1
|
Yang D, Yang C, Huang L, Guan M, Song C. Role of ubiquitination-driven metabolisms in oncogenesis and cancer therapy. Semin Cancer Biol 2025; 110:17-35. [PMID: 39929409 DOI: 10.1016/j.semcancer.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Ubiquitination represents one of the most critical post-translational modifications, comprising a multi-stage enzyme process that plays a pivotal role in a myriad of cellular biological activities. The deregulation of the processes of ubiquitination and deubiquitination is associated with the development of cancers and other diseases. This typescript reviews the impact of ubiquitination on metabolic processes, elucidating the regulatory functions of ubiquitination on pivotal enzymes within metabolic pathways in pathological contexts. It underscores the role of ubiquitination-driven metabolism disorders in the etiology of cancers, and oncogenesis, and highlights the potential therapeutic efficacy of targeting ubiquitination-driven enzymes in cancer metabolism, their combination with immune checkpoint inhibitors, and their clinical applications.
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China; Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Can Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Huang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Ming Guan
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, the James Cancer Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Huang Z, Li Q, Yang C, Zhang C, Huang L, Lin Y, Wang Y, Xiang H, Zhu J. CIDEB promotes lipid deposition in goat intramuscular adipocytes. Anim Biosci 2025; 38:884-897. [PMID: 40045630 PMCID: PMC12062806 DOI: 10.5713/ab.24.0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE Cell death-inducing DNA fragmentation factor alpha-like effector B (CIDEB), a family member of Cell death-inducing DFF45-like effectors (CIDEs), is well known as a crucial regulator for lipid metabolic signaling pathways in various metabolic tissues and secretory glands. However, its role in regulating intramuscular fat (IMF) deposition in goat remains unclear. METHODS The expression vector pcDNA3.1-CIDEB was constructed and transfected into goat intramuscular preadipocytes; the overexpression and interference efficiency and expression of genes related to lipid metabolism were measured by Real-time polymerase chain reaction; the effect of overexpression of CIDEB and interfering with CIDEB on lipid droplet formation was observed by Oil Red O staining and glycerol phosphate oxidase-Trinder enzymatic reaction. Then RNA-Seq was used to investigate the metabolic pathway of CIDEB affecting adipocyte deposition in goat intramuscular preadipocytes. RESULTS Overexpression of CIDEB significantly promoted the lipid droplets accumulation and the triglyceride deposition, and significantly upregulated the expression of genes related to lipid metabolism. After overexpression of CIDEB in goat intramuscular preadipocytes, 171 differentially expressed genes (DEGs) were found, including 122 up-regulated and 49 down-regulated DEGs, and the top three significantly changed pathways filtered by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were Cocaine addiction, Amphetamine addiction and Malaria pathways. Conversely, the silencing of CIDEB significantly reduced lipid accumulation in goat intramuscular preadipocytes, meanwhile changing the expression of lipid metabolism genes. For CIDEB silencing, a total of 2140 DEGs were found, including 1252 up-regulated and 888 down-regulated DEGs, and the top three significantly changed pathways filtered by KEGG analysis were Ribosome, Thyroid hormone signaling pathway and Alzheimer disease. CONCLUSION The expression of CIDEB can significantly promote lipid deposition of intramuscular adipocytes in goats, and these results provide important data to support further clarifying the mechanism of CIDEB gene on the regulation of intramuscular adipogenesis, and the IMF formation in goats.
Collapse
Affiliation(s)
- Zhuohan Huang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu,
China
| | - Qi Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu,
China
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu,
China
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Hua Xiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu,
China
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu,
China
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu,
China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu,
China
| |
Collapse
|
3
|
Demirtas CO, Yilmaz Y. Decoding 17-Beta-hydroxysteroid Dehydrogenase 13: A Multifaceted Perspective on Its Role in Hepatic Steatosis and Associated Disorders. J Clin Transl Hepatol 2024; 12:857-864. [PMID: 39440221 PMCID: PMC11491501 DOI: 10.14218/jcth.2024.00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic liver disease (CLD) represents a significant global health burden, with hepatic steatosis-associated disorders-such as metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease, and hepatitis C virus infection-being major contributors. Recent genome-wide association studies have identified the rs72613567:TA variant in the 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) gene as a protective factor against the development and progression of these conditions. In this review, we summarized the current evidence surrounding the HSD17B13 rs72613567 variant, aiming to elucidate its impact on CLD risk and outcomes, and to explore the potential mechanisms behind its hepatoprotective effects. The rs72613567:TA variant induces a splice donor site mutation, resulting in a truncated, non-functional HSD17B13 protein. Numerous studies have demonstrated that this loss-of-function mutation confers protection against the development of cirrhosis and hepatocellular carcinoma (HCC) in patients with MASH, alcoholic liver disease, and hepatitis C virus infection. Moreover, the rs72613567:TA variant has been associated with reduced liver enzyme levels and improved survival in HCC patients. Integrating this variant into genetic risk scores has shown promise in predicting the progression of fatty liver disease to cirrhosis and HCC. Furthermore, inhibiting HSD17B13 expression through RNA interference and small molecule inhibitors has emerged as a potential therapeutic strategy for MASH. However, the precise molecular mechanisms underlying the hepatoprotective effects of the HSD17B13 rs72613567 variant remain to be fully elucidated. Future research should focus on clarifying the structure-function relationship of HSD17B13 and its role in liver pathophysiology to facilitate the development of targeted therapies for CLD associated with hepatic steatosis.
Collapse
Affiliation(s)
- Coskun Ozer Demirtas
- Department of Gastroenterology, School of Medicine, Marmara University, İstanbul, Türkiye
- Institute of Gastroenterology, Marmara University, İstanbul, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, İstanbul, Türkiye
- Institute of Gastroenterology, Marmara University, İstanbul, Türkiye
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
4
|
Maurotti S, Geirola N, Frosina M, Mirarchi A, Scionti F, Mare R, Montalcini T, Pujia A, Tirinato L. Exploring the impact of lipid droplets on the evolution and progress of hepatocarcinoma. Front Cell Dev Biol 2024; 12:1404006. [PMID: 38818407 PMCID: PMC11137176 DOI: 10.3389/fcell.2024.1404006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Over the past 10 years, the biological role of lipid droplets (LDs) has gained significant attention in the context of both physiological and pathological conditions. Considerable progress has been made in elucidating key aspects of these organelles, yet much remains to be accomplished to fully comprehend the myriad functions they serve in the progression of hepatic tumors. Our current perception is that LDs are complex and active structures managed by a distinct set of cellular processes. This understanding represents a significant paradigm shift from earlier perspectives. In this review, we aim to recapitulate the function of LDs within the liver, highlighting their pivotal role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) (Hsu and Loomba, 2024) and their contribution to the progression towards more advanced pathological stages up to hepatocellular carcinoma (HC) (Farese and Walther, 2009). We are aware of the molecular complexity and changes occurring in the neoplastic evolution of the liver. Our attempt, however, is to summarize the most important and recent roles of LDs across both healthy and all pathological liver states, up to hepatocarcinoma. For more detailed insights, we direct readers to some of the many excellent reviews already available in the literature (Gluchowski et al., 2017; Hu et al., 2020; Seebacher et al., 2020; Paul et al., 2022).
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Nadia Geirola
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Frosina
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Xu L, Li L, Wu L, Li P, Chen FJ. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett 2024; 598:1154-1169. [PMID: 38355218 DOI: 10.1002/1873-3468.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The cell death-inducing DFF45-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec/Fsp27, regulate various aspects of lipid homeostasis, including lipid storage, lipolysis, and lipid secretion. This review focuses on the physiological roles of CIDE proteins based on studies on knockout mouse models and human patients bearing CIDE mutations. The primary cellular function of CIDE proteins is to localize to lipid droplets (LDs) and to control LD fusion and growth across different cell types. We propose a four-step process of LD fusion, characterized by (a) the recruitment of CIDE proteins to the LD surface and CIDE movement, (b) the enrichment and condensate formation of CIDE proteins to form LD fusion plates at LD-LD contact sites, (c) lipid transfer through lipid-permeable passageways within the fusion plates, and (d) the completion of LD fusion. Lastly, we outline CIDE-interacting proteins as regulatory factors, as well as their contribution in LD fusion.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Chen F, Yin Y, Chua BT, Li P. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 2019; 21:94-105. [PMID: 31746121 DOI: 10.1111/tra.12717] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Feng‐Jung Chen
- Institute of Metabolism and Integrative Biology, the Human Phenome InstituteFudan University, and Zhongshan Hospital of Fudan University Shanghai China
| | - Yesheng Yin
- Institute of Metabolism and Integrative Biology, the Human Phenome InstituteFudan University, and Zhongshan Hospital of Fudan University Shanghai China
| | - Boon Tin Chua
- Institute of Metabolism and Integrative Biology, the Human Phenome InstituteFudan University, and Zhongshan Hospital of Fudan University Shanghai China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua‐Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life SciencesTsinghua University Beijing China
| |
Collapse
|
8
|
Guo F, Yuan D, Zhang J, Zhang H, Wang C, Zhu L, Zhang J, Pan Y, Shao C. Silencing of ARL14 Gene Induces Lung Adenocarcinoma Cells to a Dormant State. Front Cell Dev Biol 2019; 7:238. [PMID: 31750299 PMCID: PMC6843082 DOI: 10.3389/fcell.2019.00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, a growing number of ADP ribosylation factor (ARF) family members has been suggested to be critical in tumorigenesis. However, the effects of most ARF members on lung adenocarcinoma pathogenesis are still not well disclosed yet. In this study, ARF-like GTPase 14 (ARL14) was screened as an important prognostic factor of lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database and validated by our in vitro experiments. It was found that silencing of ARL14 gene inhibited cell proliferation and the abilities of cell migration and invasion, and it also attenuated radiation damage of lung adenocarcinoma cells but had no effect on the proliferation of normal lung cells. Notably, ARL14 siRNA blocked the extracellular signal-regulated kinase (ERK)/p38 signaling pathway and induced cell cycle arrest in G0 phase, ultimately leading to cell dormancy. Moreover, ARL14 siRNA enhanced the expression of cell death activator DFFA-like effector (CIDEC) that had opposite roles in cell proliferation and migration to ALR14. Collectively, our results suggest that ARL14 has an important role in the pathogenesis of lung adenocarcinoma through CIDEC/ERK/p38 signaling pathway, and thus it could be applied as a new candidate of prognosis indicator and/or therapeutic target of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Junling Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Hang Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chen Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Everson TM, Zhang H, Lockett GA, Kaushal A, Forthofer M, Ewart SL, Burrows K, Relton CL, Sharp GC, Henderson AJ, Patil VK, Rezwan FI, Arshad SH, Holloway JW, Karmaus W. Epigenome-wide association study of asthma and wheeze characterizes loci within HK1. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:43. [PMID: 31367216 PMCID: PMC6657035 DOI: 10.1186/s13223-019-0356-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND To identify novel epigenetic markers of adolescent asthma and replicate findings in an independent cohort, then explore whether such markers are detectable at birth, predictive of early-life wheeze, and associated with gene expression in cord blood. METHODS We performed epigenome-wide screening with recursive random forest feature selection and internal validation in the IOW birth cohort. We then tested whether we could replicate these findings in the independent cohort ALSPAC and followed-up our top finding with children of the IOW cohort. RESULTS We identified 10 CpG sites associated with adolescent asthma at a 5% false discovery rate (IOW, n = 370), five of which exhibited evidence of associations in the replication study (ALSPAC, n = 720). One site, cg16658191, within HK1 displayed particularly strong associations after cellular heterogeneity adjustments in both cohorts (ORIOW = 0.17, 95% CI 0.04-0.57) (ORALSPAC = 0.57, 95% CI 0.38-0.87). Additionally, higher expression of HK1 (OR = 3.81, 95% CI 1.41-11.77) in cord blood was predictive of wheezing in infancy (n = 82). CONCLUSION We identified novel associations between asthma and wheeze with methylation at cg16658191 and the expression of HK1, which may serve as markers of, predictors of, and potentially etiologic factors involved in asthma and early life wheeze.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208 USA
- Present Address: Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322 USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - Gabrielle A. Lockett
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - Akhilesh Kaushal
- Center for Precision and Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030 USA
| | - Melinda Forthofer
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208 USA
- Present Address: Department of Public Health Sciences at the College of Health and Human Services, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223 USA
| | - Susan L. Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Gemma C. Sharp
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - A. John Henderson
- Avon Longitudinal Study of Parents and Children, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Veeresh K. Patil
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight UK
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - S. Hasan Arshad
- Clinical and Experimental Sciences Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight UK
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
- Clinical and Experimental Sciences Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| |
Collapse
|
10
|
Shi Y, Kuai Y, Lei L, Weng Y, Berberich-Siebelt F, Zhang X, Wang J, Zhou Y, Jiang X, Ren G, Pan H, Mao Z, Zhou R. The feedback loop of LITAF and BCL6 is involved in regulating apoptosis in B cell non-Hodgkin's-lymphoma. Oncotarget 2018; 7:77444-77456. [PMID: 27764808 PMCID: PMC5363597 DOI: 10.18632/oncotarget.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the apoptotic pathway is widely recognized as a key step in lymphomagenesis. Notably, LITAF was initially identified as a p53-inducible gene, subsequently implicated as a tumor suppressor. Our previous study also showed LITAF to be methylated in 89.5% B-NHL samples. Conversely, deregulated expression of BCL6 is a pathogenic event in many lymphomas. Interestingly, our study found an oppositional expression of LITAF and BCL6 in B-NHL. In addition, LITAF was recently identified as a novel target gene of BCL6. Therefore, we sought to explore the feedback loop between LITAF and BCL6 in B-NHL. Here, our data for the first time show that LITAF can repress expression of BCL6 by binding to Region A (-87 to +65) containing a putative LITAF-binding motif (CTCCC) within the BCL6 promoter. Furthermore, the regulation of BCL6 targets ( PRDM1 or c-Myc) by LITAF may be associated with B-cell differentiation. Results also demonstrate that ectopic expression of LITAF induces cell apoptosis, activated by releasing cytochrome c, cleaving PARP and caspase 3 in B-NHL cells whereas knockdown of LITAF robustly protected cells from apoptosis. Interestingly, BCL6, in turn, could reverse cell apoptosis mediated by LITAF. Collectively, our findings provide a novel apoptotic regulatory pathway in which LITAF, as a transcription factor, inhibits the expression of BCL6, which leads to activation of the intrinsic mitochondrial pathway and tumor apoptosis. Our study is expected to provide a possible biomarker as well as a target for clinical therapies to promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Kuai
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Lei
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Weng
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Jinjie Wang
- Department of Pathology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yuan Zhou
- Postgraduate School in Medical School of Ningbo University, Ningbo, China
| | - Xin Jiang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Boldrup L, Gu X, Coates PJ, Norberg-Spaak L, Fahraeus R, Laurell G, Wilms T, Nylander K. Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget 2017; 8:19389-19402. [PMID: 28038473 PMCID: PMC5386692 DOI: 10.18632/oncotarget.14288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Due to the high frequency of loco-regional recurrences, which could be explained by changes in the field surrounding the tumor, patients with squamous cell carcinoma of head and neck show poor survival. Here we identified a total of 554 genes as dysregulated in clinically tumor free tongue tissue in patients with tongue tumors when compared to healthy control tongue tissue. Among the top dysregulated genes when comparing control and tumor free tissue were those involved in apoptosis (CIDEC, MUC1, ZBTB16, PRNP, ECT2), immune response (IFI27) and differentiation (KRT36). Data suggest that these are important findings which can aid in earlier diagnosis of tumor development, a relapse or a novel squamous cell carcinoma of the tongue, in the absence of histological signs of a tumor.
Collapse
Affiliation(s)
- Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, SE - 901 85 Umeå, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, SE - 901 85 Umeå, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lena Norberg-Spaak
- Department of Clinical Sciences/ENT Umeå University, SE - 901 85 Umeå, Sweden
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, SE - 901 85 Umeå, Sweden.,RECAMO, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.,Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010 Paris, France
| | - Göran Laurell
- Department of Clinical Sciences/ENT Umeå University, SE - 901 85 Umeå, Sweden.,Department of Surgical Sciences/ENT, Uppsala University,752 36 Uppsala, Sweden
| | - Torben Wilms
- Department of Clinical Sciences/ENT Umeå University, SE - 901 85 Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, SE - 901 85 Umeå, Sweden
| |
Collapse
|
12
|
Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L, Li P. Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [DOI: 10.1016/j.bbalip.2017.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Li J, Liu G, Zhang F, Zhang Z, Xu Y, Li Q. Role of glycoprotein 78 and cidec in hepatic steatosis. Mol Med Rep 2017; 16:1871-1877. [PMID: 28656280 PMCID: PMC5561988 DOI: 10.3892/mmr.2017.6834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic glycoprotein (gp78), a membrane-anchored E3 ubiquitin ligase, has been reported to be involved in regulating lipid and energy metabolism in animals, and cell death-inducing DFFA-like effector c (cidec) has emerged as an important regulator of metabolism, which has been implicated in the process of fat differentiation. Nonalcoholic fatty liver disease is a metabolic disorder associated with hepatic steatosis. In the present study, to investigate the role of gp78 and cidec in hepatic steatosis, an in vitro cell culture model of hepatic steatosis was established, using the AML12 mouse hepatocyte cell line to assess the protein expression of gp78. The results of Oil Red O staining, phase contrast microscopy and triglyceride content detection experiments indicated that the overexpression of gp78 induced lipid accumulation, whereas gp78-knockdown led to a reduction in lipid accumulation in the AML12 cells. The increased expression of gp78 was associated with steatosis. The expression of cidec was consistent with gp78, and the colocalization of gp78 and cidec was observed on the surface of lipid droplets using immunofluorescence analysis. Furthermore, an interaction between gp78 and cidec was detected using coimmunoprecipitation analysis, and this interaction promoted lipid accumulation. Based on these data, it was hypothesized that gp78 is a regulator of hepatic steatosis, and that it may be a putative molecular mediator in metabolic diseases.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Basic Medical College, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guocai Liu
- The Third Department of Internal Medicine, The 273 Hospital of Chinese PLA, Korla, Xinjiang 84100, P.R. China
| | - Feng Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Basic Medical College, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhiwen Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Basic Medical College, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuqiao Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Basic Medical College, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Basic Medical College, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
14
|
Xu Y, Gu Y, Liu G, Zhang F, Li J, Liu F, Zhang Z, Ye J, Li Q. Cidec promotes the differentiation of human adipocytes by degradation of AMPKα through ubiquitin-proteasome pathway. Biochim Biophys Acta Gen Subj 2015; 1850:2552-62. [PMID: 26367078 DOI: 10.1016/j.bbagen.2015.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND We previously showed that Cidec was localized on the surface of lipid droplets and could promote the differentiation of human adipocytes, but the molecular mechanism was still unknown. METHODS & RESULTS In this study, we first sought to identify proteins that interact with Cidec using yeast two-hybrid system. The results revealed that Cidec could directly interact with AMPKα1 subunit. We further showed that AMPKα levels decreased while Cidec increased during the adipogenic differentiation of human adipocytes. Meanwhile, we observed that the increased Cidec could reduce AMPKα level in adipocytes, and the downregulation of AMPKα could help to promote the differentiation of adipocytes. The results of co-immunoprecipitation and immunofluorescent proved that Cidec biochemically interacted and co-localized with AMPKα1, which meant Cidec was a regulator for AMPKα stability through an ubiquitin-proteasome pathway. CONCLUSION Our data suggested that Cidec could interact with and down-regulate AMPKα through an ubiquitin-proteasome degradation pathway, which provided a possible mechanism of Cidec in promoting human adipocytes differentiation. GENERAL SIGNIFICANCE Our work proposed a new possible mechanism for human adipogenesis, and also provided a potential role of AMPKα as a target in treating obesity or obesity-related diseases.
Collapse
Affiliation(s)
- Yuqiao Xu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Gang Liu
- Department of Plastic and Burns, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Feng Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Jie Li
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Fang Liu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Zhiwen Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China
| | - Jing Ye
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China.
| | - Qing Li
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, No.169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|