluation of anti-proliferative potentials of apigenin (Ap), (a dietary flavonoid) loaded in poly (lactic-co-glycolide) nanoparticles (NAp) in A375 cells in vitro. NAp was characterized for particle size, morphology, zeta potential, drug release and encapsulation. Cellular entry and intracellular localization of NAp were assessed by transmission electron and confocal microscopies. Circular dichroic spectral analysis and stability curve for Gibb's free energy of dsDNA of A375 cells were also analyzed. DNA fragmentation, intracellular ROS accumulation, superoxide-dismutase activity, intracellular glutathione-reductase content and mitochondrial functioning through relevant markers like mitochondrial transmembrane potential, ATPase activity, ATP/ADP ratio, volume changes/swelling, cytochrome-c release, expressions of Apaf-1, bax, bcl-2, caspase-9, 3, and PARP cleavage were analyzed. NAp produced better effects due to their smaller size, faster mobility and site-specific action. Photostability studies revealed that PLGA encapsulations were efficient at preserving apigenin ultraviolet-light mediated photodegradation. NAp readily entered cancer cells, could intercalate with dsDNA, inducing conformational change. Corresponding increase in ROS accumulation and depletion of the antioxidant enzyme activities exacerbated DNA damage, mediating apoptosis through mitochondrial dysfunction. Overall results indicate that therapeutic efficacy of NAp may be enhanced by PLGA nanoparticle formulations to have better ameliorative potentials in combating skin melanoma.
Collapse
Affiliation(s)
- Sreemanti Das
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Boiron Laboratories, Lyon, France
| | | | | | | | | |
Collapse
|
33
|
Wu W, Wu XR. Effect of Chunyangzhengqi capsules on cell proliferation and apoptosis in human gastric cancer cell line MGC-803. Shijie Huaren Xiaohua Zazhi 2013; 21:3388-3393. [DOI: 10.11569/wcjd.v21.i31.3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of Chunyangzhengqi capsules on the growth of gastric cancer MGC-803 cells.
METHODS: MGC-803 cells were treated with Chunyangzhengqi capsules at a concentration of 200, 400, 800 or 1600 μg/mL. Cell morphological changes were observed under an inverted microscope. Cell cycle was examined by flow cytometry (FCM). Apoptosis was analyzed by Hoechest-33258 staining. The spectrometry was used to detect Caspase3 activity.
RESULTS: Chunyangzhengqi capsules inhibited the proliferation of MGC-803 cells in a dose- and time-dependent manner. The IC50 values of Chunyangzhengqi capsules at 24, 48 and 72 h were 1734, 1534 and 1094 μg/mL, respectively. After treatment, cells exhibited apoptosis in morphology. Chunyangzhengqi capsules could induce apoptosis of MGC-803 cells and block cells at S phase. The activity of Caspase3 was significantly increased in cells treated with Chunyangzhengqi capsules at a concentration of 1600 μg/mL for 16 h.
CONCLUSION: Chunyangzhengqi capsules inhibit cell proliferation and induce apoptosis in human gastric cancer cell line MGC-803.
Collapse
|
34
|
Liu X, Li X, Wang L, Lv X, Chen N, Li P, Lu K, Wang X. Realgar induces apoptosis in the chronic lymphocytic leukemia cell line MEC‑1. Mol Med Rep 2013; 8:1866-70. [PMID: 24141727 DOI: 10.3892/mmr.2013.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/08/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of realgar on the viability, proliferation and apoptosis in the human chronic lymphocytic leukemia (CLL) cell line, MEC‑1. Potential mechanisms mediating the effect were also explored in the experiment. Cultured MEC‑1 cells were incubated with various concentrations of realgar for 24, 48 and 72 h. A WST‑8 assay was employed to evaluate the effect on cell viability. Inhibitory effects on cell proliferation were determined using a 5‑bromodeoxyuridine cell proliferation ELISA. The apoptotic effect on MEC‑1 cells was evaluated by annexin V‑fluorescein isothiocyanate/propidium iodide dual staining, followed by flow cytometry. Quantitative polymerase chain reaction was performed to determine the mRNA expression levels of BCL2‑associated X protein (BAX), BCL2‑like 1 (Bcl-xL), v‑myc myelocytomatosis viral oncogene homolog (avian; c‑Myc) and cyclin‑dependent kinase inhibitor 1A (p21). It was found that viability and proliferation were significantly reduced while apoptotic rates increased in MEC‑1 cells following exposure to realgar. Furthermore, mRNA expression of BAX and c‑Myc was upregulated and downregulated, respectively, in realgar‑treated MEC‑1 cells. In conclusion, the results showed that realgar inhibits viability and prolife-ration and induces apoptosis of MEC‑1 cells in a dose‑ and time‑dependent manner. The effect may depend on the mitochondrial apoptosis pathway. The results of the present study may be beneficial in the identification of a new target therapy for CLL.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu D, Zhi D, Zhou T, Yu Q, Wan F, Bai Y, Li H. Realgar bioleaching solution is a less toxic arsenic agent in suppressing the Ras/MAPK pathway in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:292-299. [PMID: 23376179 DOI: 10.1016/j.etap.2013.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/29/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
To explore other arsenic derivatives with anticancer effects and fewer adverse effects, realgar bioleaching solution (RBS) has been found to be a viable approach. Here we used C. elegans as a model organism to its possible efficacy for anti-cancer effect of RBS. Our results indicated that RBS significantly suppressed the multivulva (Muv) phenotype of let-60 ras(gf) mutant that was positive correlated to arsenic concentrations in worms and also inhibited Muv phenotype of lin-15(lf) upstream of Ras/MAPK pathway, but did not affect the Muv phenotype resulting from loss-of-function mutations of lin-l(lf) downstream of Ras/MAPK pathway, which may be mechanism-based. In toxicity tests, RBS did not lead to reduction resulting from arsenic trioxide (ATO) in the number of pharyngeal pumping which was orthologous to vertebrate heart beating in wild type C. elegans. Overall, RBS was likely to be a potential anti-cancer drug candidate with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Dongling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Wadajkar AS, Bhavsar Z, Ko CY, Koppolu B, Cui W, Tang L, Nguyen KT. Multifunctional particles for melanoma-targeted drug delivery. Acta Biomater 2012; 8:2996-3004. [PMID: 22561668 DOI: 10.1016/j.actbio.2012.04.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/27/2012] [Accepted: 04/26/2012] [Indexed: 11/26/2022]
Abstract
New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents.
Collapse
|
37
|
An YL, Nie F, Wang ZY, Zhang DS. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells. Int J Nanomedicine 2011; 6:3187-94. [PMID: 22238507 PMCID: PMC3254263 DOI: 10.2147/ijn.s26237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim Our objective was to prepare a new nano-sized realgar particle and characterize its anti-tumor effect on tumor cells. Methods Nanoparticles were prepared by coprecipitation and were detected by transmission electron microscopy, scanning electron microscopy, energy dispersive spectrometry (EDS), and dynamic light scattering. An anti-proliferative effect of realgar nanoparticles on rat glioma (C6) cells was determined by the MTT assay. Cell cycle and apoptosis rates were observed by flow cytometry. Apoptosis-related gene expression was detected by immunofluorescence staining. Results Realgar nanoparticles were successfully prepared. The particles were spherical, with an average diameter of approximately 80 nm, and contained arsenic and sulfur elements. Realgar nanoparticles inhibited C6 cell proliferation and induced apoptosis in a dose- and time-dependent manner. Treatment of C6 cells with realgar nanoparticles significantly increased the proportions of cells in S and G2/M phases, decreased the proportion of cells in G0/G1 phase, downregulated Bcl-2 expression, and substantially upregulated Bax expression. Conclusion Realgar nanoparticles significantly inhibited C6 glioma cell proliferation and promoted cell apoptosis by inducing the upregulation of Bax and downregulation of Bcl-2 expression. Realgar nanoparticles are a promising in vitro anti-cancer strategy and may be applicable for human cancer therapy studies.
Collapse
Affiliation(s)
- Yan-li An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Wu J, Shao Y, Liu J, Chen G, Ho PC. The medicinal use of realgar (As₄S₄) and its recent development as an anticancer agent. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:595-602. [PMID: 21497649 DOI: 10.1016/j.jep.2011.03.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arsenicals have been known as poisons and paradoxically as therapeutic agents. In the early 1970s, Chinese physicians from Harbin revived the medicinal use of arsenicals as anticancer agents. Notable success was observed in the treatment of acute promyelocytic leukemia (APL) with arsenic trioxide (ATO). The FDA approved ATO injection in the year 2000 for the treatment of APL. In contrast, the clinical use of the other arsenical, realgar (As₄S₄), is currently much less established, though it has also long been used in medical history. According to ancient medical records and recent findings in clinical trials, realgar was found as effective as ATO, but with relatively good oral safety profiles even on chronic administration. These give realgar an advantage over ATO in maintenance treatment. Though there is increasing understanding on the mechanisms of action and metabolic profiles of ATO, similar aspects of realgar are unclear to date. MATERIALS AND METHODS We outline the use of realgar in traditional medicines, especially in traditional Chinese medicines (TCM) from ancient times to present. The clinical and experimental observations on realgar as a therapeutic agent are described with an emphasis on those findings that may imply the rationale and future directions of realgar as a potential anticancer drug candidate. RESULTS There is an increasing understanding in the mechanisms of action of realgar as an antileukemic agent. However, there is still sparse information on its metabolism and toxicity profiles. CONCLUSIONS Realgar is poorly soluble in water. Recently, several types of realgar nanoparticles (NPs) have been developed. Some of these realgar NPs also possess the unique optical properties of quantum dots. The activities and bioavailability of realgar NPs are much influenced by their sizes, making realgar an interesting biomedical and pharmaceutical research candidate.
Collapse
Affiliation(s)
- Jinzhu Wu
- Department of Chemistry, School of Science, Harbin Institute of Technology, No. 92 West DaZhi Street, Harbin 150001, People's Republic of China.
| | | | | | | | | |
Collapse
|
39
|
Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63:470-91. [PMID: 21315122 DOI: 10.1016/j.addr.2011.01.012] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
Skin is a widely used route of delivery for local and systemic drugs and is potentially a route for their delivery as nanoparticles. The skin provides a natural physical barrier against particle penetration, but there are opportunities to deliver therapeutic nanoparticles, especially in diseased skin and to the openings of hair follicles. Whilst nanoparticle drug delivery has been touted as an enabling technology, its potential in treating local skin and systemic diseases has yet to be realised. Most drug delivery particle technologies are based on lipid carriers, i.e. solid lipid nanoparticles and nanoemulsions of around 300 nm in diameter, which are now considered microparticles. Metal nanoparticles are now recognized for seemingly small drug-like characteristics, i.e. antimicrobial activity and skin cancer prevention. We present our unpublished clinical data on nanoparticle penetration and previously published reports that support the hypothesis that nanoparticles >10nm in diameter are unlikely to penetrate through the stratum corneum into viable human skin but will accumulate in the hair follicle openings, especially after massage. However, significant uptake does occur after damage and in certain diseased skin. Current chemistry limits both atom by atom construction of complex particulates and delineating their molecular interactions within biological systems. In this review we discuss the skin as a nanoparticle barrier, recent work in the field of nanoparticle drug delivery to the skin, and future directions currently being explored.
Collapse
|
40
|
Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview). Toxins (Basel) 2010; 2:1568-81. [PMID: 22069650 PMCID: PMC3153258 DOI: 10.3390/toxins2061568] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022] Open
Abstract
While intensive efforts have been made for the treatment of cancer, this disease is still the second leading cause of death in many countries. Metastatic breast cancer, late-stage colon cancer, malignant melanoma, multiple myeloma, and other forms of cancer are still essentially incurable in most cases. Recent advances in genomic technologies have permitted the simultaneous evaluation of DNA sequence-based alterations together with copy number gains and losses. The requirement for a multi-targeting approach is the common theme that emerges from these studies. Therefore, the combination of new targeted biological and cytotoxic agents is currently under investigation in multimodal treatment regimens. Similarly, a combinational principle is applied in traditional Chinese medicine, as formulas consist of several types of medicinal herbs or minerals, in which one represents the principal component, and the others serve as adjuvant ones that assist the effects, or facilitate the delivery, of the principal component. In Western medicine, approximately 60 different arsenic preparations have been developed and used in pharmacological history. In traditional Chinese medicines, different forms of mineral arsenicals (orpiment—As2S3, realgar—As4S4, and arsenolite—arsenic trioxide, As2O3) are used, and realgar alone is included in 22 oral remedies that are recognized by the Chinese Pharmacopeia Committee (2005). It is known that a significant portion of some forms of mineral arsenicals is poorly absorbed into the body, and would be unavailable to cause systemic damage. This review primary focuses on the application of arsenic sulfide (realgar) for treatment of various forms of cancer in vitro and in vivo.
Collapse
|