1
|
Shen X, Xu S, Zheng Z, Liang W, Guo J. The regulatory role of tRNA-derived small RNAs in the prognosis of gastric cancer. Cell Signal 2024; 125:111511. [PMID: 39551416 DOI: 10.1016/j.cellsig.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In recent years, tRNA-derived small RNAs (tsRNAs) including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), with specific structure and enriched in body fluids, have been found to have specific biological functions. In this paper, the biogenesis, classification, subcellular localization, and biological functions of tsRNAs were summarized. It has been proved that tsRNAs affected tumor cells in proliferation, apoptosis, migration and invasion, and played roles in regulating the occurrence and development of various tumors. In gastric cancer (GC), the imbalance of tsRNAs, such as tRF-33-P4R8YP9LON4VDP, tRF-17-WS7K092, tRF-23-Q99P9P9NDD and others, was closely related to the clinicopathological characteristics of GC patients. Some tsRNAs, such as tRF-23-Q99P9P9NDD, tRF-31-U5YKFN8DYDZDD, and tRF-27-FDXXE6XRK45 promoted the proliferation, migration and invasion of GC cells. Other tsRNAs, such as tRF-41-YDLBRY73W0K5KKOVD, tRF-18-79MP9PO4, and tRF-Glu-TTC-027 inhibited the proliferation, migration and invasion of GC cells. The tsRNAs played roles in the occurrence of GC were through several signaling pathways, such as phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (AKT), Wnt-β-Catenin, and mitogen-activated protein kinase (MAPK) pathways. These findings may provide new strategies for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xiaoban Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shiyi Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhinuo Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wei Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315211, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Zhang YK, Shi R, Meng RY, Lin SL, Zheng M. Erythropoietin-induced hepatocyte receptor A2 regulates effect of pyroptosis on gastrointestinal colorectal cancer occurrence and metastasis resistance. World J Gastrointest Oncol 2024; 16:3781-3797. [PMID: 39350985 PMCID: PMC11438782 DOI: 10.4251/wjgo.v16.i9.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024] Open
Abstract
Erythropoietin-induced hepatocyte receptor A2 (EphA2) is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors. This article reviews the expression of EphA2 in gastrointestinal (GI) colorectal cancer (CRC) and its regulation of pyroptosis. Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression. Studies have shown that EphA2 regulates pyrodeath through various signaling pathways, affecting the occurrence, development and metastasis of GI CRC. The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC, and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment. In addition, EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors, further influencing cancer progression. The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets, which have important implications for future cancer treatment.
Collapse
Affiliation(s)
- Yu-Kun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ruo-Yu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shui-Li Lin
- Department of Ana and Intestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| |
Collapse
|
3
|
Wang Y, Zhang Z, Zhu Z, Wang P, Zhang J, Liu H, Li J. The significance of EphA2-regulated Wnt/β-catenin signal pathway in promoting the metastasis of HBV-related hepatocellular carcinoma. Mol Biol Rep 2023; 50:565-575. [PMID: 36350420 DOI: 10.1007/s11033-022-08045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is closely associated with the malignant progression of hepatocellular carcinoma (HCC). However, the mechanism involved in the HBV-related HCC development remains poorly understood. Hence, the aim of this study is to investigate the regulatory mechanism of EphA2-induced epithelial-mesenchymal transition (EMT) in the metastasis of HBV-related HCC cells. METHODS AND RESULTS The expression level of EphA2 was determined in HBV-related human HCC cells. Then, the effects of EphA2 silencing on the EMT-associated proteins, the Wnt/β-catenin signal pathway and the metastatic potential of HBV-related HCC cells were evaluated. Finally, the inhibitory role of Entecavir (a potent antiviral drug for HBV) on EphA2-induced EMT was explored. The present study revealed that the EphA2 expression level was increased in HBV-related HCC cells compared with non-related HCC cells. Following EphA2 knockdown, the downregulation of Vimentin, β-catenin and p-GSK-3βSer9 expressions, the upregulation of E-cadherin expression, and the suppressed migration and invasion ability of HBV-related HCC cells were found. Additionally, Entecavir was proved to have a significant inhibitory effect on EphA2-induced EMT via attenuating the Wnt/β-catenin signal pathway. CONCLUSIONS In this study, we found that EphA2-induced EMT was involved in the enhanced metastatic potential of HBV-related HCC cells through the activation of the Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Yidan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenting Zhang
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhengyan Zhu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Jinjuan Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China.
| | - Jianyu Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
4
|
Qu B, Han Y, Liang T, Zhang C, Hou G, Gao F. Evaluation of a novel EphA2 targeting peptide for triple negative breast cancer based on radionuclide molecular imaging. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Loss of EphA7 Expression in Basal Cell Carcinoma by Hypermethylation of CpG Islands in the Promoter Region. Anal Cell Pathol 2022; 2022:4220786. [PMID: 35103233 PMCID: PMC8800629 DOI: 10.1155/2022/4220786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignancy worldwide, with increasing incidence. BCCs present low mortality but high morbidity, and its pathogenesis remains unclear. Eph receptors have been implicated in tumorigenesis. EphA7 plays a role as a tumor suppressor in certain cancers. We checked EphA7 expression levels and methylation status in a set of BCCs, benign skin diseases, and compound nevus tissue samples using immunohistochemistry. EphA7 protein was positively expressed in normal basal cells, benign skin diseases, and compound nevus cells, but lost in areas of BCC tissues. We detected hypermethylation in BCC tissue samples with reduced expression of EphA7. There is a significant relationship between the expression level of EphA7 receptor protein and the methylation status of CpG islands in the EphA7 promoter region (P < 0.001). To our knowledge, this is the first study to report the EphA7 expression profile and hypermethylation of EphA7 in BCC. The role of the EphA7 gene and the status of hypermethylation in tumorigenesis and treatment of BCC warrant further investigation.
Collapse
|
6
|
Han J, Wang L, Lv H, Liu J, Dong Y, Shi L, Ji Q. EphA2 inhibits SRA01/04 cells apoptosis by suppressing autophagy via activating PI3K/Akt/mTOR pathway. Arch Biochem Biophys 2021; 711:109024. [PMID: 34487720 DOI: 10.1016/j.abb.2021.109024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
This study attempted to determine the effect of EphA2 on H2O2-treated lens epithelial cells (SRA01/04) and the underlying mechanisms. MTT assay and flow cytometry were performed to assess cell viability and cell apoptosis. Western blot was carried out to examine the levels of proteins associated with apoptosis and autophagy. Our results revealed that EphA2 significantly elevated the reduced cell viability, and inhibited the increased cell apoptosis in H2O2-treated SRA01/04 cells, along with the significant up-regulated Bcl-2 and down-regulated Cleaved-caspase-3 and Bax protein levels, but which were all abolished by Rapa (autophagy activator). We also found that EphA2 significantly suppressed cell autophagy in H2O2-treated SRA01/04 cells. Additionally, EphA2 significantly up-regulated the protein levels of p-Akt and p-mTOR in H2O2-treated SRA01/04 cells, and the inhibition of Akt by MK-2206 and inhibition of mTOR by Rapa both obviously reversed EphA2-mediated the inhibition of autophagy in H2O2-treated SRA01/04 cells. In summary, these data demonstrated that EphA2 inhibited the apoptosis of SRA01/04 cells by inhibiting autophagy via activating PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jing Han
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lisong Wang
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Huayi Lv
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiajia Liu
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yiran Dong
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lei Shi
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Qingshan Ji
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
7
|
Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT. Mol Cell Proteomics 2021; 20:100131. [PMID: 34455105 PMCID: PMC8482521 DOI: 10.1016/j.mcpro.2021.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell–based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag–based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration–associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease. Proteomics data were integrated with prior transcriptomic (RNA-Seq) data on RPE-EMT. Dysregulated RPE-EMT proteome shares commonality with malignancy-associated EMT. Altered RPE-EMT proteome signatures correlated with known AMD-associated risk factors. Protein kinases and phosphatases crosstalk modulate RPE-EMT.
Collapse
|
8
|
EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene 2021; 40:3610-3623. [PMID: 33941853 PMCID: PMC8134040 DOI: 10.1038/s41388-021-01786-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) is a key member of the receptor tyrosine kinase (RTK) family, while YES Proto-Oncogene 1 (YES1) is a non-receptor tyrosine kinase (nRTK) and annexin A2 (ANXA2) belongs to the calcium-dependent phospholipid-binding protein family annexins. Here, we show that EphA2, YES1, and ANXA2 form a signal axis, in which YES1 activated by EphA2 phosphorylates ANXA2 at Tyr24 site, leading to ANXA2 activation and increased ANXA2 nuclear distribution in gastric cancer (GC) cells. Overexpression (OE) of YES1 increases, while knockdown (KD) of YES1 or ANXA2 decreases GC cell invasion and migration in vitro and tumor growth in mouse models. Reexpression of wildtype (WT) rather than mutant ANXA2 (Tyr24F) in ANXA2 knockdown (ANXA2-KD) GC cells restores YES1-induced cell invasion and migration, while neither WT nor mutant ANXA2 (Tyr24F) can restore cell invasion and migration in YES1-KD GC cells. In addition, the activation of EphA2-YES1-ANXA2 pathway is correlated with poor prognosis. Thus, our results establish EphA2-YES1-ANXA2 axis as a novel pathway that drives GC invasion and metastasis, targeting this pathway would be an efficient way for the treatment of GC.
Collapse
|
9
|
Zhao Y, Cai C, Zhang M, Shi L, Wang J, Zhang H, Ma P, Li S. Ephrin-A2 promotes prostate cancer metastasis by enhancing angiogenesis and promoting EMT. J Cancer Res Clin Oncol 2021; 147:2013-2023. [PMID: 33772606 DOI: 10.1007/s00432-021-03618-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ephrin-A2, a member of the Eph receptor subgroup, is used in diagnosing and determining the prognosis of prostate cancer. However, the role of ephrin-A2 in prostate cancer is remains elusive. METHODS We established stable clones overexpressing or silencing ephrin-A2 from prostate cancer cells. Then, CCK-8 was used in analyzing the proliferation ability of cells. CD31 staining was used in evaluating angiogenesis. Migration and invasion assay were conducted in vivo and in vitro. The expression of EMT-related markers was evaluated in prostate cancer cells through Western blotting. RESULTS We revealed that the ectopic expression of ephrin-A2 in prostate cancer cells facilitated cell migration and invasion in vitro and promoted tumor metastasis and angiogenesis in vivo and that the silencing of ephrin-A2 completely reversed this effect. Although ephrin-A2 did not affect tumor cell proliferation in vitro, ephrin-A2 significantly promoted primary tumor growth in vivo. Furthermore, to determine the biological function of ephrin-A2, we assayed the expression of EMT-related markers in stable-established cell lines. Results showed that the overexpression of ephrin-A2 in prostate cancer cells down-regulated the expression of epithelial markers (ZO-1, E-cadherin, and claudin-1) and up-regulated the expression of mesenchymal markers (N-cadherin, β-catenin, vimentin, Slug, and Snail), but the knocking out of ephrin-A2 opposed the effects on the expression of EMT markers. CONCLUSIONS These findings indicate that ephrin-A2 promotes prostate cancer metastasis by enhancing angiogenesis and promoting EMT and may be a potentially therapeutic target in metastatic prostate cancer.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenchen Cai
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221002, China
| | - Miaomiao Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Lubing Shi
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiwei Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Haoliang Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, China.
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, China.
| |
Collapse
|
10
|
London M, Gallo E. The EphA2 and cancer connection: potential for immune-based interventions. Mol Biol Rep 2020; 47:8037-8048. [PMID: 32990903 DOI: 10.1007/s11033-020-05767-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The Eph (erythropoietin-producing human hepatocellular) receptors form the largest known subfamily of receptor tyrosine kinases. These receptors interact with membrane-bound ephrin ligands via direct cell-cell interactions resulting in bi-directional activation of signal pathways. Importantly, the Eph receptors play critical roles in embryonic tissue organization and homeostasis, and in the maintenance of adult processes such as long-term potentiation, angiogenesis, and stem cell differentiation. The Eph receptors also display properties of both tumor promoters and suppressors depending on the cellular context. Characterization of EphA2 receptor in regard to EphA2 dysregulation has revealed associations with various pathological processes, especially cancer. The analysis of various tumor types generally identify EphA2 receptor as overexpressed and/or mutated, and for certain types of cancers EphA2 is linked with poor prognosis and decreased patient survival. Thus, here we highlight the role of EphA2 in malignant tissues that are specific to cancer; these include glioblastoma multiforme, prostate cancer, ovarian and uterine cancers, gastric carcinoma, melanoma, and breast cancer. Due to its large extracellular domain, therapeutic targeting of EphA2 with monoclonal antibodies (mAbs), which may function as inhibitors of ligand activation or as molecular agonists, has been an oft-attempted strategy. Therefore, we review the most current mAb-based therapies against EphA2 expressing cancers currently in pre-clinical and/or clinical stages. Finally, we discuss the latest peptides and cyclical-peptides that function as selective agonists for EphA2 receptor.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
11
|
Wang L, Peng Q, Sai B, Zheng L, Xu J, Yin N, Feng X, Xiang J. Ligand-independent EphB1 signaling mediates TGF-β-activated CDH2 and promotes lung cancer cell invasion and migration. J Cancer 2020; 11:4123-4131. [PMID: 32368295 PMCID: PMC7196256 DOI: 10.7150/jca.44576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: The initial step of cancer metastasis is that cancer cells acquire the capability to migrate and invade. Eph receptors comprise the largest family of receptor tyrosine and display dual role in tumor progression due to unique ephrin cis- or trans- signaling. The roles of EphB1 and its phosphorylation signaling in lung cancer remain to be elucidated. Patients and Methods: We analyzed the expression of EphB1 in both publicly available database and 60 cases of NSCLC patients with or without metastasis. The migration and invasion of lung cancer cells were assessed by a transwell assay. The activation of EphB1 signaling was assessed by western blot and real-time PCR. The EphB1 mutant was used to evaluate the effect of phosphorylation of EphB1. Results: Here, we showed that increased expression of EphB1 was detected in Non-Small-Cell Lung Cancer (NSCLC) biopies compared to non-cancer controls. Significant higher expression of EphB1 in lung biopsies were found in patients with metastasis compared to non-metastatic NSCLC patients. Higher EphB1 expression was correlated with poor patient survival in lung cancer. Overexpression of EphB1 promoted the migration and invasion of lung cancer cells. On the contrast, Ephrin-B2, a transmembrane ligand for EphB1 forward signaling, inhibited migration and invasion of lung cancer cells. TGF-β-activated Smad2 transcriptionally upregulated the endogenous expression of EphB1. Ligand-independent EphB1 promoted Epithelial-mesenchymal transition (EMT) through upregulating CDH2. Conclusion: Our results showed that the effect of EphB1 on the migration and invasion was context-specific and was dependent on EphB1 phosphorylation.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Qiu Peng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Buqing Sai
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Jiaqi Xu
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Na Yin
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Xiang Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| |
Collapse
|
12
|
Leite M, Marques MS, Melo J, Pinto MT, Cavadas B, Aroso M, Gomez-Lazaro M, Seruca R, Figueiredo C. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells 2020; 9:cells9020513. [PMID: 32102381 PMCID: PMC7072728 DOI: 10.3390/cells9020513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H.pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell–cell and cell–matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori–host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.
Collapse
Affiliation(s)
- Marina Leite
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| | - Miguel S. Marques
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Joana Melo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta T. Pinto
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Bruno Cavadas
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Aroso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raquel Seruca
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ceu Figueiredo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| |
Collapse
|
13
|
Shitara K, Satoh T, Iwasa S, Yamaguchi K, Muro K, Komatsu Y, Nishina T, Esaki T, Hasegawa J, Kakurai Y, Kamiyama E, Nakata T, Nakamura K, Sakaki H, Hyodo I. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J Immunother Cancer 2019; 7:219. [PMID: 31412935 PMCID: PMC6694490 DOI: 10.1186/s40425-019-0679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Erythropoietin-producing hepatocellular receptor A2 (EPHA2) is overexpressed on the cell surface in many cancers and predicts poor prognosis. DS-8895a is a humanized anti-EPHA2 IgG1 monoclonal antibody afucosylated to enhance antibody-dependent cellular cytotoxicity activity. We conducted a two-step, phase I, multicenter, open-label study to determine the safety, tolerability, and pharmacokinetics of DS-8895a in patients with advanced solid tumors. Methods Step 1 was a dose escalation cohort in advanced solid tumor patients (six dose levels, 0.1–20 mg/kg) to determine Step 2 dosing. Step 2 was a dose expansion cohort in EPHA2-positive esophageal and gastric cancer patients. DS-8895a was intravenously administered every 2 weeks for the duration of the study, with a 28-day period to assess dose-limiting toxicity (DLT). Safety, pharmacokinetics, tumor response, and potential biomarkers were evaluated. Results Thirty-seven patients (Step 1: 22, Step 2: 15 [9: gastric cancer, 6: esophageal cancer]) were enrolled. Although one DLT (Grade 4 platelet count decreased) was observed in Step 1 (dose level 6, 20 mg/kg), the maximum tolerated dose was not reached; the highest dose (20 mg/kg) was used in Step 2. Of the 37 patients, 24 (64.9%) experienced drug-related adverse events (AEs) including three (8.1%) with Grade ≥ 3 AEs. Infusion-related reactions occurred in 19 patients (51.4%) but were manageable. All patients discontinued the study (evident disease progression, 33; AEs, 4). Maximum and trough serum DS-8895a concentrations increased dose-dependently. One gastric cancer patient achieved partial response and 13 patients achieved stable disease. Serum inflammatory cytokines transiently increased at completion of and 4 h after the start of DS-8895a administration. The proportion of CD16-positive natural killer (NK) cells (CD3−CD56+CD16+) decreased 4 h after the start of DS-8895a administration, and the ratio of CD3−CD56+CD137+ to CD3−CD56+CD16+ cells increased on day 3. Conclusions Twenty mg/kg DS-8895a infused intravenously every 2 weeks was generally safe and well tolerated in patients (n = 21) with advanced solid tumors. The exposure of DS-8895a seemed to increase dose-dependently and induce activated NK cells. Trial registration Phase 1 Study of DS-8895a in patients with advanced solid tumors (NCT02004717; 7 November 2013 to 2 February 2017); retrospectively registered on 9 December 2013. Electronic supplementary material The online version of this article (10.1186/s40425-019-0679-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohei Shitara
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa City, Chiba, Japan.
| | - Taroh Satoh
- Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Kensei Yamaguchi
- Cancer Institute Hospital of Japan Foundation for Cancer Research, Tokyo, Japan
| | - Kei Muro
- Aichi Cancer Center Hospital and Research Institute, Aichi, Japan
| | | | | | - Taito Esaki
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Formulation optimization of an ephrin A2 targeted immunoliposome encapsulating reversibly modified taxane prodrugs. J Control Release 2019; 310:47-57. [PMID: 31400383 DOI: 10.1016/j.jconrel.2019.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
Ephrin A2 targeted immunoliposomes incorporating pH-sensitive taxane prodrugs were developed for sustained delivery of active drug to solid tumors. Here we describe the systematic formulation development and characterization of these immunoliposomes. We synthesized both paclitaxel and docetaxel prodrugs to formulate as ephrin A2-targeted liposomes stabilized in the aqueous core with sucroseoctasulfate (SOS). The optimized lipid formulation was comprised of egg-sphingomyelin, cholesterol, and polyethylene glycol distearoyl glycerol (PEG-DSG). The formulations examined had a high efficiency of prodrug encapsulation (as high as 114 mol% taxane per mole phospholipid) and subsequent stability (>3 years at 2-8 °C). The taxane prodrug was stabilized with extraliposomal citric acid and subsequently loaded into liposomes containing a gradient of SOS, resulting in highly stable SOS-drug complexes being formed inside the liposome. The internal prodrug and SOS concentrations were optimized for their impact on in vivo drug release and drug degradation. Cryo-electron microscope images revealed dense prodrug-SOS complex in the aqueous core of the immunoliposomes. Ephrin A2-targeted taxane liposomes exhibited sub-nanomolar (0.69 nM) apparent equilibrium dissociation constant toward the extracellular domain of the ephrin A2 receptor, long circulation half-life (8-12 h) in mouse plasma, a release rate dependent on intraliposomal drug concentration and stable long-term storage. At an equitoxic dose of 50 mg taxane/kg, ephrin A2-targeted liposomal prodrug showed greater antitumor activity than 10 mg/kg of docetaxel in A549 non-small cell lung, as well as MDA-MB-436 and SUM149 triple negative breast cancer xenograft models. The lead molecule entered a Phase I clinical trial in patients with solid tumors (NCT03076372).
Collapse
|
15
|
Kim HS, Won YJ, Shim JH, Kim HJ, Kim BS, Hong HN. Role of EphA2-PI3K signaling in vasculogenic mimicry induced by cancer-associated fibroblasts in gastric cancer cells. Oncol Lett 2019; 18:3031-3038. [PMID: 31452781 PMCID: PMC6704280 DOI: 10.3892/ol.2019.10677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Although erythropoietin-producing human hepatocellular receptor A2 (EphA2) signaling serves an important role in the tumor microenvironment, its contribution to vasculogenic mimicry (VM) formation in gastric cancer cells remains unclear. The aim of the present study was to investigate the role of EphA2 in VM formation induced by cancer-associated fibroblasts (CAFs). The conditioned medium of CAFs (CAF-CM) was prepared from 12 patients with gastric adenocarcinoma. VM was evaluated by the number of tubules and intersections in gastric cancer cells following CAF-CM treatment. The role of EphA2-phosphoinositide 3-kinase (PI3K) in VM was investigated using EphA2-targeted small interfering (si)RNAs (siEphA2), EphA2 inhibitors and PI3K-inhibitors. CAF-CM-induced VM formation was significantly associated with high protein expression levels of EphA2. EphA2 inhibitor and siEphA2 manipulation significantly decreased VM formation by CAF-CM. In siEphA2 cells, decreased expression levels of VM-associated proteins were observed. CAF-CM-induced VM formation was blocked by the PI3K-inhibitor. In conclusion, CAFs facilitate VM formation via EphA2-PI3K signaling in gastric cancer cells. Thus, EphA2-PI3K signaling may be required for CAF-promoted VM formation during gastric tumorigenesis.
Collapse
Affiliation(s)
- Hee Sung Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - You Jin Won
- Department of Anatomy, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ju Hee Shim
- Department of Anatomy, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyun Ji Kim
- Department of Anatomy, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hea Nam Hong
- Department of Anatomy, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
16
|
Chen J, Zhang X, Schaller S, Jardetzky TS, Longnecker R. Ephrin Receptor A4 is a New Kaposi's Sarcoma-Associated Herpesvirus Virus Entry Receptor. mBio 2019; 10:e02892-18. [PMID: 30782663 PMCID: PMC6381284 DOI: 10.1128/mbio.02892-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with the development of Kaposi's sarcoma (KS). KSHV target cells include endothelial cells, B cells, monocytes, epithelial cells, dendritic cells, macrophages, and fibroblasts. KSHV entry into target cells is a complex multistep process and is initiated by the binding and interaction of viral envelope glycoproteins with the cellular receptors. In the current studies, we have found that EphA4 promotes KSHV glycoprotein H/glycoprotein L (gH/gL)-mediated fusion and infection better than does ephrin A2 (EphA2) in HEK293T cells, indicating that EphA4 is a new KSHV entry receptor. To confirm that epithelial cells express EphA2 and EphA4, we analyzed the expression of EphA2 and EphA4 in epithelial cells, endothelial cells, B cells, monocytes, fibroblasts using RNA sequencing (RNA-seq) data analysis of existing data sets. We found that these cell types broadly express both EphA2 and EphA4, with the exception of monocytes and B cells. To confirm EphA4 is important for KSHV fusion and infection, we generated EphA2 and EphA4 single- and double-knockout cells. We found that both EphA2 and EphA4 play a role in KSHV fusion and infection, since EphA2-EphA4 double-knockout cells had the greatest decrease in fusion activity and infection compared to single-knockout cells. Fusion and infection of KSHV were rescued in the EphA2-EphA4 double-knockout cells upon overexpression of EphA2 and/or EphA4. EphA2 binds to both Epstein-Barr virus (EBV) and KSHV gH/gL; however, EphA4 binds only to KSHV gH/gL. Taken together, our results identify EphA4 as a new entry receptor for KSHV.IMPORTANCE The overall entry mechanism for herpesviruses is not completely known, including those for the human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). To fully understand the herpesvirus entry process, functional receptors need to be identified. In the current study, we found that EphA4 can also function for a KSHV entry receptor along with EphA2. Interestingly, we found that EphA4 does not function as an entry receptor for EBV, whereas EphA2 does. The discovery of EphA4 as a KSHV entry receptor has important implications for KSHV pathogenesis in humans, may prove useful in understanding the unique pathogenesis of KSHV infection in humans, and may uncover new potential targets that can be used for the development of novel interventional strategies.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xianming Zhang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Samantha Schaller
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
17
|
Gao Y, Chen Z, Wang R, Tan X, Huang C, Chen G, Chen Z. LXRα Promotes the Differentiation of Human Gastric Cancer Cells through Inactivation of Wnt/β-catenin Signaling. J Cancer 2019; 10:156-167. [PMID: 30662536 PMCID: PMC6329868 DOI: 10.7150/jca.28600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
LXRα is a subtype of the liver X receptors (LXRs). There is accumulating evidence to support the involvement of LXRα in a variety of malignancies. However, the function and specific mechanism of LXRα in gastric cancer (GC) remain unclear. In this study, the expression of LXRα was significantly lower in poorly differentiated and undifferentiated GC tissues compared with well- and moderately differentiated GC tissues by immunohistochemistry analysis. The activation of LXRα leads to the decreased expression of β-catenin, CD44, and Cyclin D1, whereas the inhibition of LXRα has opposite effect. The same results were obtained in animal experiments. Furthermore, results showed that CD44 and Cyclin D1 expression significantly decreased when Wnt/β-catenin signaling was blocked in LXRα silent GC cells, whereas it was significantly increased when Wnt/β-catenin signaling was activated in LXRα over-expressed GC cells. CD44 and Cyclin D1, downstream targets of Wnt/β-catenin signaling, are specific markers for cell differentiation. Therefore, we conclude that LXRα may promote the differentiation of human GC cells through inactivation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gao
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| | - Zihua Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| | - Ran Wang
- Department of Colorectal and Anus Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| | - Xiangzhou Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| | - Changhao Huang
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| | - Guanyang Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| | - Zhikang Chen
- Department of Colorectal and Anus Surgery, Xiangya Hospital of Central South University, Hunan key laboratory of precise diagnosis and treatment of gastrointestinal tumor, Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
EPH receptor A2 governs a feedback loop that activates Wnt/β-catenin signaling in gastric cancer. Cell Death Dis 2018; 9:1146. [PMID: 30451837 PMCID: PMC6242896 DOI: 10.1038/s41419-018-1164-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
The erythropoietin-producing hepatoma (EPH) receptor A2 (EphA2) belongs to the Eph family of receptor tyrosine kinases. EphA2 is highly correlated with the formation of many solid tumors and has been linked to the dysregulation of signaling pathways that promote tumor cell proliferation, migration, and invasion as well as angiogenesis. Deregulation of Wnt signaling is implicated in many forms of human disease including gastric cancer. We previously reported that EphA2 promotes the epithelial–mesenchymal transition through Wnt/β-catenin signaling in gastric cancer. Herein, we present a novel mechanism by which EphA2 regulates Wnt/β-catenin signaling. EphA2 acts as a receptor for Wnt ligands and recruits Axin1 to the plasma membrane by directly binding Dvl2. The EphA2-Dvl2/Axin1 interaction was enhanced by Wnt3a treatment, suggesting that EphA2 acts as a functional receptor for the Wnt/β-catenin pathway and plays a vital role in downstream signaling. We showed that Dvl2 mediates the EphA2-Axin1 interaction by binding to the tyrosine kinase domain of EphA2. We propose that EphA2/Dvl2/Axin1 forms a complex that destabilizes the β-catenin destruction complex and allows β-catenin to translocate to the nucleus and initiate the transcription of c-MYC, the primary Wnt signaling target gene. Intriguingly, c-MYC could bind directly to the EphA2 and Wnt1 promoter to enhance their transcription. The entire process formed an EphA2-mediated feed-forward loop. A small molecular inhibitor of EphA2 potently inhibited the proliferation of gastric cancer in vitro and in vivo, including gastric cancer patient–derived xenografts. Thus, our data identify EphA2 as an excellent candidate for gastric cancer therapy.
Collapse
|
19
|
Hong HN, Won YJ, Shim JH, Kim HJ, Han SH, Kim BS, Kim HS. Cancer-associated fibroblasts promote gastric tumorigenesis through EphA2 activation in a ligand-independent manner. J Cancer Res Clin Oncol 2018; 144:1649-1663. [PMID: 29948146 DOI: 10.1007/s00432-018-2683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Under physiologic conditions, the binding of erythropoietin-producing hepatocellular (Eph) A2 receptor and its ligand ephrinA1 results in decreased EphA2 level and tumor suppression. However, EphA2 and ephrinA1 are highly expressed in human cancers including gastric adenocarcinoma. In this study, we tested our hypothesis that cancer-associated fibroblasts (CAFs) promote gastric tumorigenesis through EphA2 signaling in a ligand-independent manner. METHODS Expression of EphA2 protein in primary tumor tissues of 91 patients who underwent curative surgery for gastric adenocarcinoma was evaluated by immunohistochemistry and western blotting. Conditioned medium of cancer-associated fibroblasts (CAF-CM) was used to evaluate the tumorigenic effect of CAFs on gastric cancer cell lines. Epithelial-mesenchymal transition (EMT), cell proliferation, migration, and invasion were assessed. EphrinA1-Fc ligand was used to determine the suppressor role of EphA2 receptor-ligand binding. RESULTS CAF-CM-induced EMT and promoted cancer cell motility even without cell-cell interaction. Treatment with a selective EphA2 inhibitor (ALW-II-41-27) or EphA2-targeted siRNA markedly reduced CAF-CM-induced gastric tumorigenesis. EphrinA1-Fc ligand treatment showing ligand-dependent tumor suppression diminished the EphA2 expression and EMT progression. In contrast, ephrinA1-targeted siRNA did not significantly affect CAF-CM-mediated increases in EphA2 expression and EMT progression. Treatment with VEGF showed effects like CAF-CM in terms of EphA2 activation and EMT progression. CONCLUSION CAFs may contribute to gastric tumorigenesis by activating EphA2 signaling pathway in a ligand-independent manner. Our results suggest that ligand-independent activation of EphA2 was triggered by VEGF released from CAF-CM. Our result may partially explain why ligand-dependent tumor suppressor roles of EphA2 are not evident in gastric cancer despite the prominent level of ephrinA1.
Collapse
Affiliation(s)
- Hea Nam Hong
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - You Jin Won
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ju Hee Shim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Ji Kim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Hee Han
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
20
|
Tang L, Hu H, He Y, Mcleod HL, Xiao D, Chen P, Shen L, Zeng S, Yin X, Ge J, Li L, Ma J, Chen Z, Huang J. The relationship between miR-302b and EphA2 and their clinical significance in gastric cancer. J Cancer 2018; 9:3109-3116. [PMID: 30210634 PMCID: PMC6134821 DOI: 10.7150/jca.25235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: EphA2 is a crucial oncogene in gastric cancer (GC) development and metastasis, and miR-302b can target EphA2 in gastric cancer. This study plans to investigate their relationship and clinical significance in clinical samples. Materials and Methods: We explored the correlation of the expression of EphA2 and miR-302b, and their clinical significance in the training (n=226) cohort of GC patients, and then validated the results in the validation (n=128) cohort. Results: miR-302b was remarkably downregulated in GC tissues, while high EphA2 expression were detected, and they were inversely correlated both in mRNA and protein, (r=-0.4209, P<0.0001; r=-0.336, P <0.001, respectively). Furthermore, the pattern of high EphA2 and low miR-302b expression were found to be associated with poor overall survival in stage IV GC patients in both training and validation cohort. Conclusions: The expression of miR-302b and EphA2 was inversely correlated, and had prognostic significance on GC in clinic.
Collapse
Affiliation(s)
- Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Huabin Hu
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yijing He
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Howard L Mcleod
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, 410008, China.,Department of Clinical Pharmacology, XiangYa Hospital, Central South University, Changsha, 410008, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL 33612, USA
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pan Chen
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianli Yin
- Department of gastroenterology and urology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013,China
| | - Jie Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian Ma
- Cancer Research Institute, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, 410008, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
21
|
Yin S, Chen FF, Yang GF. Vimentin immunohistochemical expression as a prognostic factor in gastric cancer: A meta-analysis. Pathol Res Pract 2018; 214:1376-1380. [PMID: 30078472 DOI: 10.1016/j.prp.2018.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The prognostic value of vimentin expression in Gastric Cancer (GC) has been assessed for years while the results are still in dispute. Thus, we performed a meta-analysis to determine the effect of vimentin immunohistochemical (IHC) expression on the prognosis of GC. METHODS Literature searches were performed in PubMed and Embase. The meta-analysis examined the association of vimentin IHC expression with prognosis and clinicopathological characteristics of GC patients. RESULTS In total, ten studies involving 1598 cases were enrolled in this meta-analysis. Vimentin positive expression was significantly correlated with poor overall survival (OS) in GC patients (HR = 2.05, 95% CI: 1.29-3.24) but there was a significant degree of heterogeneity (I2 = 77%, P = 0.0006). Subgroup analysis indicated that vimentin expression had an unfavorable impact on OS in Chinese patients (HR = 2.43, 95% CI: 1.30-4.55). Moreover, vimentin positive expression rates was significantly associated with age, tumor location, TNM stage and lymph node metastasis. However, vimentin positive expression rates did not correlate with gender, grade of differentiation, vascular invasion, the depth of invasion, hepatic metastasis or peritoneal metastasis. CONCLUSIONS Positive vimentin expression could serve as a poor prognostic marker in GC.
Collapse
Affiliation(s)
- Shuai Yin
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang-Fang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gui-Fang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
23
|
Cicenas J, Zalyte E, Bairoch A, Gaudet P. Kinases and Cancer. Cancers (Basel) 2018; 10:cancers10030063. [PMID: 29494549 PMCID: PMC5876638 DOI: 10.3390/cancers10030063] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Egle Zalyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Amos Bairoch
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
- Faculty of Medicine; University of Geneva; 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | - Pascale Gaudet
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
24
|
Bloom JE, McNeel DG. SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer. Oncotarget 2018; 7:50997-51011. [PMID: 27276714 PMCID: PMC5239454 DOI: 10.18632/oncotarget.9802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy for men in the United States. Metastatic prostate cancer, the lethal form of the disease, has a life expectancy of approximately five years. Identification of factors associated with this transition to metastatic disease is crucial for future therapies. One such factor is the SSX gene family, a family of cancer/testis antigens (CTA) transcription factors which have been shown to be aberrantly expressed in other cancers and associated with the epithelial to mesenchymal transition (EMT). We have previously shown that SSX expression in prostate cancers was restricted to metastatic tissue and not primary tumors. In this study, we have identified SSX2 as the predominant SSX family member expressed in prostate cancer, and found its expression in the peripheral blood of 19 of 54 (35%) prostate cancer patients, with expression restricted to circulating tumor cells, and in 7 of 15 (47%) metastatic cDNA samples. Further, we examined SSX2 function in prostate cancer through knockdown and overexpression in prostate cancer cell lines. While overexpression had little effect on morphology or gene transcript changes, knockdown of SSX2 resulted in an epithelial morphology, increased cell proliferation, increased expression of genes involved in focal adhesion, decreased anchorage independent growth, increased invasion, and increased tumorigenicity in vivo. We conclude from these findings that SSX2 expression in prostate cancer is not a driver of EMT, but is involved in processes associated with EMT including loss of focal adhesion that may be related to tumor cell dissemination.
Collapse
Affiliation(s)
- Jordan E Bloom
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
25
|
Fan M, Liu Y, Xia F, Wang Z, Huang Y, Li J, Wang Z, Li X. Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. TUMORI JOURNAL 2018; 99:689-96. [DOI: 10.1177/030089161309900608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim To investigate the expression and clinical significance of ephrin type-A receptor 2 and epithelial-mesenchymal transition-related proteins in primary hepatocellular carcinoma. Methods Tissues from 52 primary hepatocellular carcinomas and 12 human normal liver tissues were detected for expression of ephrin type-A receptor 2, E-cadherin, and N-cadherin by immunochemistry. Cinicopathological features of hepatocellular carcinoma and tumor recurrence after operation were studied for the association with these molecular expressions and E-N cadherin switch. Results Increased expressions of ephrin type-A receptor 2 and N-cadherin and reduced expression of E-cadherin were significantly detected in hepatocellular carcinoma compared with normal liver tissues. Univariate analysis showed that there were close associations between unfavorable clinicopathological features and expressions of ephrin type-A receptor 2, E-cadherin, N-cadherin, and E-N cadherin switch. Ephrin type-A receptor 2 and E-cadherin expressions were confirmed as independent prognostic factors when corrected with age, gender, AFP, HBsAg, liver cirrhosis, tumor size, nodules, capsule, portal vein invasion, cell differentiation, and TNM stage. Conclusions The overexpression of ephrin type-A receptor 2 protein is correlated with the number of tumors, capsular integrity, portal vein cancer thrombus and clinical stages. Epithelial-mesenchymal transition regulated by ephrin type-A receptor 2 is involved in the aggressive clinicopathological features and prognosis, suggesting that the receptor may play an important role in the progression and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Min Fan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
- Department of Geriatrics, Xiangya Second Hospital, Central South University, Changsha
| | - Yu Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
- Department of General Surgery, Yueyang First People's Hospital, Yueyang, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Zhuolu Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Yun Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Jingdong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha
| |
Collapse
|
26
|
Huang J, He Y, Mcleod HL, Xie Y, Xiao D, Hu H, Chen P, Shen L, Zeng S, Yin X, Ge J, Li L, Tang L, Ma J, Chen Z. miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/ β-catenin/EMT signaling cascade in gastric cancer. BMC Cancer 2017; 17:886. [PMID: 29273006 PMCID: PMC5741943 DOI: 10.1186/s12885-017-3875-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023] Open
Abstract
Background EphA2 is a crucial oncogene in gastric cancer (GC) development and metastasis, this study aims to identify microRNAs that target it and serve as key regulators of gastric carcinogenesis. Methods We identified several potential microRNAs targeting EphA2 by bioinformatics websites and then analyzed the role of miR-302b in modulating EphA2 in vitro and in vivo of GC, and it’s mechanism. Results Our analysis identified miR-302b, a novel regulator of EphA2, as one of the most significantly downregulated microRNA (miRNA) in GC tissues. Overexpression of miR-302b impaired GC cell migratory and invasive properties robustly and suppressed cell proliferation by arresting cells at G0–G1 phase in vitro. miR-302b exhibited anti-tumor activity by reversing EphA2 regulation, which relayed a signaling transduction cascade that attenuated the functions of N-cadherin, β-catenin, and Snail (markers of Wnt/β-catenin and epithelial-mesenchymal transition, EMT). This modulation of EphA2 also had distinct effects on cell proliferation and migration in GC in vivo. Conclusions miR-302b serves as a critical suppressor of GC cell tumorigenesis and metastasis by targeting the EphA2/Wnt/β-catenin/EMT pathway. Electronic supplementary material The online version of this article (10.1186/s12885-017-3875-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yijing He
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, XiangYa Hospital, Central South University, Changsha, 410008, China.,Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, 33612, USA
| | - Yanchun Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Huabin Hu
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Pan Chen
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianli Yin
- Department of gastroenterology and urology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jie Ge
- Department of General Surgery, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian Ma
- Cancer Research Institute, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, No.138 Tongzipo Road, Changsha, China.
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
27
|
Wang X, Xu H, Wu Z, Chen X, Wang J. Decreased expression of EphA5 is associated with Fuhrman nuclear grade and pathological tumour stage in ccRCC. Int J Exp Pathol 2017; 98:34-39. [PMID: 28421649 DOI: 10.1111/iep.12219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
The incidence of renal cell carcinoma is increasing all over the world. The molecular mechanisms for tumorigenesis, progression and prognosis are still unknown. The erythropoietin-producing hepatoma amplified sequence (Eph) receptors have been reported to be expressed aberrantly in many types of human cancers and in particular EphA5 may play a role in certain human cancers. In this study, a set of clear cell renal cell carcinoma (ccRCC) tissues were subjected to immunohistochemistry. The relationship between EphA5 protein expression and clinicopathological parameters was statistically analysed. Our data show that EphA5 protein was negatively (0) or weakly (1+) expressed in 48 of 78 (61.5%), moderately (2+) expressed in 15 of 78 (19.2%) and strongly (3+) expressed in 15 of 78 (19.2%) tumour samples of ccRCC. Decreased expression of EphA5 was detected more often in females than in males (P = 0.017, rs = -0.267). Expression of EphA5 was related negatively to Fuhrman grade (P = 0.013, rs = -0.279) and pathological tumour stage pT (P = 0.003, rs = -0.334). No relation between the expression of EphA5 and age of patients was found (P = 0.107, rs = 0.184). Fuhrman grade and pT stage are the most important factors used in prognosis of ccRCC. Hence this study may provide a new and useful prognostic marker in the clinical practice of ccRCC.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Zhijun Wu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xiao Chen
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
28
|
Liu JK, Chen WC, Ji XZ, Zheng WH, Han W, An J. Correlation of overexpression of nestin with expression of epithelial-mesenchymal transition-related proteins in gastric adenocarcinoma. Asian Pac J Cancer Prev 2016; 16:2777-83. [PMID: 25854362 DOI: 10.7314/apjcp.2015.16.7.2777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nestin is associated with neoplastic transformation. However, the mechanisms by which nestin contributes regarding invasion and malignancy of gastric adenocarcinoma (GAC) remain unknown. Recent studies have shown that the epithelial-mesenchymal transition (EMT) is important in invasion and migration of cancer cells. In the present study, we aimed to investigate the expression of nestin and its correlation with EMT-related proteins in GAC. MATERIALS AND METHODS The expression of nestin and EMT-related proteins was examined in GAC specimens and cell lines by immunohistochemistry and Western blotting. Clinicopathological features and survival outcomes were retrospectively analyzed. RESULTS Positive nestin immunostaining was most obviously detected in the cytoplasm, nucleus or both cytoplasm and nucleus of tumor cells in 19.2% (24/125) of GAC tissues, which was significantly higher than that in normal gastric mucosa tissues (1.7%, 1/60) (p=0.001). Nestin expression was closely related to several clinicopathological factors and EMT-related proteins (E-cadherin, vimentin and Snail) and displayed a poor prognosis. Interestingly, simultaneous cytoplasmic and nuclear nestin expression correlated with EMT-related proteins (E-cadherin, vimentin and Snail) (p<0.05) and lymph node metastasis (p=0.041) and a shorter survival time (p<0.05), but this was not the case with cytoplasmic or nuclear nestin expression. CONCLUSIONS Nestin, particularly expression in both cytoplasm and nucleus, might be involved in regulating EMT and malignant progression in GAC, with potential as an unfavorable indicator in tumor diagnosis and a target for clinical therapy.
Collapse
Affiliation(s)
- Jin-Kai Liu
- Cancer Research Institute, Southern Medical University, Guangzhou, China E-mail :
| | | | | | | | | | | |
Collapse
|
29
|
Chen DH, Yu JW, Jiang BJ. Contactin 1: A potential therapeutic target and biomarker in gastric cancer. World J Gastroenterol 2015; 21:9707-9716. [PMID: 26361417 PMCID: PMC4562954 DOI: 10.3748/wjg.v21.i33.9707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains one of the most common malignant tumors worldwide, and early diagnosis remains a challenge. The lack of effective methods to detect these tumors early is a major factor contributing to the high mortality in patients with gastric cancer, who are typically diagnosed at an advanced stage. Additionally, the early detection of metastases and the curative treatment of gastric cancer are difficult to achieve, and the detailed mechanisms remain to be fully elucidated. Thus, the identification of valuable predictive biomarkers and therapeutic targets to improve the prognosis of patients with gastric cancer is becoming increasingly important. Contactin 1 (CNTN1), a cell adhesion molecule, is a glycosylphosphatidylinositol-anchored neuronal membrane protein that plays an important role in cancer progression. The expression of CNTN1 is upregulated in primary lesions, and its expression level correlates with tumor metastasis in cancer patients. The current evidence reveals that the functions of CNTN1 in the development and progression of cancer likely promote the invasion and metastasis of cancer cells via the VEGFC/FLT4 axis, the RHOA-dependent pathway, the Notch signaling pathway and the epithelial-mesenchymal transition progression. Therefore, CNTN1 may be a novel biomarker and a possible therapeutic target in cancer treatment in the near future.
Collapse
|
30
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Ema A, Yamashita K, Ushiku H, Kojo K, Minatani N, Kikuchi M, Mieno H, Moriya H, Hosoda K, Katada N, Kikuchi S, Watanabe M. Immunohistochemical analysis of RTKs expression identified HER3 as a prognostic indicator of gastric cancer. Cancer Sci 2014; 105:1591-600. [PMID: 25455899 PMCID: PMC4317956 DOI: 10.1111/cas.12556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Standard treatment in Japan for the 13th Japanese Gastric Cancer Association stage II/III advanced gastric cancer is postoperative adjuvant S-1 administration after curative surgery. High expression of receptor type tyrosine kinases (RTKs) has repeatedly represented poor prognosis for cancers. However it has not been demonstrated whether RTKs have prognostic relevance for stage II/III gastric cancer with standard treatment. Tumor tissues were obtained from 167 stage II/III advanced gastric cancer patients who underwent curative surgery and received postoperative S-1 chemotherapy from 2000 to 2010. Expression of the RTKs including EGFR, HER2, HER3, IGF-1R, and EphA2 was analyzed using immunohistochemistry (IHC). Analysis using a multivariate proportional hazard model identified the most significant RTKs that represented independent prognostic relevance. When tumor HER3 expression was classified into IHC 1+/2+ (n = 98) and IHC 0 (n = 69), the cumulative 5-year Relapse Free Survival (5y-RFS) was 56.5 and 82.9%, respectively (P = 0.0034). Significant prognostic relevance was similarly confirmed for IGF-1R (P = 0.014), and EGFR (P = 0.030), but not for EphA2 or HER2 expression. Intriguingly, HER3 expression was closely correlated with IGF-1R (P < 0.0001, R = 0.41), and EphA2 (P < 0.0001, R = 0.34) expression. Multivariate proportional hazard model analysis identified HER3 (IHC 1+/2+) (HR; 1.53, 95% CI, 1.11–2.16, P = 0.0078) as the sole RTK that was a poor prognostic factor independent of stage. Of the 53 patients who recurred, 40 patients (75.5%) were HER3-positive. Thus, of the RTKs studied, HER3 was the only RTK identified as an independent prognostic indicator of stage II/III advanced gastric cancer with standard treatment.
Collapse
Affiliation(s)
- Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shen W, Xi H, Zhang K, Cui J, Li J, Wang N, Wei B, Chen L. Prognostic role of EphA2 in various human carcinomas: a meta-analysis of 23 related studies. Growth Factors 2014; 32:247-53. [PMID: 25418013 DOI: 10.3109/08977194.2014.984806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prognostic role of EphA2 in human carcinomas remains controversial. We systematically reviewed the evidence of assessment of EphA2 expression in cancers to help clarify this issue. PubMed, Embase and Web of Science databases were searched to identify eligible studies to evaluate the association of EphA2 expression and overall survival (OS) of cancers. Hazard ratios (HRs) were pooled to estimate the effect. EphA2 overexpression was significantly correlated with poor OS of patients with cancer (HR: 1.94, 95% confidence interval [CI]: 1.65-2.28). Subgroup analysis also indicated a significant relation between EphA2 overexpression and OS in gastric cancer (HR: 1.95, 95% CI: 1.48-2.59). However, there was no significant relation between EphA2 overexpression and OS in lung cancer (HR: 1.30, 95% CI: 0.93-1.83). Our analyses demonstrate that EphA2 overexpression was effectively predictive of worse prognosis in various human carcinomas. For certain cancers, EphA2 might be a marker of poor prognosis in patients with cancer, except for lung cancer.
Collapse
Affiliation(s)
- Weisong Shen
- Department of General Surgery, Chinese People's Liberation Army General Hospital , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University , Victoria , Australia and
| | | | | | | | | | | |
Collapse
|
34
|
Li LF, Wei ZJ, Sun H, Jiang B. Abnormal β-catenin immunohistochemical expression as a prognostic factor in gastric cancer: A meta-analysis. World J Gastroenterol 2014; 20:12313-12321. [PMID: 25232267 PMCID: PMC4161818 DOI: 10.3748/wjg.v20.i34.12313] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of β-catenin immunohistochemical expression on the prognosis of gastric cancer (GC).
METHODS: We searched Pubmed and Embase to identify eligible studies. The search ended on November 10, 2013, with no lower date limit. The citation lists associated with the studies were used to identify additional eligible studies. We included studies reporting sufficient information to estimate the HR and 95%CI, and information to estimate the OR in the analysis of clinicopathological features. The qualities of these studies were assessed using the Newcastle-Ottawa Quality Assessment Scale. HRs and ORs and their variance were calculated and pooled using Review Manager Version 5.2.
RESULTS: A total of 24 studies were identified and comprised 3404 cases. β-catenin expression was significantly correlated with poor overall survival (OS) in GC patients (HR = 1.85, 95%CI: 1.39-2.46), but showed a significant degree of heterogeneity (I2 = 71%, P < 0.0001). Subgroup analysis indicated that an abnormal pattern of β-catenin expression had an unfavorable effect on OS (HR = 1.79, 95%CI: 1.39-2.32). However, accumulation in the nucleus or loss of membrane did not influence the survival of GC patients independently. Moreover, the combined OR of β-catenin indicated that β-catenin expression was associated with Lauren classification (OR = 1.98, 95%CI: 1.19-3.29), lymph node metastasis (OR = 2.00, 95%CI: 1.44-2.77), distant metastasis (OR = 2.69, 95%CI: 1.35-5.38) and grade of differentiation (OR = 2.68, 95%CI: 1.66-4.34). β-catenin expression did not correlate with TNM stage (OR = 1.34 95%CI: 0.96-1.86), the depth of invasion (OR = 1.48, 95%CI: 0.94-2.33) or vascular invasion (OR = 1.11, 95%CI: 0.70-1.76).
CONCLUSION: Abnormal β-catenin immunohistochemical expression may be associated with tumor progression and could be a predictive factor of poor prognosis in patients with GC.
Collapse
|
35
|
Li R, Yuan W, Mei W, Yang K, Chen Z. MicroRNA 520d-3p inhibits gastric cancer cell proliferation, migration, and invasion by downregulating EphA2 expression. Mol Cell Biochem 2014; 396:295-305. [PMID: 25063221 DOI: 10.1007/s11010-014-2164-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) has been shown to play important roles in cancer progression as a result of changes in expression of their target genes. In this study, we investigated the roles of miR-520d-3p on gastric cancer (GC) cell proliferation, migration, and invasion, and confirmed that this miRNA regulates EphA2 expression. The mRNA expression levels of miR-520d-3p and EphA2 in GC tissues and cell lines were evaluated. The clinical and prognostic significance of miR-520d-3p was assessed. The biological function of miR-520d-3p in GC cells was investigated using a methylthiazolyldiphenyl-tetrazolium bromide assay, cell cycle assay, transwell invasion assay, and wound-healing assay. miR-520d-3p expression was down-regulated and inversely correlated with the expression of EphA2 in GC tissues and cell lines. Lower expression of miR-520d-3p was associated with tumor invasion (P = 0.0357), lymph nodes metastasis (P = 0.0272), a higher clinical stage (P = 0.0041), and poorer overall survival (P = 0.0105). Luciferase assays revealed that miR-520d-3p inhibited EphA2 expression by targeting the 3'-untranslated region of EphA2 mRNA. Overexpression of miR-520d-3p dramatically inhibited the proliferation, cell cycle progression, invasion, and migration of GC cells, while down-regulation substantially promoted these properties. Moreover, c-Myc, CyclinD1, and matrix metalloproteinase-9 expression levels were down-regulated in miR-520d-3p mimic-transfected cells and up-regulated in miR-520d-3p inhibitor-transfected cells. Taken together, our data showed that miR-520d-3p appears to contribute to GC progression via the regulation of EphA2 and could serve as a novel prognostic and potential therapeutic marker.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Xu J, Zhang J, Cui L, Zhang H, Zhang S, Bai Y. High EphA2 protein expression in renal cell carcinoma is associated with a poor disease outcome. Oncol Lett 2014; 8:687-692. [PMID: 25013485 PMCID: PMC4081399 DOI: 10.3892/ol.2014.2196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/07/2014] [Indexed: 12/19/2022] Open
Abstract
The receptor tyrosine kinase, ephrin type-A receptor 2 (EphA2), is normally expressed at sites of cell-to-cell contact in adult epithelial tissues, however, recent studies have shown that it is also overexpressed in various types of epithelial carcinomas, with the greatest level of EphA2 expression observed in metastatic lesions. In the present study, the association between the expression of EphA2 and the outcome of RCC patients was assessed. The high expression level of EphA2 was identified by log-rank test for a statistically significant prediction of the RCC outcome. In an overall multivariate analysis, the high expression level of EphA2 was identified as an independent predictor of RCC outcome. The length of survival of the patients with high EphA2 expression was shorter than that of the patients with a low level of expression (relative risk, 2.304; 95% CI, 1.102–4.818; P=0.027). The analysis of the expression levels of EphA2 in tumor tissues may aid in the identification of the patient subgroup that are at a high risk of a poor disease outcome.
Collapse
Affiliation(s)
- Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junxia Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liwen Cui
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiran Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
37
|
Li RX, Chen ZH, Chen ZK. The role of EPH receptors in cancer-related epithelial-mesenchymal transition. CHINESE JOURNAL OF CANCER 2013; 33:231-40. [PMID: 24103789 PMCID: PMC4026543 DOI: 10.5732/cjc.013.10108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Erythropoietin-producing hepatoma (EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease. EPH receptors are often overexpressed in human malignancies and are associated with poor prognosis. However, the functions of EPH receptors in epithelial-mesenchymal transition (EMT) remain largely unknown. This review depicts the relationship between EPH receptors and the EMT marker E-cadherin as well as the crosstalk between EPH receptors and the signaling pathways involved EMT. Further discussion is focused on the clinical significance of EPH receptors as candidates for targeting in cancer therapeutics. Finally, we summarize how targeted inhibition of both EPH receptors and EMT-related signaling pathways represents a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Rui-Xin Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.
| | | | | |
Collapse
|
38
|
Zheng H, Li W, Wang Y, Liu Z, Cai Y, Xie T, Shi M, Wang Z, Jiang B. Glycogen synthase kinase-3 beta regulates Snail and β-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer. Eur J Cancer 2013; 49:2734-46. [PMID: 23582741 DOI: 10.1016/j.ejca.2013.03.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 12/21/2022]
Abstract
Fas signalling has been shown to induce the epithelial-mesenchymal transition (EMT) to promote gastrointestinal (GI) cancer metastasis, but its mechanism of action is still unknown. The effects of Fas-ligand (FasL) treatment and inhibition of Fas signalling on GI cancer cells were tested using invasion assay, immunofluorescence, immunoblot, Reverse Transcription Polymerase Chain Reaction (RT-PCR), quantitative Real-time PCR (qRT-PCR), immunoprecipitation and luciferase reporter assay. Immunohistochemistry was used to analyse the EMT-associated molecules in GI cancer specimens. FasL treatment inhibited E-cadherin transcription by upregulation of Snail in GI cancer cells. The nuclear expression and transcriptional activity of Snail and β-catenin were increased by inhibitory phosphorylation of glycogen synthase kinase-3 beta (GSK-3β) at Ser9 by FasL-induced extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling. Snail associated with β-catenin in the nucleus and, thus, increased β-catenin transcriptional activity. Evaluation of human GI cancer specimens showed that the expression of FasL, phospho-GSK-3β, Snail and β-catenin increase during GI cancer progression. An EMT phenotype was shown to correlate with an advanced cancer stage, and a non-EMT phenotype significantly correlated with a better prognosis. Collectively, these data indicate that GSK-3β regulates Snail and β-catenin expression during Fas-induced EMT in gastrointestinal cancer.
Collapse
Affiliation(s)
- Haoxuan Zheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xing X, Tang YB, Yuan G, Wang Y, Wang J, Yang Y, Chen M. The prognostic value of E-cadherin in gastric cancer: A meta-analysis. Int J Cancer 2012; 132:2589-96. [DOI: 10.1002/ijc.27947] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022]
|
40
|
Tumor necrosis factor-α (TNF-α) stimulates the epithelial-mesenchymal transition regulator Snail in cholangiocarcinoma. Med Oncol 2012; 29:3083-91. [PMID: 22903530 DOI: 10.1007/s12032-012-0305-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/04/2012] [Indexed: 12/19/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a series of events during which epithelial cells lose many of their epithelial characteristics and take on properties that are typical of mesenchymal cells that lack cell-cell adhesion properties. EMT may be activated by various types of growth factors or inflammatory cytokines. In many types of epithelial cancers, the EMT-derived tumor cells are susceptible to metastasis. During tumor progression, epithelial cells acquire a gene expression pattern closely resembling that of mesenchymal cells. This study aimed to investigate the expression of the EMT-associated transcription factor Snail and an adhesion molecule E-cadherin in cholangiocarcinoma (CCA) tissues. The effect of TNF-α on EMT activation in CCA cells was also demonstrated. The qRT-PCR analysis revealed that Snail expression significantly increased in CCA (P = 0.01) and was correlated with tumor metastasis (P = 0.02). The expression of Snail was inversely associated with E-cadherin (P = 0.004). The stimulation of TNF-α enhances migration behavior and showed significantly induced expression of Snail in CCA cell lines, whereas expression of E-cadherin and CK-19 (the epithelial marker) was reduced. Immunofluorescence analysis revealed that TNF-α-treated CCA cell lines increased nuclear translocation of Snail, whereas E-cadherin was dramatically decreased. Our findings suggest that the changes in the expression of Snail or E-cadherin might regulate EMT development in CCA resulting in promoting tumor progression. Overexpression of Snail could be used as a prognostic marker for monitoring the treatment efficiency of CCA patients.
Collapse
|
41
|
Guo T, Fan L, Ng WH, Zhu Y, Ho M, Wan WK, Lim KH, Ong WS, Lee SS, Huang S, Kon OL, Sze SK. Multidimensional Identification of Tissue Biomarkers of Gastric Cancer. J Proteome Res 2012; 11:3405-13. [DOI: 10.1021/pr300212g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tiannan Guo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| | - Lingling Fan
- Center for Stem Cell Research & Application, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China 430022
| | | | - Yi Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| | | | - Wei Keat Wan
- Pathology Department, Singapore General Hospital, Outram Road, Singapore
169608
| | - Kiat Hon Lim
- Pathology Department, Singapore General Hospital, Outram Road, Singapore
169608
| | | | | | - Shiang Huang
- Center for Stem Cell Research & Application, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China 430022
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,
Singapore 637551
| |
Collapse
|